
Citation: Guo, C.; Fan, S.; Chen, C.;

Zhao, W.; Wang, J.; Zhang, Y.; Chen, Y.

Query-Informed Multi-Agent Motion

Prediction. Sensors 2024, 24, 9.

https://doi.org/10.3390/s24010009

Academic Editors: Peter Han Joo

Chong and Gregor Klančar

Received: 31 October 2023

Revised: 7 December 2023

Accepted: 17 December 2023

Published: 19 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Query-Informed Multi-Agent Motion Prediction
Chong Guo 1,2 , Shouyi Fan 1, Chaoyi Chen 1, Wenbo Zhao 3, Jiawei Wang 1, Yao Zhang 1 and Yanhong Chen 1,*

1 College of Automotive Engineering, Jilin University, Changchun 130025, China; guochong@jlu.edu.cn (C.G.);
syfan22@mails.jlu.edu.cn (S.F.); chency21@mails.jlu.edu.cn (C.C.); wjw20@mails.jlu.edu.cn (J.W.);
zyao18@mails.jlu.edu.cn (Y.Z.)

2 Changsha Automobile Innovation Research Institute, Changsha 410005, China
3 FAW Car Co., Ltd., Changchun 130015, China; zhaowenbo@fawcar.com.cn
* Correspondence: yhchen@jlu.edu.cn

Abstract: In a dynamic environment, autonomous driving vehicles require accurate decision-making
and trajectory planning. To achieve this, autonomous vehicles need to understand their surrounding
environment and predict the behavior and future trajectories of other traffic participants. In recent
years, vectorization methods have dominated the field of motion prediction due to their ability
to capture complex interactions in traffic scenes. However, existing research using vectorization
methods for scene encoding often overlooks important physical information about vehicles, such as
speed and heading angle, relying solely on displacement to represent the physical attributes of agents.
This approach is insufficient for accurate trajectory prediction models. Additionally, agents’ future
trajectories can be diverse, such as proceeding straight or making left or right turns at intersections.
Therefore, the output of trajectory prediction models should be multimodal to account for these
variations. Existing research has used multiple regression heads to output future trajectories and
confidence, but the results have been suboptimal. To address these issues, we propose QINET, a
method for accurate multimodal trajectory prediction for all agents in a scene. In the scene encoding
part, we enhance the feature attributes of agent vehicles to better represent the physical information
of agents in the scene. Our scene representation also possesses rotational and spatial invariance. In
the decoder part, we use cross-attention and induce the generation of multimodal future trajectories
by employing a self-learned query matrix. Experimental results demonstrate that QINET achieves
state-of-the-art performance on the Argoverse motion prediction benchmark and is capable of fast
multimodal trajectory prediction for multiple agents.

Keywords: autonomous vehicles; trajectory prediction; query-informed; multimodal

1. Introduction

Multi-object motion prediction is an essential step in autonomous driving. It aids
autonomous vehicles in making informed decisions and prevents accidents. However,
traffic scenes are highly complex, involving targets, road networks, and their interactions.
Prediction models need to take these entities as inputs and output reasonable multimodal
trajectories that intelligent agents may take in the future.

Recently, deep learning-based methods have shown promising results in motion
prediction tasks [1–4]. Some studies rasterize scenes into top–down views and employ
CNNs for prediction [1,5,6]. While these methods are easily implementable with off-the-
shelf image models, they have limited applicability and come with a high cost. Given
these constraints, recent research [2,4] has adopted a vectorization approach for a more
efficient scene representation, extracting a set of vector nodes from the trajectories of traffic
participants and map elements. Subsequently, to learn relationships between vectorized
entities, such as trajectory waypoints and lane segments, some studies [7–9] use graph
neural networks to process scenes, some studies [10] use transformers to process scenes,
others [11] use point cloud models to process scenes. In addition, some research [12–14]

Sensors 2024, 24, 9. https://doi.org/10.3390/s24010009 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24010009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2068-908X
https://orcid.org/0009-0007-8870-7930
https://doi.org/10.3390/s24010009
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24010009?type=check_update&version=2

Sensors 2024, 24, 9 2 of 16

has focused on the vulnerability of data-driven algorithms, Autoencoder, and GAN for
trajectory prediction.

However, during the scene encoding process, the perspective of predicting the scene
varies for each target. Most existing methods transform the entire scene with respect to
one target agent at a time, which leads to asymmetry for other agents. This approach has
lower prediction efficiency and is less robust to co-ordinate transformations. To address
these issues, HiVT [15] uses rotation invariant and shift invariant scene representations,
which greatly enhances the robustness of the prediction model. Additionally, many studies
simply use displacement to encode vectors without considering other physical information
of scene entities, such as speed, heading angle, and spatial relationships between entities.
This oversight may lead to suboptimal trajectory predictions. In the decoder section, the
predicted trajectories should be multimodal. However, current research [16] mostly em-
ploys non-maximum suppression (NMS) methods, setting a certain threshold, and filtering
out multimodal trajectories based on L2 distances between future trajectory endpoints,
which yields unsatisfactory results.

We employ a symmetric scene representation using HiVT, in which all relative fea-
tures possess translational and rotational invariance. Building upon this, we introduce a
query-based framework for inducing the generation of multimodal trajectories: QINET.
In terms of scene encoding, our representation method incorporates additional relevant
features about the target and lane segments to convey their physical significance. In the
trajectory prediction decoder section, to enhance the multimodality of output trajectories,
we introduce self-learnable parameter matrices for cross-attention over the agent vehicle’s
history, which we refer to as the query mechanism.

QINET consists of an encoder module and a decoder module. In the encoder section,
we expand the scene representation of vectorized entities, incorporating new features re-
lated to targets and lane segments. We use projected vector representations for all relevant
features of the traffic scene at each timestamp, providing a more detailed description of
relative spatial relationships. In the decoder section, we develop a query-informed architec-
ture that combines features from agent history, agent relationships, and the road graph as a
target-centric scene representation. This is achieved through querying and self-attention
learning to extract and combine scene features. The combined feature representation is
used to induce the output of multimodal trajectories. Some feature representation comes
from the agent’s historical trajectory features, while another part comes from the output
of the encoder section, which we refer to as anchor points. In this way, the network first
learns to generate scene modal features with maximum diversity without environmental
constraints, and then decodes future trajectories after absorbing anchor points carrying rich
target-oriented contextual information.

Our contributions can be summarized as follows: first, we extend HiVT’s scene rep-
resentation method by incorporating new features related to targets and lane segments,
providing a more detailed description of relative spatial relationships; second, we propose
a queries-informed decoder based on DETR [17], which combines historical query infor-
mation and anchor point information end-to-end, promoting the multimodality of output
trajectories; and, third, the designed QINET is capable of making accurate and reasonable
predictions.

2. Related Work

Traffic Scene Representation. Solving the motion prediction problem requires learning
rich representations from elements in the traffic scene, including high-definition maps
and the agent’s past trajectories. A significant amount of research employs grid-based
scene representations as model inputs [18–20] and utilizes standard image models [21,22]
for learning. Specifically, these methods extract map elements (such as lane bound-
aries, stop lines, and crosswalks) from high-definition maps and render the scene into a
top–down image using different colors. The agent’s past trajectories are either rasterized
into additional image channels [1,5] or processed by temporal models like RNNs [23,24].

Sensors 2024, 24, 9 3 of 16

Rasterization methods require mature computer technology support, but their draw-
back lies in being inefficient and costly. Recently, vectorization methods [2,4,25] have
gained popularity due to their efficient sparse encoding and ability to capture complex
structural information. Unlike rasterization methods, these approaches consider the scene
as a set of entities associated with semantic and geometric attributes, and learn the rela-
tionships between these entities. VectorNet [25] employs graph neural networks to model
interactions between lanes and trajectory polylines. It has also served as a backbone in
some subsequent works [26,27]. LaneGCN [2] constructs lane graphs from lane segments
and employs multi-scale graph convolutional networks to capture long-range dependen-
cies by learning features of graph nodes. TPCN [4] extends point cloud models to learn
from a spatial-temporal set composed of trajectory waypoints and lane points. Our scene
representation falls under this category as well, but what sets it apart is that all vectorized
entities are characterized by relative positions, enhancing model robustness as relative
displacements remain invariant to translation. The approach most related to this paper
is HiVT [15], which uses a translation-invariant scene representation method that avoids
using absolute positions and characterizes the geometric entities with relative positions
and constructs rotation-invariant transformers to model the different interactions between
the vectorized entities locally and globally.

Motion Prediction. Since social interactions are ubiquitous in traffic scenes and sig-
nificantly influence the future motions of traffic agents, many motion prediction meth-
ods consider dependencies between agent behaviors and rational agent–agent interac-
tions. They employ social pooling [28,29], graph neural networks [30,31], or attention
mechanisms [20,25,32–34]. Inspired by the success of transformer models [10] in vari-
ous fields, some recent works utilize transformers in motion prediction tasks to model
spatial relationships, temporal dependencies, and relationships between agents and map
elements [23,32,34,35].

In contrast, our transformer architecture differs from existing architectures by incorpo-
rating hierarchical learning of local and global representations. We encode each timestep
in the local encoder, breaking down the time. In addition, we decompose the space by
modeling multiple agents with a goal-centered representation that is invariant to translation
and rotation in the scene. In the global encoder, we interact with all cars in the scene to
obtain remote dependency information. The combination of a hierarchical structure and
symmetric design allows our approach to achieve state-of-the-art prediction performance
with fewer parameters and lower computational costs.

3. Method
3.1. Overall Framework

This section proposes a query-informed vehicle trajectory prediction method, QINET,
to induce the model to generate multi-modal predicted trajectory to the maximum extent.
The overall process is shown in Figure 1. The prediction model consists of three parts:
scene vectorization representation, encoder, and decoder. Firstly, in the scene vectorization
representation part, we extend the feature representation in HiVT [15]. For the vector
node representation of agent, we use the displacement of agent and its absolute value,
velocity, and its absolute value, sine–cosine value of heading angle, and timestamp length
information. For lane vector node representation, we use lane segment displacement
and heading angle to represent. Such scenarios represent a more detailed description
of the relative spatial relationships between vector nodes. Then, our feature extraction
encoder makes use of HiVT’s encoder architecture to design subgraphs for local encoding.
Transformer encoder is used to pay attention to time information, and global graph is
used to extract and interact remote dependent information. In addition, we propose a
query-informed multi-scene modality for an end-to-end learning approach to induce output
multimodal prediction trajectories. In our method, the proposed generation is obtained by
querying the output current encoding of transformer encoder by cross-attention method,
which is the information extraction of agent historical trajectory. The multi-modality of

Sensors 2024, 24, 9 4 of 16

the predicted trajectory can be promoted to the maximum extent without environmental
constraints. In addition, we obtain the anchor feature representation that absorbs and
carries rich goal-oriented context information through self-attentional learning of global
graph output. A portion of the input to the multi-modal trajectory prediction decoder
comes from the query-informed multi-scene modality features, while another portion
comes from anchor features.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 16

modality of the predicted trajectory can be promoted to the maximum extent without en-
vironmental constraints. In addition, we obtain the anchor feature representation that ab-
sorbs and carries rich goal-oriented context information through self-attentional learning
of global graph output. A portion of the input to the multi-modal trajectory prediction
decoder comes from the query-informed multi-scene modality features, while another
portion comes from anchor features.

Figure 1. This is the overall framework of QINET. We utilize the graph attention mechanism (GAT)
to establish A2A and L2A for extracting environmental features around participants. We set query
matrices (queries) to query the historical trajectory features of the agent, obtaining diverse scene-
modal features. These scene-modal features, combined with anchor features learned from the global
graph output, are used to output multimodal trajectories.

3.2. Complexity Analysis
In the local encoder part, we utilized the model architecture of HiVT to decompose

time and spatial dimensions, learning spatial relationships locally at each timestep. This
approach reduces complexity from 𝑂((𝑁𝑇 + 𝐿)) to 𝑂(𝑁𝑇 + 𝑇𝑁 + 𝑁𝐿) , where N, T,
and L represent the number of agents, historical timesteps, and the number of lane seg-
ments, respectively. Although we expanded the feature dimension of nodes in HiVT, this
expansion has minimal impact on the overall complexity. In addition, in the decoder part,
the complexity added by the method of designing query matrices to obtain multimodal
scene feature representations can be calculated as 𝑂(𝑁𝑇), which is lightweight compared
to the local encoder.

3.3. Scene Representation
3.3.1. Node Feature Representation

For the traffic agent, we extract trajectory segments at each timestamp, which take
the form of directed splines. These trajectory segments, referred to as vector nodes, are
characterized by their feature attributes as: 𝐧 = 𝐑 𝐝 , 𝐑 𝐯 , 𝐑 𝐚 , Δ𝑡 , 𝐛 ∣ 𝑖 =1, … , 𝑁 , 𝑡 = 0, … ,19}. The main feature attributes are highlighted in red as follows: 𝐥 = [𝑥 , 𝑦] (1)𝐝 = 𝐥 − 𝐥 (2)𝑑 = 𝑥 − 𝑥 (3)𝑑 = 𝑦 − 𝑦 (4)

𝐯 = 𝐝Δ𝑡 (5)

𝛼 = arctan . (6)

A2A Transformer
encoder attn A2A

Cross-
attention

Current
encoding

Queries

Scene
modality

Anchors Trajectories

GAT
subgraph

GAT
globalgraph

ConcatScene
embedding

Prediction
headerL2A

Figure 1. This is the overall framework of QINET. We utilize the graph attention mechanism (GAT)
to establish A2A and L2A for extracting environmental features around participants. We set query
matrices (queries) to query the historical trajectory features of the agent, obtaining diverse scene-
modal features. These scene-modal features, combined with anchor features learned from the global
graph output, are used to output multimodal trajectories.

3.2. Complexity Analysis

In the local encoder part, we utilized the model architecture of HiVT to decompose
time and spatial dimensions, learning spatial relationships locally at each timestep. This
approach reduces complexity from O

(
(NT + L)2

)
to O

(
NT2 + TN2 + NL

)
, where N, T,

and L represent the number of agents, historical timesteps, and the number of lane segments,
respectively. Although we expanded the feature dimension of nodes in HiVT, this expansion
has minimal impact on the overall complexity. In addition, in the decoder part, the
complexity added by the method of designing query matrices to obtain multimodal scene
feature representations can be calculated as O(NT), which is lightweight compared to the
local encoder.

3.3. Scene Representation
3.3.1. Node Feature Representation

For the traffic agent, we extract trajectory segments at each timestamp, which take
the form of directed splines. These trajectory segments, referred to as vector nodes, are
characterized by their feature attributes as: na =

{
RT⊤

i dt
i , RT⊤

i vt
i , RT⊤

i at
i , ∆tt, bi | i = 1, . . . , Nt,

t = 0, . . . , 19} . The main feature attributes are highlighted in red as follows:

lt
i =

[
xt

i , yt
i
]

(1)

dt
i = lt

i − lt−1
i (2)

dt
xi
= xt

i − xt−1
i (3)

dt
yi
= yt

i − yt−1
i (4)

vt
i =

dt
i

∆tt (5)

αt
i = arctan

dt
yi

dt
xi

. (6)

at
i =

[
cos
(
αt

i
)
, sin

(
αt

i
)]

(7)

Sensors 2024, 24, 9 5 of 16

∆tt = tt − tt−1 (8)

where Nt represents the total number of agent vehicles appearing at timestamp t. lt
i denotes

the co-ordinates of the i-th agent in the scene at timestamp t. dt
i is the displacement vector of

agent vehicle i from timestamp t − 1 to t. vt
i represents the speed. αt

i indicates the heading
angle of the i-th agent at timestamp t. at

i is the heading vector composed of the cosine and
sine of the agent’s heading angle. ∆tt represents the duration of the timestamp. Including
this in the node features is considered due to the non-uniform sampling frequency of the
Argoverse dataset, which is not consistently 0.1 s. RT

i is the rotation matrix defined by the
heading angle of the i-th agent at the current timestep (t = 19). bi represents the semantic
feature.

For lane vector nodes, we opt to extract the co-ordinates of lane points along with
their associated semantic attributes, such as dashed or solid lines, and turning directions.
We vectorize lane segments into nodes similar to agent vectors, and represent them as
nl = {dk, ak, bk | k = 1, . . . , Nl}, where Nl denotes the total number of lane segments, dk
represents the displacement vector of the lane segment, ak is composed of the sine and
cosine values of the heading angle of the lane segment, indicating the direction of the
displacement vector, and bk denotes the semantic attribute. The specific expressions for dk
and ak are as follows:

dk = l1
k − l0

k (9)

ak = [cos(αk), sin(αk)] (10)

where l1
k and l0

k represent the endpoint and starting point of the lane segment, respectively.
In the vectorized node representation, we abstain from using any absolute positions and
instead utilize relative positions. This ensures that the node feature attributes possess
translational invariance.

3.3.2. Edge Feature Representation

Node features only represent the characteristics of agent vehicles and lane segments.
The graph attention mechanism requires specifying attention targets in the scene, and encod-
ing the features of edges between the target agent vehicle and the attention targets. There-
fore, we introduce attributes for the edges between entities. For the edge attributes between
agents, we describe them as follows: eaa =

{
RT

i dt
ij, RT

i vt
ij, dt

j2i, vt
j2i, at

j2i | t = 0, . . . , 19; i, j = 1,
i ̸= j} , the details are as follows:

dt
ij = lt

j − lt
i (11)

vt
ij = vt

j − vt
i (12)

αt
ij = αt

j − αt
i (13)

at
j2i =

[
cos
(

αt
ji

)
, sin

(
αt

ji

)]
(14)

dt
j2i = Rt⊤

i dt
ji =

[
dt

j2ix, dt
j2iy

]
(15)

vt
j2i = Rt⊤

i vt
ji =

[
vt

j2ix, vt
j2iy

]
(16)

where dt
ij is the relative displacement vector between agent i and agent j, vt

ij is the velocity
vector between them, Rt

i is the rotation matrix parameterized by the heading angle of
center agent i at timestamp t, at

j2i represents the relative heading angle vector, dt
j2i expresses

the lateral and longitudinal distance of agent j relative to agent i at timestamp t, and vt
j2i

represents the lateral and longitudinal velocity of agent j relative to agent i at timestamp
t, where x denotes lateral relative to the center node agent i, and y denotes longitudinal
relative to the center node agent i.

Sensors 2024, 24, 9 6 of 16

For the edge attributes between agent nodes and lane nodes, we describe them as fol-
lows: eal =

{
RT

i dt
ik, dt

i2k, vt
i2k, at

i2k | t = 0, . . . , 19; i = 1, . . . , Nt; k == 1, . . . , Nl} ; the details
are as follows:

dt
ik = l0

k − lt
i (17)

dt
i2k = Rt⊤

k dt
ik =

[
dt

i2kx, dt
i2ky

]
(18)

vt
i2k = Rt⊤

k vt
i =

[
vt

i2kx, vt
i2ky

]
(19)

αt
ik = αt

k − αt
i (20)

at
i2k =

[
cos
(
αt

ik
)
, sin

(
αt

ik
)]

(21)

where dt
ik is the relative position vector between agent I and lane segment k at timestamp

t, Rt
k is the rotation matrix parameterized by the heading angle αt

k of lane node k, dt
i2k

represents the lateral and longitudinal distance from agent i to lane segment k, where x
is lateral relative to lane segment k and y is longitudinal relative to lane segment k, vt

i2k
represents the relative velocity vector, vt

i2kx and vt
i2ky, respectively, denote the lateral and

longitudinal velocity of agent i relative to lane segment k, and at
i2k is the relative heading

angle vector.
The relative positions and velocities we propose describe the distance between two

independent nodes, as well as the speed at which one node moves laterally and lon-
gitudinally towards another node. Compared to absolute representations, this relative
representation provides a more detailed description of the interactions between entities,
allowing downstream networks to better understand their behaviors. Additionally, this lat-
eral and longitudinal relative representation naturally ensures translational and rotational
invariance.

3.4. Encoder
3.4.1. Local Encoder

The local encoder processes the temporal scene graph in two stages, as shown in
Figure 2. In the first stage, it models the agent–agent interactions for each timestep, which
we refer to as A2A. For A2A, we perform local interactions centered around each agent
within a limited range. After the interaction between entities, we use a time transformer
encoder module to capture temporal dependencies across the traffic scene. In the second
stage, we extract the features from the last timestep of the output of the transformer encoder.
These features contain information about the central agent’s vehicle at the current timestep,
as well as interaction information with nearby other agent vehicles in both spatial and
temporal dimensions. We use these features for modeling lane–agent interactions, which
we refer to as L2A. With this, after the local encoder is completed, we obtain agent features
that are enriched with rich contextual information.

Agent–Agent Interaction. During the A2A step, we utilize a graph neural network.
We employ multi-head cross-attention to understand the influence of different surrounding
agent vehicles within each local range on the central agent vehicle. Specifically, we first
apply multi-layer perceptions (MLPs) to the node attributes of the central agent vehicle
and the corresponding edge attributes. This allows us to obtain a time-variant encoding
Zi =

{
zt

i

∣∣t = 1, . . . , T
}

for the central agent node i, along with time-variant encodings for
the surrounding neighboring nodes associated with it:

zt
i = ϕcenter

(
RT⊤

i dt
i , RT⊤

i vt
i , RT⊤

i a⊤i , ∆tt, bi

])
(22)

zt
ij = ϕnbr

([
RT⊤

i dt
j, RT⊤

i dt
ij, RT⊤

i vt
ij, dt

j2i, vt
j2i, at

j2i, bj

])
(23)

where ϕcenter and ϕnbr represent MLP modules. Due to the use of relative vectors and the
presence of rotation matrices, both the node attributes of the central node and its associated

Sensors 2024, 24, 9 7 of 16

edge attributes possess translational and rotational invariance. Next, we use cross-attention
to fuse the central node features and its edge features. The query part of the cross-attention
is derived from the central node attribute zt

i , while the key and value parts come from the
edge attributes zt

ij. Subsequently, we perform dot product [10] and gating operations [15],
resulting in the output Ẑi =

{
ẑt

i
∣∣t = 1, . . . , T

}
. We then further apply an MLP to Ẑi and use

residual connections to obtain the merged feature encoding Si =
{

st
i

∣∣t = 1, . . . , T
}

, which
contains information about agent interactions and updates after the interaction.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 16

Figure 2. Overview of the local encoder diagram: the query always originates from the central agent
node feature. For A2A, we extract key and value from neighboring agent nodes. Self-attention is
employed in the temporal encoder. For L2A, key and value are sourced from neighboring lane
nodes. In the diagram, N represents the number of agents in the scene, T denotes the number of
timesteps, and L represents the number of lane nodes.

Agent–Agent Interaction. During the A2A step, we utilize a graph neural network.
We employ multi-head cross-attention to understand the influence of different surround-
ing agent vehicles within each local range on the central agent vehicle. Specifically, we
first apply multi-layer perceptions (MLPs) to the node attributes of the central agent vehi-
cle and the corresponding edge attributes. This allows us to obtain a time-variant encod-
ing 𝒁 = {𝒛 |𝑡 = 1, … , 𝑇} for the central agent node i, along with time-variant encodings
for the surrounding neighboring nodes associated with it: 𝐳 = 𝜙center 𝐑 𝐝 , 𝐑 𝐯 , 𝐑 a , Δ𝑡 , 𝐛 (22)

𝐳 = 𝜙 𝐑 𝐝 , 𝐑 𝐝 , 𝐑 𝐯 , 𝐝 , 𝐯 , 𝐚 , 𝐛 (23)

where 𝜙center and 𝜙 represent MLP modules. Due to the use of relative vectors and the
presence of rotation matrices, both the node attributes of the central node and its associated
edge attributes possess translational and rotational invariance. Next, we use cross-attention
to fuse the central node features and its edge features. The query part of the cross-attention
is derived from the central node attribute 𝐳 , while the key and value parts come from the
edge attributes 𝐳 . Subsequently, we perform dot product [10] and gating operations [15],
resulting in the output 𝐙𝐢 = {𝐳𝑖𝑡|𝑡 = 1, … , 𝑇}. We then further apply an MLP to 𝐙𝐢 and use
residual connections to obtain the merged feature encoding 𝐒𝐢 = {𝐬𝑖𝑡|𝑡 = 1, … , 𝑇} , which
contains information about agent interactions and updates after the interaction.

Temporal Dependency. To further capture temporal dependencies, we apply a trans-
former encoder to the output 𝐒𝐢 of the A2A step. Following the approach of BERT [36],
we introduce learnable position embeddings at each timestamp and stack them onto 𝐒𝐢
to obtain the new matrix 𝐒𝐢 ∈ ℝ𝑇×𝑑ℎ . Unlike previous studies [15], we do not add an extra
learnable token at the end position, resulting in 𝐒𝐢 ∈ ℝ(𝑇+1)×𝑑ℎ. Instead, we directly pro-
cess 𝐒𝐢 through the transformer encoder to obtain the updated sequence features 𝐇𝒊 ={𝐡𝑖𝑡 ∣ 𝑡 = 1, … , 𝑇} and extract the final node feature 𝐡 belonging to the current timestep.
This feature is then fed into the subsequent L2A module, as we have observed improved
performance with this approach. During the transformer encoding process, a time mask
is applied to enforce tokens to only attend to preceding timesteps.

Agent–Lane Interaction. To facilitate information interaction between agents and
lane segments, we apply another multi-head cross-attention module. First, we use a multi-

A
2A

 G
raph

A
ttn

Tem
poral

M
asked A

ttn

L2A
 G

raph
A

ttn(N,T,D) (N,T,D) (N,1,D) (N,D)

Q — Queries KV — Keys and Values

(N,T,D) (L,D)

Ctr-agent
Embedding

Nbr-agent
Embedding

Nbr-lane
Embedding

Q

KV

Q

KV

Q

KV

Local encoder
output

Figure 2. Overview of the local encoder diagram: the query always originates from the central agent
node feature. For A2A, we extract key and value from neighboring agent nodes. Self-attention is
employed in the temporal encoder. For L2A, key and value are sourced from neighboring lane nodes.
In the diagram, N represents the number of agents in the scene, T denotes the number of timesteps,
and L represents the number of lane nodes.

Temporal Dependency. To further capture temporal dependencies, we apply a trans-
former encoder to the output Si of the A2A step. Following the approach of BERT [36],
we introduce learnable position embeddings at each timestamp and stack them onto Si
to obtain the new matrix Ŝi ∈ RT×dh . Unlike previous studies [15], we do not add an
extra learnable token at the end position, resulting in Ŝi ∈ R(T+1)×dh . Instead, we di-
rectly process Ŝi through the transformer encoder to obtain the updated sequence features
Hi =

{
ht

i | t = 1, . . . , T
}

and extract the final node feature hT
i belonging to the current

timestep. This feature is then fed into the subsequent L2A module, as we have observed
improved performance with this approach. During the transformer encoding process, a
time mask is applied to enforce tokens to only attend to preceding timesteps.

Agent–Lane Interaction. To facilitate information interaction between agents and lane
segments, we apply another multi-head cross-attention module. First, we use a multi-layer
perceptron to encode the edge features between the central agent node i and nearby lane
nodes:

zik = ϕlane

([
RT⊤

i dk, RT⊤
i dik, di2k, vi2k, ai2k, bk

])
(24)

where ϕlane represents an MLP module. We use the current timestep’s agent node feature
hT

i from the transformer encoder output as the query, and the edge attributes zik between
the agent and the lane segment as the key and value. The field of view is an adjustable
threshold used to limit the lane nodes that need to be interactively fused with the central
agent node. We obtain the final node embedding hi for central agent i. It encapsulates a
rich spatiotemporal representation fused by agent i, combining the dynamic characteristics
of agent i with its iterative interactions with the surrounding environment. The final local
representation for all agents is defined as H = {hi | i = 1, . . . , N}, where N is the number
of agents.

Sensors 2024, 24, 9 8 of 16

3.4.2. Global Encoder

The local encoder only achieves information interaction within a local scope, lacking
remote dependency relationships within the scene. Therefore, we designed a global encoder.
Similar to the A2A module in the local encoder, we employ an MLP to encode the edge
attributes between agent i and agent j.

gij = ϕrel

([
RT⊤

i dT
ij , RT⊤

i vT
ij , dT

j2i, vT
j2i, aT

j2i

])
(25)

Here, T represents the current timestep. Afterwards, we use hi as the query,
[
hj, gij

]
as the key and value:

qi = WQglobal
hi, (26)

kij = WKglobal
[
hj, gij

]
, (27)

vij = WVglobal
[
hj, gij

]
, (28)

where WQglobal
, WKglobal

, and WVglobal
are linear transformation matrices. Then, we apply a

multi-head cross-attention module to update the features of agent i:

αi = softmax

(
qT

i√
dk

·
[{

kij
}

j∈Ni

])
(29)

ĥi = ∑
j∈Ni

αijvij (30)

where Ni contains the neighboring agents that central agent i needs to interact with, αij
represents the score weight of neighbor agent j relative to agent i. Furthermore, we pass
the updated neighbor agent feature ĥi and the central agent feature hi through a gating
step [15] before inputting them into the MLP module to obtain the output of the global
graph h̃i, with feature dimensions denoted as [K, N, and D]. Here, K is the number of heads
in the multi-head cross-attention module, representing the number of modes in the output
trajectory, N denotes the number of agents, and D is the feature dimension.

3.5. Decoder
3.5.1. Query-Informed Multi-Scene Modality Creation

As shown in Figure 3, we relinquish the constraints of specific driving scenarios
and aim to maximize the diversity of future trajectory candidates by first creating multi-
modal scenes through querying from the motion history of the target agent. Specifi-
cally, inspired by the approach of setting object queries in DETR [17], we define a set
of learnable parameters forming a query matrix Qscene ∈ RK×D to attend to the output
Hi =

{
ht

i

∣∣t = 1, . . . T
}
∈ RT×D from the temporal dependency module. This is achieved

by generating K scene modal features Escene =
{

Ek
scene

∣∣∣k = 1, . . . , K
}
∈ RK×DE through a

cross-attention mechanism:

Escene = So f tmax

((
QsceneWq

)
(HiWk)

T

√
DE

)
(HiWv), (31)

scorek = so f tmax(αk) (32)

Ek
scene = ∑

t=1,...,T
scorekt(W

T
q ht

i) (33)

where Wq, Wk, and Wv ∈ RD×DE are linear transformation matrices. αkt represents the
contribution of the agent’s feature at the t-th historical timestamp to the k-th scene mode.
We apply a softmax operation to the contributions of all timestamps corresponding to the

Sensors 2024, 24, 9 9 of 16

k-th scene mode to obtain the vector scorek. The contribution scores corresponding to each
timestamp in scorek are multiplied with the feature of the agent at that timestamp and then
summed, resulting in the queried k-th scene modal feature. Since the scene features are
derived from the agent’s historical trajectory encoding and do not contain semantic features
of the surrounding environment, this ensures maximum multimodality of the scene. DE
represents the dimension after linear transformation. The denominator

√
DE is used for

normalization and to prevent the dot product from becoming too large, which might lead
to saturation in the softmax operation.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 16

parameters forming a query matrix 𝑄scene ∈ ℝ × to attend to the output 𝐇𝐢 = {ℎ |𝑡 =1, … 𝑇} ∈ ℝ × from the temporal dependency module. This is achieved by generating K
scene modal features 𝐸scene = {𝐸scene|𝑘 = 1, … , 𝐾} ∈ ℝ × through a cross-attention mech-
anism: 𝐸scene = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝒔𝒄𝒆𝒏𝒆𝐖 (𝐇𝒊𝐖)𝐷 (𝐇𝒊𝐖), (31)

𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼) (32)

𝐸 = 𝑠𝑐𝑜𝑟𝑒,…, (𝐖 ℎ) (33)

where 𝐖 , 𝐖 , and 𝐖 ∈ 𝑅 × are linear transformation matrices. 𝛼 represents the
contribution of the agent’s feature at the t-th historical timestamp to the k-th scene mode.
We apply a softmax operation to the contributions of all timestamps corresponding to the
k-th scene mode to obtain the vector 𝑠𝑐𝑜𝑟𝑒 . The contribution scores corresponding to
each timestamp in 𝑠𝑐𝑜𝑟𝑒 are multiplied with the feature of the agent at that timestamp
and then summed, resulting in the queried k-th scene modal feature. Since the scene fea-
tures are derived from the agent’s historical trajectory encoding and do not contain se-
mantic features of the surrounding environment, this ensures maximum multimodality
of the scene. 𝐷 represents the dimension after linear transformation. The denominator 𝐷 is used for normalization and to prevent the dot product from becoming too large,
which might lead to saturation in the softmax operation.

Figure 3. Construction diagram of multi-scene modality. We establish a learnable scene query ma-
trix to query the historical trajectory features of agents, obtaining modality features for multiple
scenes for decoding future trajectories.

3.5.2. Anchor Learning
The anchors are learned end-to-end in the network to convey target-oriented envi-

ronmental information while preserving diversity. We set the number of anchors to K,
which is equal to the number of environmental modes, so that each anchor corresponds
to one scene mode. We apply an MLP to the output of the global graph 𝐡 to generate
anchor features corresponding to each scene mode: 𝐸 = 𝜙 𝐡 (34)

where 𝜙 represents an MLP module. Our model does not directly utilize predicted
endpoints, but rather leverages their embeddings (i.e., pre-output features) as anchor
points 𝐸anch = 𝐸anch|𝑖 = 1, … , 𝐾 . These anchor points are used to inject target-oriented
scene context into the generated multimodal scene features 𝐸scene . This is a new type of
approach compared to previous research. In TNT [16], anchor points are manually

... Keys
MLP

Queries
MLP

Broadcast

Values
MLP

Softmax ...

Agent 1 Agent N
N×T×D

K×D

A
ge

nt
 h

ist

A
ge

nt
 h

ist

A
ge

nt
 h

ist

A
ge

nt
 h

ist

...

Sc
en

e
m

od
e

e 11
Sc

en
e

m
od

e
𝑒 𝐾1

Sc
en

e
m

od
e

e 1𝑁
Sc

en
e

m
od

e𝑒 𝐾𝑁 Score
N×K×T

Agent
History

Embedding

Scene
Query
Matrix

N×K×𝐷𝐸

Figure 3. Construction diagram of multi-scene modality. We establish a learnable scene query matrix
to query the historical trajectory features of agents, obtaining modality features for multiple scenes
for decoding future trajectories.

3.5.2. Anchor Learning

The anchors are learned end-to-end in the network to convey target-oriented environ-
mental information while preserving diversity. We set the number of anchors to K, which is
equal to the number of environmental modes, so that each anchor corresponds to one scene
mode. We apply an MLP to the output of the global graph h̃i to generate anchor features
corresponding to each scene mode:

Eanchor = ϕanchor

(
h̃i

)
(34)

where ϕscene represents an MLP module. Our model does not directly utilize predicted
endpoints, but rather leverages their embeddings (i.e., pre-output features) as anchor points
Eanch =

{
Ei

anch

∣∣i = 1, . . . , K
}

. These anchor points are used to inject target-oriented scene
context into the generated multimodal scene features Escene . This is a new type of approach
compared to previous research. In TNT [16], anchor points are manually sampled uniformly
from the map. In MultiPath [1], anchor points are predefined trajectories clustered from
training data. In MultiPath++ [37], anchor points are learnable model parameters that are
fixed after training and independent of the input. In contrast, we propose using anchor
embeddings to facilitate trajectory learning. Compared to TNT and MultiPath, our anchors
are more adaptive and convenient to obtain through end-to-end learning. Compared
to MultiPath++, our anchors correspond to individual samples, thus carrying specific
sample-specific information.

3.5.3. Trajectory Prediction Head

As described above, the multimodal scene encoding Escene can be seen as uncon-
strained future trajectories inferred solely from the agent’s history, while anchors Eanchor
convey target-based contextual information. Here, we combine both to allow the network
to make further selections and refinements:

Efinal = W1Escene + W2Eanchor (35)

Sensors 2024, 24, 9 10 of 16

where W1 and W2 are linear transformation matrices. Taking the fused features as input,
the multimodal prediction head outputs the final motion predictions. For each participant,
it predicts K possible future trajectories along with their confidences. The head has two
branches: one regression branch predicting the trajectories for each mode, and one classifi-
cation branch predicting the confidence scores for each mode. For the i-th participant, we
apply residual blocks and linear layers to regress the K sequences of relative co-ordinates
in the regression branch:

Oi, reg =
{(

pk
i,1, pk

i,2, . . . , pk
i,T

)}
k∈[0,K−1]

(36)

where, pk
i,t represents the predicted relative co-ordinates of the i-th participant in the k-th

mode at timestep t, i.e., co-ordinates in the local co-ordinate system with the historical
endpoint of the i-th participant as the origin. For the classification branch, we apply an
MLP to pk

i,T − pi,0 to obtain K distance embeddings, where pi,0 is the last point of the
historical trajectory of the i-th agent. Then, we concatenate each distance embedding with
the agent features, apply residual blocks and linear layers to output K confidence scores,
Oi,cls = (ci,0, ci,1, . . . , ci,K−1).

4. Simulation Results
4.1. Experimental Settings
4.1.1. Dataset

We utilize the Argoverse motion forecasting dataset [38], which comprises real-world
traffic scenarios with agent trajectories and high-definition maps. The dataset encompasses
324,557 authentic traffic scenes. The training, validation, and test sets include 205,942,
39,472, and 78,143 scenes, respectively. Each scene is a 5 s sequence sampled at 10 Hz,
containing the positions of all agents in the past 2 s. In the Argoverse motion forecasting
challenge, the task is to predict the future positions of a target agent for the next 3 s based
on an initial observation of the first 2 s of the scene.

4.1.2. Metrics

We adhere to the Argoverse benchmark and evaluate our model using metrics includ-
ing minimum average displacement error (minADE), minimum final displacement error
(minFDE), and miss rate (MR). These metrics allow the model to predict up to 6 trajectories
for each agent.

4.1.3. Implementation Details

We trained all models using the AdamW optimizer [39] with an initial learning rate
of 0.001 for 64 epochs. We employed a cosine annealing scheduler for learning rate decay.
The number of layers for the agent–agent transformer, agent–lane transformer, temporal
transformer, and global encoder was set to 1, 1, 4, and 3, respectively. The number of
hidden units was 128, and there were 8 heads in all multi-head attention blocks. The local
region radius for A2A was set to 20 m, and for L2A it was set to 50 m. We did not predict
agents that appeared for less than two steps, unless it was the target agent.

4.1.4. Comparison with State-of-the-Art

In Table 1, we present the results of QINET on the Argoverse motion prediction test
set, comparing it with other state-of-the-art models. The data in Table 1 are sourced from
the Argoverse leaderboard. QINET outperforms all other methods in terms of minADE
and minFDE, and maintains a competitive ranking in MR, verifying the superior predictive
performance of our method. The sacrifice in the MR metric stems from the decoder’s
multimodal influence on the generated trajectories, but this influence improves the accuracy
of trajectory prediction in some scenarios.

Sensors 2024, 24, 9 11 of 16

Table 1. Results on Argoverse motion forecasting leaderboard.

Models minFDE minADE MR

THOMAS [40] 1.4388 0.9423 0.1038
GOHOME [41] 1.4503 0.9425 0.1048
DenseTNT [26] 1.2815 0.8817 0.1258

mmTransformer [27] 1.3383 0.8436 0.1540
TNT [16] 1.4457 0.9097 0.1656

LaneRCNN [42] 1.4526 0.9038 0.1232
QINET 1.2643 0.8140 0.1436

In the validation set section, we compared our results with HiVT. We found that before
model ensemble, our model performs better on the Argoverse validation set compared to
HIVT, as shown in Table 2 with specific metrics.

Table 2. Comparison of QINET with HIVT on the Argoverse validation set without model ensembling.

Models (No
Model Ensemble) minFDE minADE MR

HiVT-128 0.6612 0.9691 0.0921
QINET 0.6514 0.9481 0.0892

4.1.5. Ablation Studies

Our ablation study consists of four parts: the importance of each module in QINET,
the importance of expanded scene representation, and the importance of layered lane
transformers. We conducted these experiments on the Argoverse validation set.

Importance of Each Module.
To investigate the importance of each module for the overall network, we individually

removed each module and tested its contribution on the Argoverse test set, as shown in
Table 3. Each module contributes to the improvement of network performance.

Table 3. Importance of each component of our framework.

Extended
A2A

Temporal
Masked Attn

Scene Modality
Creation minADE minFDE MR

✓ ✓ 0.6804 0.9843 0.0936
✓ ✓ 0.9628 1.4686 1.1977
✓ ✓ 0.6902 1.0376 0.1101
✓ ✓ ✓ 0.6514 0.9481 0.0891

Firstly, without A2A, the model lacks local interactions within the prediction scenes,
resulting in a decrease in model metrics.

Secondly, the absence of the temporal dependency module prevents the network from
addressing temporal dependencies. Since inferring future trajectories of agents in highly
dynamic environments heavily relies on historical information, the lack of the transformer
encoder module significantly impairs the model’s performance metrics.

Thirdly, lane information plays a crucial role in motion prediction, as road environment
information constrains the trajectories of vehicles to some extent. Under such constraints,
vehicles generally move along the lanes. Moreover, global graph A2A also contributes
to the model’s effectiveness, as global interactions can capture long-range dependency
relationships, enhancing the accuracy of predictions.

4.1.6. Qualitative Results of QINET

In the visualizations in Figure 4, we selected representative scenes to demonstrate the
qualitative results of the QINET network. The visualizations confirm that QINET is capable
of performing multimodal predictions for all agents, and the predicted trajectories are

Sensors 2024, 24, 9 12 of 16

reasonable and close to the ground truth. For clarity, we display only the agent’s historical
trajectory in yellow, the ground truth future trajectory in red, and the predicted trajectory
in green. It can be observed that due to the presence of local A2A, temporal, L2A, and
global A2A modules, our network effectively extracts agent features and predicts their
future trajectories. Additionally, the query-informed multimodal scene encoding effectively
promotes the multimodality of agent vehicle future trajectories.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 16

Table 3. Importance of each component of our framework.

Extended
A2A

Temporal
Masked Attn

Scene Modality
Creation minADE minFDE MR

 ✓ ✓ 0.6804 0.9843 0.0936
✓ ✓ 0.9628 1.4686 1.1977
✓ ✓ 0.6902 1.0376 0.1101
✓ ✓ ✓ 0.6514 0.9481 0.0891

4.1.6. Qualitative Results of QINET
In the visualizations in Figure 4, we selected representative scenes to demonstrate the

qualitative results of the QINET network. The visualizations confirm that QINET is capa-
ble of performing multimodal predictions for all agents, and the predicted trajectories are
reasonable and close to the ground truth. For clarity, we display only the agent’s historical
trajectory in yellow, the ground truth future trajectory in red, and the predicted trajectory
in green. It can be observed that due to the presence of local A2A, temporal, L2A, and
global A2A modules, our network effectively extracts agent features and predicts their
future trajectories. Additionally, the query-informed multimodal scene encoding effec-
tively promotes the multimodality of agent vehicle future trajectories.

(a) (b)

(c) (d)

Figure 4. Qualitative Results of QINET. We selected several classical scenario prediction results as
shown in (a–d). For clarity, we visualize individual agents separately. We use orange to depict past
trajectories, red for actual trajectories, and green for predicted trajectories.

4.1.7. Comparison with HiVT in Bad Case
In this part, we compared the output results of QINET with those of HiVT, as shown

in the following Figure 5. It can be seen that some bad cases predicted in the HiVT model
show better prediction results in the QINET model. In addition, in some intersection

Figure 4. Qualitative Results of QINET. We selected several classical scenario prediction results as
shown in (a–d). For clarity, we visualize individual agents separately. We use orange to depict past
trajectories, red for actual trajectories, and green for predicted trajectories.

4.1.7. Comparison with HiVT in Bad Case

In this part, we compared the output results of QINET with those of HiVT, as shown in
the following Figure 5. It can be seen that some bad cases predicted in the HiVT model show
better prediction results in the QINET model. In addition, in some intersection scenarios,
the QINET network is capable of demonstrating awareness of turning. This is attributed to
our decoder design that enhances the multimodality of the trajectory predictions.

4.1.8. Failed Cases

In this section, we present some scenarios where QINET predictions failed, as shown in
Figure 6. Compared to HiVT, QINET’s prediction results have improved, with trajectories
becoming more multimodal. This improvement is due to the presence of multimodal scene
query features in the decoder.

Sensors 2024, 24, 9 13 of 16

Sensors 2024, 24, x FOR PEER REVIEW 13 of 16

scenarios, the QINET network is capable of demonstrating awareness of turning. This is
attributed to our decoder design that enhances the multimodality of the trajectory predic-
tions.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Visualize the comparative results. (a,c,e) come from QINET, while (b,d,f) come from HiVT.

4.1.8. Failed Cases
In this section, we present some scenarios where QINET predictions failed, as shown

in Figure 6. Compared to HiVT, QINET’s prediction results have improved, with

Figure 5. Visualize the comparative results. (a,c,e) come from QINET, while (b,d,f) come from HiVT.

Sensors 2024, 24, 9 14 of 16

Sensors 2024, 24, x FOR PEER REVIEW 14 of 16

trajectories becoming more multimodal. This improvement is due to the presence of mul-
timodal scene query features in the decoder.

(a) (b)

(c) (d)

Figure 6. Visualize the comparative results. (a,c) come from QINET, while (b,d) come from HiVT.

5. Conclusions
This paper presents a new multi-agent prediction framework that enhances trajectory

prediction accuracy by constructing extended node features and edge features. It utilizes
the query mechanism in cross-attention to obtain multi-scenario modal encodings,
thereby maximally promoting the multimodality of generated trajectories. Experiments
demonstrate that our method achieves good results in both prediction accuracy and the
multimodality of generated trajectories on the Argoverse motion prediction benchmark.
Future research will focus on how to conduct more efficient lane-to-agent (L2A) pro-
cessing to improve the model’s inference speed. This is because considering all lane nodes
within a certain radius can sometimes lead to resource wastage in some scenarios. For
example, in scenarios where a vehicle is predicted to drive in the far-left lane, L2A would
include nodes from the opposite lane, which may not be meaningful.

Author Contributions: Conceptualization, C.G.; Methodology, C.G. and S.F.; Software, C.G. and
S.F.; Validation, C.G. and S.F.; Formal analysis, C.G. and S.F.; Resources, C.G. and W.Z.; Writing—
original draft, C.G. and S.F.; Writing—review & editing, C.C., W.Z. and J.W.; Visualization, C.G.,
S.F. and W.Z.; Supervision, W.Z., Y.Z. and Y.C. All authors have read and agreed to the published
version of the manuscript.

Figure 6. Visualize the comparative results. (a,c) come from QINET, while (b,d) come from HiVT.

5. Conclusions

This paper presents a new multi-agent prediction framework that enhances trajec-
tory prediction accuracy by constructing extended node features and edge features. It
utilizes the query mechanism in cross-attention to obtain multi-scenario modal encodings,
thereby maximally promoting the multimodality of generated trajectories. Experiments
demonstrate that our method achieves good results in both prediction accuracy and the
multimodality of generated trajectories on the Argoverse motion prediction benchmark.
Future research will focus on how to conduct more efficient lane-to-agent (L2A) processing
to improve the model’s inference speed. This is because considering all lane nodes within
a certain radius can sometimes lead to resource wastage in some scenarios. For example,
in scenarios where a vehicle is predicted to drive in the far-left lane, L2A would include
nodes from the opposite lane, which may not be meaningful.

Author Contributions: Conceptualization, C.G.; Methodology, C.G. and S.F.; Software, C.G. and S.F.;
Validation, C.G. and S.F.; Formal analysis, C.G. and S.F.; Resources, C.G. and W.Z.; Writing—original
draft, C.G. and S.F.; Writing—review & editing, C.C., W.Z. and J.W.; Visualization, C.G., S.F. and W.Z.;
Supervision, W.Z., Y.Z. and Y.C. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Sensors 2024, 24, 9 15 of 16

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, and in the decision to publish the results.

References
1. Chai, Y.; Sapp, B.; Bansal, M. MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction. In

Proceedings of the Robot Learning (CoRL), New Orleans, LA, USA, 6–9 May 2019.
2. Liang, M.; Yang, B.; Hu, R. Learning lane graph representations for motion forecasting. In Proceedings of the European Conference

on Computer Vision (ECCV), Tel Aviv, Israel, 15–16 August 2020.
3. Mercat, J.; Gilles, T.; El Zoghby, N. Multi-head attention for multi-modal joint vehicle motion forecasting. In Proceedings of the

International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–4 June 2020.
4. Ye, M.; Cao, T.; Chen, Q. Tpcn: Temporal point cloud networks for motion forecasting. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–25 June 2021.
5. Cui, H.; Radosavljevic, V.; Chou, F.-C. Multimodal trajectory predictions for autonomous driving using deep convolutional

networks. In Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24
May 2019.

6. Hong, J.; Sapp, B.; Philbin, J. Rules of the road: Predicting driving behavior with a convolutional model of semantic interactions.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20
June 2019.

7. Bruna, J.; Zaremba, W.; Szlam, A. Spectral networks and locally connected networks on graphs. In Proceedings of the International
Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014.

8. Gilmer, J.; Schoenholz, S.S.; Riley, P.F. Neural message passing for quantum chemistry. In Proceedings of the International
Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August 2017.

9. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the International
Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

10. Vaswani, A.; Shazeer, N.; Parmar, N. Attention is all you need. In Proceedings of the Neural Information Processing Systems
(NIPS), Long Beach, CA, USA, 4–9 December 2017.

11. Qi, C.R.; Su, H.; Mo, K. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

12. Hashemi, S.M.; Botez, R.M.; Grigorie, T.L. New Reliability Studies of Data-Driven Aircraft Trajectory Prediction. Aerospace 2020,
7, 145. [CrossRef]

13. Hashemi, S.M.; Hashemi, S.A.; Botez, R.M.; Ghazi, G. A Novel Fault-Tolerant Air Traffic Management Methodology Using
Autoencoder and P2P Blockchain Consensus Protocol. Aerospace 2023, 10, 357. [CrossRef]

14. Hashemi, S.M.; Hashemi, S.A.; Botez, R.M.; Ghazi, G. Aircraft Trajectory Prediction Enhanced through Resilient Generative
Adversarial Networks Secured by Blockchain: Application to UAS-S4 Ehécatl. Appl. Sci. 2023, 13, 9503. [CrossRef]

15. Zhou, Z.; Ye, L.; Wang, J. Hivt: Hierarchical vector transformer for multi-agent motion prediction. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–24 June 2022.

16. Zhao, H.; Gao, J.; Lan, T. TNT: Target-driven trajectory prediction. In Proceedings of the Conference on Robot Learning (CoRL),
Auckland, New Zealand, 14–18 December 2020.

17. Carion, N.; Massa, F.; Synnaeve, G. End-to-end object detection with transformers. In Proceedings of the European conference on
computer vision (ECCV), Tel Aviv, Israel, 15–16 August 2020.

18. Djuric, N.; Radosavljevic, V.; Cui, H. Uncertainty-aware short-term motion prediction of traffic actors for autonomous driving.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, 2–5
May 2020.

19. Gilles, T.; Sabatini, S.; Tsishkou, D. Home: Heatmap output for future motion estimation. In Proceedings of the IEEE International
Conference on Intelligent Transportation Systems (ITSC), Indianapolis, IN, USA, 19–22 September 2021.

20. Salzmann, T.; Ivanovic, B.; Chakravarty, P. Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data. In
Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, SC, USA, 23–28 August 2020.

21. Huang, G.; Liu, Z.; Van Der Maaten, L. Densely connected convolutional networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

22. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning (ICML), Long Beach, CA, USA, 10–15 June 2019.

23. Rhinehart, N.; Kitani, K.M.; Vernaza, P. R2p2: A reparameterized pushforward policy for diverse, precise generative path
forecasting. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

24. Rhinehart, N.; McAllister, R.; Kitani, K. Precog: Prediction conditioned on goals in visual multi-agent settings. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019.

https://doi.org/10.3390/aerospace7100145
https://doi.org/10.3390/aerospace10040357
https://doi.org/10.3390/app13179503

Sensors 2024, 24, 9 16 of 16

25. Gao, J.; Sun, C.; Zhao, H. VectorNet: Encoding HD Maps and Agent Dynamics From Vectorized Representation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–20 June 2020.

26. Gu, J.; Sun, C.; Zhao, H. Densetnt: End-to-end trajectory prediction from dense goal sets. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021.

27. Liu, Y.; Zhang, J.; Fang, L. Multimodal motion prediction with stacked transformers. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–25 June 2021.

28. Alahi, A.; Goel, K.; Ramanathan, V. Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, CA, USA, 26 June–1 July 2016.

29. Gupta, A.; Johnson, J.; Fei-Fei, L. Social gan: Socially acceptable trajectories with generative adversarial networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018.

30. Casas, S.; Gulino, C.; Liao, R. Spagnn: Spatially-aware graph neural networks for relational behavior forecasting from sensor data.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–4 June 2020.

31. Huang, Y.; Bi, H.; Li, Z. Stgat: Modeling spatial-temporal interactions for human trajectory prediction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019.

32. Ngiam, J.; Caine, B.; Vasudevan, V. Scene transformer: A unified architecture for predicting multiple agent trajectories. In
Proceedings of the International Conference on Learning Representations (ICLR), Kigali, Rwanda, 25–29 April 2022.

33. Ye, L.; Wang, Z. GSAN: Graph Self-Attention Network for Learning Spatial–Temporal Interaction Representation in Autonomous
Driving. IEEE Internet Things J. 2022, 9, 9190–9204. [CrossRef]

34. Yu, C.; Ma, X.; Ren, J. Spatio-temporal graph transformer networks for pedestrian trajectory prediction. In Proceedings of the
European Conference on Computer Vision (ECCV), Glasgow, SC, USA, 23–28 August 2020.

35. Yuan, Y.; Weng, X.; Ou, Y. Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021.

36. Devlin, J.; Chang, M.-W.; Lee, K. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceed-
ings of the Conference of the North-American-Chapter of the Association-for-Computational-Linguistics—Human Language
Technologies (NAACL-HLT), Minneapolis, MN, USA, 2–7 June 2019.

37. Varadarajan, B.; Hefny, A.; Srivastava, A. Multipath++: Efficient information fusion and trajectory aggregation for behavior
prediction. In Proceedings of the International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27
May 2022.

38. Chang, M.-F.; Lambert, J.; Sangkloy, P. Argoverse: 3d tracking and forecasting with rich maps. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019.

39. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.
40. Gilles, T.; Sabatini, S. Thomas: Trajectory heatmap output with learned multi-agent sampling. arXiv 2021, arXiv:2110.06607v3.
41. Gilles, T.; Sabatini, S.; Tsishkou, D. Gohome: Graph-oriented heatmap output for future motion estimation. In Proceedings of the

International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022.
42. Zeng, W.; Liang, M.; Liao, R. Lanercnn: Distributed representations for graph-centric motion forecasting. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JIOT.2021.3093523

	Introduction
	Related Work
	Method
	Overall Framework
	Complexity Analysis
	Scene Representation
	Node Feature Representation
	Edge Feature Representation

	Encoder
	Local Encoder
	Global Encoder

	Decoder
	Query-Informed Multi-Scene Modality Creation
	Anchor Learning
	Trajectory Prediction Head

	Simulation Results
	Experimental Settings
	Dataset
	Metrics
	Implementation Details
	Comparison with State-of-the-Art
	Ablation Studies
	Qualitative Results of QINET
	Comparison with HiVT in Bad Case
	Failed Cases

	Conclusions
	References

