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Abstract: The identification of colored steel buildings in images is crucial for managing the construc-
tion sector, environmental protection, and sustainable urban development. Current deep learning
methods for optical remote sensing images often encounter challenges such as confusion between the
roof color or shape of regular buildings and colored steel structures. Additionally, common semantic
segmentation networks exhibit poor generalization and inadequate boundary regularization when
extracting colored steel buildings. To overcome these limitations, we utilized the metal detection
and differentiation capabilities inherent in synthetic aperture radar (SAR) data to develop a network
that integrates optical and SAR data. This network, employing a triple-input structure, effectively
captures the unique features of colored steel buildings. We designed a multimodal hybrid attention
module in the network that discerns the varying importance of each data source depending on the
context. Additionally, a boundary refinement (BR) module was introduced to extract the bound-
aries of the colored steel buildings in a more regular manner, and a deep supervision strategy was
implemented to improve the performance of the network in the colored steel building extraction
task. A BR module and deep supervision strategy were also implemented to sharpen the extraction
of building boundaries, thereby enhancing the network’s accuracy and adaptability. The results
indicate that, compared to mainstream semantic segmentation, this method effectively enhances the
precision of colored steel building detection, achieving an accuracy rate of 83.19%. This improvement
marks a significant advancement in monitoring illegal constructions and supporting the sustainable
development of the Beijing–Tianjin–Hebei metropolitan region.

Keywords: colored steel building extraction; data fusion network; semantic segmentation; urban
monitoring; SAR imagery enhancement; Beijing–Tianjin–Hebei metropolitan region

1. Introduction

In urban development, colored steel buildings are prominent due to their construction
from color-coated steel plates, offering lightweight, robust, and durable properties. These
buildings are extensively utilized for temporary structures, playing a significant role in
urban development [1,2]. However, unauthorized colored steel constructions can disrupt
city planning, pose safety risks, and have negative environmental impacts [3,4]. Accurate
identification and monitoring of these buildings are essential, facilitating the enforcement
of urban regulations and the sustainable management of urban growth. By effectively
tracking and regulating the spread of colored steel buildings, urban authorities can ensure
compliance with planning laws and maintain ecological balance.

The advent of high-resolution remote sensing imagery, bolstered by advances in com-
puter technology, has enabled the capture of intricate details in urban structures, including
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geometric and textural features [5,6]. Historically, colored steel buildings have been iden-
tified and analyzed using optical data. For instance, Ma et al. [7,8] manually interpreted
remote sensing images from QuickBird-2 (2005) and Gaofen-2 (2017) to map colored steel
buildings in Lanzhou City’s Anning District, examining their spatial–temporal patterns and
clustering characteristics. This manual approach, however, is labor-intensive for large-scale
applications. Alim et al. [9] utilized Sentinel-2A/B MSIL2A data with a 10 m resolution
and introduced six spectral indices to differentiate materials of blue- and red-colored steel
buildings. Similarly, Li et al. [10] employed GF-1 remote sensing imagery, selecting opti-
mal scales for image segmentation and formulating rules for knowledge extraction based
on color, spectral, and geometric features, leading to an automated decision-tree-based
information extraction process. Despite these efforts, traditional methods face challenges,
such as setting appropriate threshold values, the presence of intra-class mixed pixels, and
extensive shadows in remote sensing images, which degrade the accuracy of extraction re-
sults and necessitate significant manual correction. Consequently, pixel-based classification
techniques in remote sensing fall short in addressing the demands for large-scale extraction
of colored steel buildings.

The integration of deep learning into remote sensing for image segmentation has seen
considerable progress in recent years, maturing the application in this domain [11–14].
Deep learning methods surpass traditional techniques with their potent feature extraction,
minimal human supervision, and robust algorithmic performance [15–17]. These advances
have led to the adoption of image segmentation networks for the identification of steel-
structured buildings. For example, Shen Shunfa and colleagues adapted Segnet and U-net
models, introducing improvements to U-net for better low-level feature retention, thus
refining the accuracy of colored steel building extraction [18]. Li [19] enhanced the detec-
tion of colored steel buildings through an advanced MaskR-CNN instance segmentation
algorithm, integrating a CBAM convolutional attention mechanism to better focus on target
regions. Despite these developments, certain issues remain unresolved, such as limited
model generalization, irregular boundaries in the segmentation output, and the challenge
of distinguishing colored steel buildings from conventional structures due to similar roof
characteristics in optical images.

The widespread application of multi-source data fusion methods has become common
practice [20,21]. These fusion methods aim to capitalize on the complementary strengths of
different sensor modalities, enhancing the overall information content and improving the
robustness of remote sensing applications. Notably, optical and SAR image fusion methods
have been extensively explored due to their distinct advantages [22,23]. Synthetic aperture
radar (SAR) data have the capability to detect and differentiate metallic materials, and
are less susceptible to atmospheric conditions such as cloud cover compared to optical
data [24–26]. Colored steel buildings and residential structures have roofs made of metal
and concrete, respectively. Due to the distinct electromagnetic properties of metal and
non-metal objects, SAR imagery typically exhibits different scattering patterns. Metal
objects tend to generate prominent echoes due to their higher electrical conductivity, while
non-metal objects may exhibit more scattering and absorption. Therefore, the introduction
of SAR data is considered to address the limitations of optical data in reflecting the material
composition of colored steel buildings. This approach enables the accurate identification
of colored steel buildings over large areas. Li et al. employed optical and SAR images to
design a multimodal cross-attention network (MCANet) for land use classification. The
inputs to the network are independent optical and SAR images. Li’s team proposed an
innovative multimodal cross-attention module (MCAM) that adeptly captures the positional
relationships within individual data source feature maps. This module effectively interacts
within a two-dimensional space, incorporating both SAR and optical image feature maps [27].

In order to better fuse optical and SAR images, we first designed a three-branch
multi-source data fusion network for extracting colored steel buildings using 0.8 m high-
resolution remote sensing images and SAR image fusion. By splicing the optical and SAR
channels into a third branch, the network can utilize the information from both data sources
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more comprehensively and reduce the interference between them. We also devised an
attention module tailored for our network’s three-branch input, dynamically adjusting
attention weights on each channel. This allows the network to adaptively emphasize or
suppress information from different channels to better suit various colored steel building
extraction scenarios. Among various methods, conditional random field (CRF) is often
employed due to its robust mathematical formulation. Deeplab [28] utilizes dense CRF [29],
a CRF variant on a fully connected graph, as a post-processing method after CNN. However,
with Deeplabv3 fusing image-level features into the ASPP module [30], the use of CRF
may increase and the computational overhead will be large, so we introduced a BR module
similar to the residual structure to alleviate the problem of gradient vanishing, which helps
to optimize the boundaries to a certain extent. In summary, this method of integrating
optical and SAR data is expected to make up for the lack of optical data in colored steel
building extraction, providing new ideas and possibilities to further improve the accuracy
of building material identification and building extraction.

In summary, the contributions of this study are as follows:

(1) We propose a network structure for multi-source data fusion to better fuse GF-2 and
SAR features, which performs well for large-scale colored steel building extraction
compared to optical data;

(2) A multimodal three-branch attention module is proposed on the three-branch network
for capturing SAR and GF-2 features in both spatial and channel dimensions, allowing
the network to learn how important each branch is in different situations;

(3) Experiments show that by introducing a deep supervision strategy, the network helps
to learn feature representations more efficiently, which improves the generalization
ability of the model.

2. Materials and Methods
2.1. Study Area

The Beijing–Tianjin–Hebei region, highlighted in Figure 1, was selected for this study
on colored steel building extraction due to its significance in China’s urbanization process.
Spanning approximately 225,000 km2, this urban agglomeration includes Beijing, Tianjin,
Hebei Province, and Anyang City in Henan Province. This region, being the political,
cultural, and economic hub of China, sees extensive use of colored steel buildings owing
to their rapid assembly and adaptability, catering to the swift urban growth and interim
construction demands. With a dense population and pressing requirements for housing
and infrastructure, the Beijing–Tianjin–Hebei area underscores the necessity for regularized
and lawful urban development, making it an apt focus for the study of colored steel
construction practices.
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2.2. Data Sources

We utilized data from two satellite sources: China’s Gaofen-2 (GF-2) and the European
Space Agency’s Sentinel-1.

The GF-2 satellite represents China’s foray into high-definition optical remote sensing
technology, with a spatial resolution of less than 1 m, and was launched via the Long March
4B rocket on 19 August 2014. It carries a multispectral camera with one 4 m resolution and
two 1 m resolution panchromatic cameras, covering an observational swath of 60 km. This
satellite is integral to projects on land surveillance and urban development planning [31,32].

The Sentinel-1 satellite, part of the European Space Agency’s Copernicus Global Mon-
itoring for Environment and Security (GMES) program, is equipped with C-band SAR
instruments capable of obtaining imagery under almost any weather condition, during
day or night [33]. SAR technology is particularly adept at cloud penetration, ensuring con-
tinuous surface data capture. For this research, the Sentinel-1 satellite’s dual-polarization
ground range detected (GRD) data products were chosen for their 10 m spatial resolution.
The vertical–vertical (VV) polarization mode is utilized for its enhancement of geometric
shapes, and the vertical–horizontal (VH) polarization is used for its detailed surface feature
representation. These capabilities make Sentinel-1 invaluable for a variety of applications,
including land alteration studies and disaster monitoring.

2.3. Data Preparation and Sample Construction

In this study, the focus was on colored steel buildings, which are predominantly made
from metal and are coated with colored steel, with blue and red being the most common
roof colors, along with occasionally, gray and white [34]. These structures vary in size
and are often rectangular or composite rectangular shapes; the roofs are generally smooth
but they can be confused with residential buildings in remote sensing imagery, leading
to classification errors. To mitigate this issue, our research incorporates SAR imagery to
complement the dataset, enhancing the model’s ability to distinguish colored steel buildings
from other structures and improving the accuracy of the semantic segmentation process.

We utilized a combination of high-resolution and SAR imagery to isolate colored
steel buildings, which are discernible by their shape, size, color, and other features. The
process began with acquiring remote sensing data from the GF-2 and Sentinel-1 satellites
for the designated study area. The initial steps involved converting bit depth, correcting
geometric distortions, and detecting and relegating cloudy images for mosaic construction.
In 2019, detailed manual annotation of 81,419 sample plots within Beijing’s densely pop-
ulated colored steel building zones was conducted, as shown in Figure 2. Labeling was
finalized through vector-to-raster conversion in ArcGIS 10.8 software. For experimental
purposes, the blue–green–red band from GF-2 and the 10 m resolution Sentinel-1 images
were standardized to a 0.8 m resolution. Due to the extensive size of the images, they were
sectioned into 1024 × 1024 pixel frames before being input into the neural network. The
samples were then categorized into training, validation, and test groups at an 8:1:1 ratio,
yielding 9539 training, 1586 validation, and 1236 test samples. To boost the model’s ability
to generalize, data augmentation tactics were employed on the training set, including
image flipping and random variations in brightness and color, as well as cropping, to create
a robust dataset for neural network training.
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2.4. Methods
2.4.1. Network Structure for Multi-Source Data Fusion

A specialized network architecture was developed for the precise extraction of colored
steel buildings, featuring a three-branch design. The network employs dual pseudo-
twin branches to independently extract features from SAR and GF-2 images, facilitating
independent feature extraction and preserving detailed information within the images.
The third branch processes channel-concatenated SAR and GF-2 images, emphasizing the
extraction of features that focus on the semantic information of colored steel buildings
fused from the two data sources. However, in comparison with the extraction performed
by the two previous branches, this approach may impact the image reconstruction in the
decoding section, leading to less effective restoration of fine details within the images.
Therefore, in the encoding phase, the features are integrated from the three branches to
ensure the preservation of detailed information while enhancing the extraction of semantic
information related to colored steel buildings. The overall structure of the multi-source
data fusion network proposed in this study is illustrated in Figure 3. Xception serves as the
foundational network for feature extraction from individual SAR and GF-2 images [35,36].
For the combined data branch, HRNet is the selected backbone, and ‘unpooling’ is the
method used for upsampling in the decoding segment. The encoder adjusts the spatial and
channel dimensions of the feature maps to synchronize the branches, which aids in the
seamless integration of shallow and deep features. Shallow features are refined through a
multimodal three-branch attention module (MTAM), preserving the original data through
channel concatenation. Deep features are generated by fusing later-stage features from each
branch through the MTAM, followed by an atrous spatial pyramid pooling (ASPP) module
application. The decoder upsamples these features to match the original image scale, with a
boundary refinement (BR) module enhancing edge clarity. The sequential presentation that
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follows details the backbone network structures and the designed modules for extracting
colored steel buildings.
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The Xception architecture, employed for processing SAR and GF-2 images, is depicted
in Figure 4 and comprises three main sections: the input, the middle flow, and the exit flow.
Batch normalization (BN) is applied across all convolutional layers, including separable
convolutions [37]. The core feature of Xception is its reliance on depthwise separable con-
volutions, which supplant traditional convolution layers. This approach iterates 16 times in
the middle flow [38]. Depthwise separable convolutions streamline the convolution process
by first executing spatial convolutions independently for each input channel, followed by a
1 × 1 convolution that fuses the channels [39,40]. This stratification minimizes parameters,
boosting both the efficiency and the ability of the network to extract relevant features from
colored steel buildings. Moreover, it diminishes data redundancy, mitigates noise, and
enhances the model’s resilience to image disturbances. The model demonstrates superior
adaptability and a heightened capacity for generalization in varied scenarios, such as in
distinguishing colored steel building blocks.

The third branch of the network, which integrates SAR and GF-2 images, utilizes
HRNet as its backbone, as shown in Figure 5. Unlike other common networks such as
ResNet and VGGNet that encode images into low-resolution representations through a
sequential arrangement of convolutional layers [41–43], HRNet adopts a parallel processing
framework. This network maintains high-resolution pathways throughout, enabling the
simultaneous handling of multiple resolutions. HRNet’s unique architecture processes
each resolution within separate branches, continuously fusing the features across these
resolutions. This method preserves global context from the lower resolution branches
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while capturing fine details from the higher resolution pathways. By maintaining a high-
resolution representation throughout, HRNet provides a more nuanced feature map, en-
hancing the network’s ability to interpret semantic relationships within the image [44,45].
The adoption of HRNet thus contributes to a more detailed and accurate extraction of
colored steel buildings, leveraging both global and local information.
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The ASPP module, a concept used in DeepLabv3, is integrated to classify image
regions of varying scales and to aggregate contextual information across multiple scales
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for robust feature extraction. Figure 6 illustrates the ASPP structure, where the feature
maps undergo 1 × 1 convolution, dilated convolutions at three different rates, and adaptive
average pooling. The pooled features are then upsampled to the original dimension and
concatenated with the outputs from other convolutions. A final 1 × 1 convolution adjusts
the channel dimensions to the desired count. This methodology enables ASPP to expand
the network’s field of view and adapt to colored steel buildings of varying sizes, enhancing
the network’s depth feature interpretation [46].
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The BR module, depicted in Figure 7, is built on residual modules. It utilizes residual
connections to focus on learning the deviations between the output and input features,
especially the subtle variations at the edges. This approach strengthens the delineation of
edges, which is crucial for precise boundary detection in colored steel building extraction.
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2.4.2. Integration of the Multimodal Hybrid Attention Module

To optimally integrate features from the three branches, an MTAM was devised,
combining a three-branch cross-attention module (TBCAM) and a channel attention module
(CAM). The MTAM was designed to merge multi-level features efficiently, allowing the
network to discern the significance of each branch’s input for specific tasks or scenarios,
thereby improving the feature fusion for colored steel building extraction.

As depicted in Figure 8, the GF-2 and SAR branches initially process their respective
data through dedicated convolutional layers, BN layers, and activation functions. The
features from these branches are then concatenated along the channel dimension, creating
a composite feature that captures information from both GF-2 and SAR images. This com-
posite feature forms the third branch, which undergoes further convolution and activation
operations to reduce dimensionality and enhance the semantic information. The three
branches, at a matched dimensional level, forward their features to the TBCAM. This
module effectively captures spatial correlations among the branches’ features, enriching
the contextual understanding. The refined features, along with the original features, are
then merged and directed through the CAM. This stage harnesses the spatial and semantic
context from the original data, ensuring that the semantic content on the enhanced feature
channels is preserved without loss of information. The MTAM thus facilitates a compre-
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hensive understanding of the data, which is crucial for the nuanced extraction of colored
steel buildings.
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Figure 9 presents the TBCAM’s structure, utilizing feature sets {F1, F2, F3} ∈ RC×H×W

from three branches as inputs. C denotes the number of channels, while H and W are
the feature map’s height and width, respectively. Considering the importance of context
in multi-source fusion for semantic segmentation, three new feature maps {Q, K, V} ∈
RC×H×W×3 are derived by horizontally combining the branch features and processing them
through 1 × 1 convolutional layers. Subsequently, each channel’s elements in the feature
maps Q, K, and V are rearranged into one-dimensional vectors. Feature map Q undergoes
transposition to form QT ∈ RC×3HW×1 for computing attention scores. At this stage, the
feature map integrates mixed features from the branches. The multiplication of QT and K
followed by Softmax normalization yields attention scores ranging from 0 to 1, forming the
basis of the attention map. This process enhances the network’s ability to emphasize the
most relevant features for accurate segmentation.

AMij = So f tmax(Qi
T × Kj) (1)
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For AMij ∈ RC×3HW×3HW , higher AM values indicate stronger relationships. The
process continues by multiplying the vector V by the AM’s attentional weights to produce
an output. This output is then added to the corresponding areas of the original spliced
feature maps, resulting in enhanced feature maps. These maps are sent back through the
TBCAM module to refine the features further, culminating in the final enhanced features
{F1′, F2′, F3′} ∈ RC×H×W . These features effectively incorporate the contextual informa-
tion from the original GF-2 and SAR data, improving the network’s segmentation accuracy
through recursive refinement.

The CAM is depicted in Figure 10. It takes the enhanced features {F1′, F2′, F3′} ∈
RC×H×W from the TBCAM and the original features {F1, F2, F3} ∈ RC×H×W of the three
branches as inputs. The CAM’s role is to apply adaptive weights to these feature channels,
directing focus to the most informative ones. To efficiently generate channel attention
features, spatial dimensions of the feature map are compressed. Spatial information
is commonly aggregated through average pooling, but max pooling is also utilized to
highlight distinctive object features, thereby achieving more focused channel attention.
After pooling, the features undergo channel splicing, and a multilayer perceptron (MLP)
learns the inter-channel relationships and weights, producing two sets of channel attention
vectors. These vectors are then combined and passed through a sigmoid function σ,
resulting in the final channel attention feature map. This map effectively amplifies the
most relevant channel features, enhancing the model’s accuracy in identifying colored steel
buildings. The specific formula is as follows:

FCA = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))). (2)

where F represents the input labeled FeatureMap in Figure 10 below; Avgpool and MaxPool
represent average pooling and max pooling, respectively.
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2.4.3. Implementing Deep Supervision for Enhanced Training

Figure 3 illustrates a deep, multi-branch network structure that is susceptible to
diminishing gradients during backpropagation, which can complicate training. To address
this, a deep supervision strategy is employed, which incorporates auxiliary loss functions
at various network layers. These auxiliary loss functions, referred to as Loss2, assist in
preserving the original information and augment the model’s prediction accuracy for the
input data. Working in tandem with the main loss function, Loss1, the auxiliary loss
functions bolster the training process and enhance the network’s generalization capabilities
on new, unseen data. Additionally, an inverse pooling technique is used in the decoding
stage of the third branch, utilizing saved indices from the prior maximum pooling steps.
This method helps restore the location and detail information lost during pooling, leading
to more accurate pixel-level output and refined capture of intricate input data features.

3. Results
3.1. Experimental Setup

Experiments were conducted using the PyTorch framework (version 1.8.1) for building
neural network models, supported by four NVIDIA RTX3090 GPUs, each with 24 GB
of memory, to enhance training efficiency. Two loss functions, cross entropy (CE) and
dice coefficient (DICE), were chosen due to CE’s compatibility with optimization methods
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like gradient descent and DICE’s effectiveness in handling class imbalances. The Adam
optimizer was employed with an initial learning rate set to 0.00003 and a warm-up phase
for the initial 500 iterations. Weight decay was set at 0.001 to prevent overfitting.

3.2. Evaluation Metrics

Assessment of the model’s performance relies on metrics calculated from the confusion
matrix. Initially, predictions for colored steel buildings within the Beijing–Tianjin–Hebei
region were made. These predictions were then manually verified and corrected to serve as
accurate labels for evaluation. We employed two widely recognized evaluation metrics:
intersection over union (IoU) and F1 score.

IoU is a measure that calculates the ratio of overlap to the combined area of predicted
and actual values for a specific category. It reflects how much the predicted area coincides
with the actual area and can be expressed as follows:

IOU =
TP

TP + FN + FP
(3)

Precision measures the proportion of accurately classified pixels within the prediction
results, while recall signifies the percentage of correctly predicted pixels among those
identified as colored steel building results. The F1 score is defined as the harmonic mean
of precision and recall, effectively harmonizing the two into a single metric. Equations (4)
and (5) provide the calculations for recall and precision, respectively, while Equation (6)
presents the formula for computing the F1 score, as shown below:

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1 = 2 × Precision × Recall
Precision + Recall

(6)

In the aforementioned formulas, TP denotes pixels correctly identified as colored
steel buildings, FP represents pixels labeled as background but falsely detected as colored
steel buildings, and FN signifies pixels labeled as colored steel buildings but erroneously
detected as background.

3.3. Ablation Study

An ablation study was performed using data from the GF-2 and Sentinel-1 satellites to
assess the effectiveness of the proposed modules in recognizing colored steel buildings. We
selected the deep learning model DeepLabv3+ as the baseline network and Xception as
the backbone network. Subsequently, we examined the impact of incorporating SAR data
through the proposed network branches and modules on the model’s accuracy. Table 1
details the outcomes in terms of four evaluation metrics obtained after sequentially inte-
grating the network components. Figure 9 illustrates the colored steel building extraction
results from the test dataset, showcasing the model’s practical application.

Table 1 summarizes the performance enhancements achieved by incorporating ad-
ditional branches and modules into the proposed network. The baseline DeepLabv3+
network registered an F1 score of 76.68% with the selected dataset. By fusing the SAR and
GF-2 data’s RGB bands and training with DeepLabv3+, the F1 score improved marginally
to 77.23% for the test group. Altering the network to a dual-branch structure with GF-2
and SAR data raised the F1 score to 78.25%, demonstrating that the method of data fusion
significantly affects the outcome. Further adding a third branch of channel-spliced GF-2
and SAR data, along with corresponding feature splicing across the three branches, elevated
the F1 score to 79.98%. Incorporating the depth supervision strategy and MTAM into the
three-branch network structure resulted in F1 scores of 80.79% and 82.60%, respectively,
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both demonstrating accuracy improvements. However, the MTAM module proved to be
more effective. Therefore, by simultaneously incorporating the MTAM module and depth
supervision strategy into the three-branch network, our final configuration achieved an F1
score of 83.19%. While the improvement over solely adding the MTAM module was only a
slight enhancement, it marked an approximate six-point gain over the baseline model.

Table 1. Results of ablation experiments.

Method
Metrics (%)

Precision Recall F1 IoU

DeepLabv3+ 75.26 78.15 76.68 62.17
DeepLabv3+

(RGBS) 76.07 78.44 77.23 62.91

DeepLabv3+
(Dual Branch) 77.47 79.04 78.25 64.27

DeepLabv3+
(Three Branches) 80.97 79.02 79.98 66.64

DeepLabv3+
(Three Branches)-Deep Supervision 82.30 79.34 80.79 67.77

DeepLabv3+
(Three Branches)-MTAM 84.27 81.01 82.60 70.36

Ours 84.16 82.24 83.19 71.21

Figure 11 displays a comparative analysis of colored steel building extraction across
various scenarios. The first column presents images from the test group, the second
column shows the corresponding labels, and the third column illustrates the extraction
results from the baseline DeepLabv3+ network. The subsequent columns demonstrate
the progressive improvement in results when the proposed branches and modules for
SAR data fusion were added to the baseline network. The results are visually annotated
to indicate errors: red signifies missed detections of colored steel buildings and blue
indicates areas incorrectly identified as such. The ablation study’s outcomes in Figure 11
are organized into three scenario-based groups. The first two rows depict sparse colored
steel building scenarios; rows three and four show instances of small, more dispersed
colored steel buildings; and the last two rows illustrate densely distributed large colored
steel buildings. In scenarios with sparse colored steel buildings, the baseline DeepLabv3+
network tends to incorrectly identify features of a similar shape and color as colored
steel buildings. The gradual incorporation of this network’s modifications demonstrates
a reduction in these errors, pointing to the effectiveness of the proposed data fusion and
network architecture enhancements.

In the first set of results, the baseline network DeepLabv3+ often mistakes residential
buildings for colored steel buildings due to their similar appearance. However, the six
subsequent SAR image fusion techniques introduced in this study reduce these errors. The
false detection rates decrease progressively from the channel fusion approach shown in
Figure 11c to the two-branch fusion in Figure 11d, and further to the three-branch fusion
in Figure 11e. By the stage shown in Figure 11i, the model achieves near elimination of
leakage, and edge definition shows noticeable enhancement compared to Figure 11h. In
the second row, representing construction sites with colors akin to colored steel build-
ings, the likelihood of false detections is high. While the channel fusion approach using
SAR data better captures the characteristics of colored steel buildings and lessens false
positives, it also results in some leakage. Nonetheless, as the fusion method is refined
and additional modules are integrated, both the leakage and false detection rates see
considerable improvements.

In the second set of results, which features small, dispersed colored steel buildings
in complex scenes with various similar structures, the baseline DeepLabv3+ network
experiences significant leakage, indicating missed detections. However, adopting the
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three-branch fusion approach reduces this leakage. Introduction of the MTAM and the
deep supervision strategy further mitigates leakage by effectively focusing on the pertinent
features of colored steel buildings. In the fourth row, where the scene is cluttered with
buildings resembling colored steel structures, the baseline DeepLabv3+ network struggles
to accurately discern the colored steel buildings, leading to leakage and a few false de-
tections. The integration of SAR data helps to reduce leakage but introduces many false
positives due to the color similarity between colored steel buildings and nearby structures.
The combined application of the MTAM and the deep supervision strategy enhances the
model’s attention to contextual scene information, improving its ability to recognize the
distinctive distribution characteristics of colored steel buildings and thereby reducing both
false detections and leakage. Despite these advancements, the complexity of scenes con-
taining numerous buildings presents challenges, including potential labeling inaccuracies
during sample creation. Consequently, several extraction results may contain minor errors.
This area, particularly the judgment difficulty in dense building environments, warrants
further research and methodological refinement.
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In the third group of colored steel building extraction results, there is some irregular
distribution of large-area colored steel buildings; the baseline network cannot easily learn
the characteristics of the colored steel buildings, resulting in the extraction of the results
being incomplete. In the third group of results, DeepLabv3+ has serious leakage. The
network of channel-splicing fusion SAR reduces the leakage, but the effect is not significant
enough; with the introduction of network branching fusion, the SAR network effect has
gradually improved. After the introduction of the MTAM module and deep supervision
strategy, the neural network can be adjusted to pay attention to different data sources by
calculating the weights of different parts or features of the input, which reduces the leakage
and misdetection to a certain extent, so as to improve the results of the extraction of colored
steel buildings.
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3.4. Method Comparison

To ascertain the superiority of the proposed approach for semantic segmentation,
comparative experiments were conducted, with conventional methods applied to GF-2
images and combined GF-2 and SAR images. The comparative set includes DeepLabv3+,
UNet, UNet++, PAN, SegNet, and Swinunet. The selected baseline, DeepLabv3+, employs
the ASPP technique, which uses atrous convolution at varying rates to expand the receptive
field and grasp multiscale contextual information. UNet, a pioneer among semantic
segmentation models, features an encoder–decoder structure with skip connections to
preserve details. UNet++ builds on this by adding denser skip connections to further refine
segmentation precision. PAN leverages a pyramid network structure with an attention
mechanism to integrate semantic information across scales, enhancing detail through
attention-guided recovery. SegNet improves edge definition by using the indices from
the max-pooling layers for non-linear upsampling, thus reducing the model’s parameter
count. Swinunet introduces a Swin-Transformer-based architecture, segmenting input
feature maps into small windows and applying self-attention within these windows to
learn localized features effectively.

Table 2 shows that the proposed method outperforms other semantic segmentation
approaches. The baseline network DeepLabv3+ has an F1 score of 76.68%, with other meth-
ods scoring similarly around 77%. The introduction of SAR data via channel fusion results
in a slight improvement to precision. However, the extent of the precision enhancement
varies with different fusion techniques. The multi-source data fusion network suggested in
this study demonstrates a significant boost in both precision and recall, with the F1 score
reaching 83.19%. In Figure 12, the results indicate superior extraction performance across
various scenarios when compared to other networks, especially in complex scenes with ma-
terials that could be confused with colored steel buildings. The comparison demonstrates
that the method achieves more accurate results, with fewer instances of false detection.

Table 2. Comparison of experiment results.

Method
Metrics (%)

Precision Recall F1 IoU

DeepLabv3+ 75.26 78.15 76.68 62.17
UNet 77.13 77.34 77.24 62.91

UNet++ 77.34 77.19 77.27 62.95
PAN 76.70 78.08 77.38 63.11

SegNet 76.83 78.03 77.42 63.16
Swinunet 77.14 77.11 77.13 62.77

DeepLabv3+ (RGBS) 76.07 78.44 77.23 62.91
UNet (RGBS) 77.97 78.02 77.99 63.86

UNet++ (RGBS) 77.87 77.79 77.83 63.65
PAN (RGBS) 80.61 79.07 79.84 66.44

SegNet (RGBS) 80.42 76.34 78.33 64.37
Swinunet (RGBS) 79.79 75.07 77.36 63.08

Ours 84.16 82.24 83.19 71.21

Figure 12 presents a visual comparison of the segmentation results. The first column
contains images from the test dataset, the second column displays the true labels, and the
remaining columns show predictions from various networks, including those that merge
GF-2 and SAR data and the specifically designed multi-source data fusion network. The
comparison is divided into four scenario-based categories. The first and second rows
constitute the first category, depicting environments where colored steel buildings are
situated amidst similar structures. The third row forms the second category, illustrating
areas where colored steel buildings are surrounded by features of a similar color or shape.
Rows four to six represent the third category, showcasing larger colored steel buildings or
those that are closely spaced. Finally, rows seven and eight depict the fourth category, where
small- to medium-sized colored steel buildings are sparsely distributed. This categorization
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helps to highlight the efficiency of the proposed fusion network in differentiating colored
steel buildings from similar structures across a range of complex scenarios.
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In the first category of results, where colored steel buildings are mixed with similar
structures, conventional semantic segmentation networks tend to make numerous mis-
detections with few omissions. However, the network with the MTAM shows a marked
reduction in both misdetections and omissions. In the first scenario, residential buildings
with colors and shapes akin to colored steel buildings often lead to confusion. Networks like
PAN and Swinunet incorrectly identify all residential buildings as colored steel structures.
Although SegNet experiences leakage without misdetection, other mainstream networks
also suffer from minor misdetections and leakage. The network incorporating the MTAM
better learns the features specific to colored steel buildings from both datasets, resulting
in more accurate extractions. In the second scenario, roofs of tile and concrete, which are
similar in color and shape to colored steel buildings, are often misclassified by mainstream
networks due to the overlapping of optical and SAR data at the image level, which causes
feature extraction interference. In contrast, the designed multi-source data fusion network
captures more distinctive and representative features from optical and SAR data. This
effectively leverages the information from buildings made of various materials, reducing
false detections in similar scenes.

In the second set of scenes, where small colored steel buildings are present, main-
stream networks continue to exhibit a high rate of misdetection. Our network, however,
significantly minimizes such errors, albeit with many instances of leakage. Specifically, in
the third row, where a colored steel building is situated near a construction site, the large
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concrete areas resemble the blue-colored steel buildings, leading to misdetection by all
other networks. The multi-source data fusion network designed for this study does not
falsely identify construction sites as colored steel buildings, even though it may miss a
few small colored steel structures. This distinction suggests that the network is capable of
effectively discerning material differences in complex urban environments.

In the third group of scenes, colored steel buildings with varying gap sizes are labeled
differently during the sample annotation process. For the fourth row, colored steel buildings
with large gaps but dense distribution are labeled as single units, while those with minimal
spacing in the fifth and sixth rows are grouped together. Other segmentation methods
exhibit significant omissions when identifying large expanses of colored steel buildings.
Specifically, in the fourth row, they tend to falsely identify gaps between buildings as
part of the structures, whereas the BR module in the proposed network enhances edge
optimization, allowing for distinct extraction of colored steel buildings with larger gaps. In
the fifth row, other networks miss large areas of colored steel buildings, with DeepLabv3+
showing significant omissions and comparative networks displaying minor ones. Our net-
work, however, with its advanced learning capabilities, reduces these omissions by better
recognizing the features of colored steel buildings. For the diverse colored steel buildings
in the sixth row, our network diminishes leakage in this complex scene. Current networks
struggle to extract colored steel buildings based solely on color and high-resolution imagery.
Although SAR image fusion assists in this task, it does not entirely prevent a small number
of false detections. Nonetheless, our network achieves a relative decrease in such errors.

In the fourth group of scenarios, characterized by sparsely distributed small- and
medium-sized colored steel buildings, common networks often fail to completely extract
the buildings and frequently misidentify them. In the seventh row, where only a few
colored steel buildings are present, the UNet++ and SegNet networks overlook them,
while other networks result in partial extractions. In the eighth row, which contains
colored steel buildings of varying sizes, the proposed network does not fully capture the
smaller buildings, resulting in some leakage and misdetection. However, for medium-sized
colored steel buildings in this row, the PAN and SegNet networks perform poorly in their
extraction, and while other networks do manage to extract them, the detailing of the edges
is inadequate. In contrast, our network efficiently extracts medium-sized colored steel
buildings without any missed detections and with significantly improved edge detailing
compared to other networks.

3.5. Comparison of Attention Modules

In this research, various attention modules were evaluated. The MTAM was specifi-
cally designed to discern the significance of each branch in diverse scenarios. This facilitates
the integration of optical and SAR data, thus enhancing the accuracy of colored steel build-
ing extraction. Traditional attention modules typically handle single inputs, and many
manage dual inputs through hybrid attention. We compared the MTAM with the conven-
tional single-branch dual attention network (DANet) attention module and multimodal
cross-attention module (MCAM). DANet employs self-attention to identify spatial and
channel feature dependencies, using position and channel attention to improve feature
discrimination in scene segmentation. The MCAM focuses on the spatial relationships
within single-data-source feature maps and interacts with SAR and optical image features
to understand the relationships between dual input features. The MTAM merges the
strengths of both these approaches within a three-branch multi-source data fusion network
structure. It processes three branches of features through the attention module, capturing
correlations in both the channel and spatial dimensions, thus more effectively highlighting
the importance of features across each branch. We replaced the MTAM of the proposed
multi-source data fusion network by integrating DANet to each branch as a comparison
experiment. Similarly, we put the SAR and GF-2 dual-branch feature fusion through the
MCAM attention module. The findings, as detailed in Table 3, indicate that the precision of
the fusion method using the MTAM surpasses that of the other two attention modules.
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Table 3. Comparison of different attention modules.

Method
Metrics (%)

Precision Recall F1 IoU

DANet [47] 80.91 80.21 80.55 67.44
MCAM [27] 81.58 80.70 81.14 68.26

Ours 84.16 82.24 83.19 71.21

3.6. Cartography of Colored Steel Buildings in the Beijing–Tianjin–Hebei Region

The proposed network structure was employed to map colored steel buildings at a
0.8 m resolution within the Beijing–Tianjin–Hebei urban cluster. The results are illustrated
in Figure 13, where orange vector patches represent the extracted colored steel buildings.
A blue gradient scale indicates the proportion of each city’s colored steel building area
relative to the total within the entire cluster. This proportion is categorized into five levels
of increasing intensity from light to dark. The data reveal that colored steel buildings
are predominantly located in Baoding and Cangzhou, with each city’s area making up
between 9.57% and 11.25% of the cluster’s total. Langfang, Tangshan, and Hengshui follow,
each with a share of 8.24% to 9.57%. Centralized distributions are seen in Beijing, Tianjin,
Shijiazhuang, and Xingtai, with their shares ranging from 5.54% to 8.24%. Zhangjiakou,
Xingtai, and Handan have a sparser presence, with shares between 3.24% and 5.54%.
Chengde and Qinhuangdao have the smallest shares, with only 2.43% to 3.24% each.
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4. Discussion
4.1. Comparison of Fusion Methods

Common fusion methods include decision-level fusion, data-level fusion, and feature-
level fusion. The choice of these fusion methods depends on the task requirements, data
properties, and application scenarios. Therefore, in this section, we compare these fusion
methods and select the one suitable for the steel building task, with precision values
shown in Table 4. Using only high-resolution images as inputs to the DeepLabv3+ baseline
network, we achieved an F1 accuracy of 76.68%. Decision-level fusion combines different
decisions from different networks. Therefore, we evaluated the results obtained separately
by inputting GF-2 and SAR into the baseline network, with a weighted sum. Precision
showed a slight decrease and recall showed a slight improvement, but the F1 accuracy did
not improve significantly. Data-level fusion first merges data and then uses the merged data
for the task. We stacked the GF-2 and SAR channel dimensions as inputs to the network,
resulting in a slight improvement in F1 accuracy. In addition, we achieved an F1 accuracy of
77.46% by combining the two decision results obtained separately from training GF-2 and
SAR with the GF-2 and SAR images in the channel dimensions. Overall, the decision-level
fusion method did not show a significant improvement on our dataset. Feature-level fusion
connects feature vectors from different branches. By inputting GF-2 and SAR through two
different branches as the network’s input, we achieved an F1 accuracy of 78.25%, showing
a noticeable improvement in accuracy. Therefore, we further explored the feature-level
fusion method, designing a three-branch multi-source data fusion network and ultimately
achieving good results.

Table 4. Comparison of different fusion methods.

Method
Metrics (%)

Precision Recall F1 IoU

Baseline 75.26 78.15 76.68 62.17
Decision-level fusion 72.29 81.70 76.71 62.22

Data-level fusion 76.07 78.44 77.23 62.91
Decision-data fusion 75.06 80.02 77.46 63.21
Feature-level fusion 77.47 79.04 78.25 64.27

4.2. Selection of a More Suitable Backbone

In this research, we chose HRNet as the backbone network for the third branch formed
by the concatenation of SAR images and GF-2 images in the channel. HRNet itself can retain
high-resolution feature maps simultaneously at different stages, allowing the network to
capture multiscale information. To better validate the effectiveness of introducing the third
branch in our network, which aids in handling detailed image information, we replaced the
third branch with other common backbones for comparative experiments. The backbones
used for comparison include ResNet, EfficientNet, and Swin Transformer. As shown
in Table 5, HRNet is more suitable for our proposed multi-source data fusion network,
demonstrating superior performance in capturing detailed information regarding colored
steel structures and handling multiscale features. It is better suited for the scenario of
colored steel building extraction.

Table 5. Comparison of different backbones.

Method
Metrics (%)

Precision Recall F1 IoU

ResNet 82.77 80.19 81.46 68.72
EfficientNet 82.40 80.18 81.28 68.46

Swin Transformer 82.46 79.47 80.94 67.98
Ours 84.16 82.24 83.19 71.21
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5. Conclusions

The effective identification of colored steel buildings in images plays a vital role
in managing the construction industry and promoting urban sustainability. Traditional
remote sensing methods, or those relying solely on optical imagery via deep learning, often
struggle to differentiate building materials accurately. In this study, we introduced SAR
data and presented a multi-source data fusion network tailored for colored steel building
extraction. The network architecture consists of three branches: two are pseudo-twin
structures processing GF-2 and SAR data independently, and the third combines features
from GF-2 and SAR channel fusion. This tri-branch setup independently extracts features
from varied data sources, preventing information loss or interference that could occur from
merging at the image level. It also allows parameter adjustments within each branch to cater
to diverse and complex scenarios, aiming to reduce issues like overfitting or underfitting.
A novel MTAM was designed to direct the network’s focus to different input segments,
thus enhancing the contextual understanding of the data. Additionally, a deep supervision
strategy with an auxiliary loss function was implemented in the third branch to facilitate
more effective learning of feature representations.

Ablation and comparative experiments were performed to assess the proposed net-
work branches and modules. These experiments demonstrate that various fusion methods
of the GF-2 and SAR data lead to different levels of accuracy. The designed multi-source
data fusion network was validated with an F1 score of 83.19%, achieved on the curated
colored steel building dataset. Comparative tests with established semantic segmentation
networks also support the enhancement of extraction results through the integration of
SAR data. However, there are imperfections in the current network design. Firstly, the
resolution disparity between Sentinel-1 SAR images and high-resolution images neces-
sitates resampling, which may result in information loss. Secondly, while SAR imagery
serves as auxiliary data by which to distinguish the materials of colored steel buildings,
there is a spectrum of multi-source data fusion methods available, and alternative network
configurations might yield superior outcomes. Future research will explore the use of
higher resolution SAR data in conjunction with optical data and will investigate different
multi-source data fusion network structures to potentially enhance the accuracy of colored
steel building extractions.
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