
Citation: Xie, W.; Hong, X.

Omnidirectional-Sensor-System-

Based Texture Noise Correction in

Large-Scale 3D Reconstruction.

Sensors 2024, 24, 78. https://

doi.org/10.3390/s24010078

Academic Editor: Denis

Laurendeau

Received: 6 November 2023

Revised: 18 December 2023

Accepted: 20 December 2023

Published: 22 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Omnidirectional-Sensor-System-Based Texture Noise
Correction in Large-Scale 3D Reconstruction
Wenya Xie * and Xiaoping Hong

The School of System Design and Intelligent Manufacturing, Southern University of Science and Technology,
Shenzhen 518055, China; hongxp@sustech.edu.cn
* Correspondence: xiewy2021@mail.sustech.edu.cn; Tel.: +86-156-5185-3500

Abstract: The evolution of cameras and LiDAR has propelled the techniques and applications of three-
dimensional (3D) reconstruction. However, due to inherent sensor limitations and environmental
interference, the reconstruction process often entails significant texture noise, such as specular
highlight, color inconsistency, and object occlusion. Traditional methodologies grapple to mitigate
such noise, particularly in large-scale scenes, due to the voluminous data produced by imaging
sensors. In response, this paper introduces an omnidirectional-sensor-system-based texture noise
correction framework for large-scale scenes, which consists of three parts. Initially, we obtain a
colored point cloud with luminance value through LiDAR points and RGB images organization.
Next, we apply a voxel hashing algorithm during the geometry reconstruction to accelerate the
computation speed and save the computer memory. Finally, we propose the key innovation of our
paper, the frame-voting rendering and the neighbor-aided rendering mechanisms, which effectively
eliminates the aforementioned texture noise. From the experimental results, the processing rate of
one million points per second shows its real-time applicability, and the output figures of texture
optimization exhibit a significant reduction in texture noise. These results indicate that our framework
has advanced performance in correcting multiple texture noise in large-scale 3D reconstruction.

Keywords: imaging sensor; texture noise correction; frame fusion; voxel hashing; 3D reconstruction

1. Introduction

In recent years, 3D imaging sensors have rapidly evolved towards higher resolutions,
greater frame rates, and wider fields of view, thus propelling the growth and application
of 3D reconstruction technologies, including digital tourism, virtual reality (VR), and aug-
mented reality (AR). However, the process of 3D reconstruction often confronts numerous
types of texture noise, a substantial part of which results from the inherent sensor limi-
tations, such as luminance overflow of cameras attributed to dynamic range constraints.
Especially for the highlight phenomenon caused by specular reflection, color information is
completely lost, making it challenging to achieve full recovery through conventional image
processing techniques, as shown in Figure 1a. Another type of texture noise is frame-to-
frame color inconsistency caused by variations in the intensity of the light source or changes
in the relative position of the light source to the camera, as shown in Figure 2. In addition
to the texture noise caused by sensor limitations and illumination factors, occluding objects
such as persons or animals that enter the field of view can also introduce texture noise.
Besides multiple texture noise, the 3D reconstruction process also needs to handle massive
amounts of data when reconstructing large-scale scenes.

Considerable research effort has focused on resolving texture noise, particularly in
specular highlight removal. Techniques for specular highlight removal are mostly based on
the dichromatic reflection model, which represents an image as a linear superposition of
the specular reflection component and the diffuse reflection component. These methods
include those found in [1–6]. Some approaches, like [7], even estimate light source positions

Sensors 2024, 24, 78. https://doi.org/10.3390/s24010078 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24010078
https://doi.org/10.3390/s24010078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0009-1675-9074
https://doi.org/10.3390/s24010078
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24010078?type=check_update&version=2


Sensors 2024, 24, 78 2 of 16

for a more effective highlight removal. In addition to traditional techniques, the field is
witnessing a significant rise in the development of learning-based methods for highlight
noise removal, such as [8]. To tackle color inconsistencies, studies like [9–11] have explored
local image translations and gradient domain techniques for seam smoothing. However,
these solutions typically specialize in image processing, without fully integrating into 3D
reconstruction workflows, and often cater to specific datasets, limiting their wider use.
Given these limitations, there is a pressing need for an all-encompassing and efficient
approach to eliminate various texture noise, crucial for generating high-quality textures in
large-scale 3D reconstructions.

Specular highlight

(a)

Pose 1 Pose 2

Pose 3Pose 4

(b)

Figure 1. (a) Specular highlight phenomenon. (b) The position of the highlight areas in the image
changes with the variation of the sensor pose. In the image, the red box indicates the most prominent
highlight noise, and the green box indicates the door, which serves as a positional reference.

P1 P2 P3

(a)

P1 P2 P3

(b)

Figure 2. Color inconsistency phenomenon. P1–P3 are three consecutive images in terms of position.
(a) Normal situation with consistent color between frames. (b) Inconsistent color between frames
caused by variations in the intensity of the light source or changes in its relative position to the sensor.

In this paper, we propose an omnidirectional-sensor-system-based framework for 3D
reconstruction in large-scale scenes, with special emphasis on eliminating texture noise



Sensors 2024, 24, 78 3 of 16

caused by sensor limitations and environmental disturbance. The omnidirectional sensor
system, comprising a LiDAR unit and a camera with a 360-degree field of view, is selected
for its ability to achieve extensive informational overlap across frames. This comprehensive
coverage is critical for the advanced texture optimization process that follows. The process
of the 3D reconstruction framework involves three stages: data organization, geometry
reconstruction, and texture optimization, as shown in Figure 3.

Colored Point 

Cloud

Data Organization Geometry 

Reconstruction
Texture Optimization

LiDAR 

Point Set

RGB 

Image Set

CIELAB 

Image Set

Hash Table

Voxel Blocks

Frame-Voting 

Rendering

Neighbor-Aided 

Rendering

Texture Updated 

Model

Figure 3. Pipeline of the whole process, consisting of data organization, geometry reconstruction,
and texture optimization.

The first stage is data organization, where we obtain a colored point cloud with
luminance value through color space conversion, point cloud coloration, and multiframe
registration. The color space conversion aims to obtain the luminance value of each RGB
image pixel, which is essential for the frame fusion process during the texture optimization
phase. Next, in point cloud coloration, we utilize predetermined intrinsic and extrinsic
matrices from an existing calibration method to project the point cloud onto images, thereby
retrieving and applying the corresponding color and luminance value to the point cloud.
Finally, in multiframe registration, we transform all frames into a unified coordinate system
using classical registration methods to obtain a dense colored point cloud annotated with
its frame origin sequence number.

The second stage is geometry reconstruction. The main challenge for large-scale scene
reconstruction is the computation of a substantial amount of input data. To address this
issue, in the second stage, we implement an effective method proposed by Nießner et al.
that accelerates computation speed and enhances memory efficiency [12]. The key to this
method is the use of a hash table, which allows fast retrieval of data storage. The data are
organized in a two-level voxel data structure, which not only improves retrieval efficiency
but also ensures high resolution. This structure also offers advantages in the texture
rendering stage, as it provides efficient data retrieval for color optimizations.

In the final stage, the objective is to obtain accurate texture from high-resolution
RGB images in a universal method, mitigating texture noise in all the aforementioned
cases: specular highlight, color inconsistency, and object occlusion. To achieve this, we
propose frame-voting rendering and neighbor-aided rendering mechanisms for texture
optimization. The frame-voting mechanism integrates frames from different viewpoints
utilizing a ‘minority conforms to the majority’ rule at the voxel level, which removes
color values significantly deviating from the overall luminance level and reduces color
discrepancy between frames. The neighbor-aided mechanism is designed to address
challenging situations where the points number is insufficient in a voxel for texture self-
optimization, in which we borrow color information from neighboring voxels to enhance
the texture.

In summary, our main contributions are outlined as follows:

1. We propose a comprehensive 3D reconstruction framework based on an omnidirec-
tional sensor system for large-scale scenes. The framework includes data organization,
geometry reconstruction, and texture optimization.

2. We propose a frame-voting rendering mechanism in texture noise correction by inte-
grating multiple frames according to the luminance values, which eliminates texture
noise such as specular highlight, frame color inconsistency, and object occlusion.



Sensors 2024, 24, 78 4 of 16

3. We propose a neighbor-aided rendering mechanism to optimize color for certain
voxels that has insufficient points for texture self-optimization, by using convincing
color information from neighboring voxels.

2. Related Work
2.1. Imaging Sensors

The most common choice for 3D reconstruction sensors can be divided into 2D cameras,
RGB-D cameras, and camera-LiDAR integrated systems. There are several methods to
achieve 3D reconstruction utilizing 2D cameras. One of the methods is based on binocular
disparity, which recovers the depth information by using two images captured from
a slightly different position [13]. Another method is based on motion parallax, which
perceives depth information based on the relative movement between the camera and
the scene [14]. Additionally, structure from motion (SfM) is also a typical technique,
detailed in [15], which uses a series of two-dimensional images of a scene to reconstruct its
3D structure.

With the advancement of the RGB-D camera, the acquisition of depth information
became much easier. Lindner et al. [16] proposed a fast reconstruction approach with
photonic mixing device (PMD) technology, a type of RGB-D camera based on time of flight
(TOF). In 2010, Microsoft developed Kinect, a real-time RGB-D camera based on structured
light, significantly promoted the development of 3D reconstruction. Han et al. [17] gave an
overview of the computer vision and reconstruction method with Kinect.

Although RGB-D cameras offer plug-and-play convenience, their distance measure-
ment capabilities and sensitivity to lighting conditions are not as robust as that of LiDAR.
Hence, reconstruction solutions combining LiDAR and RGB cameras demonstrate ad-
vantages. The primary step in employing a LiDAR and camera integrated system for
3D reconstruction is the calibration of the setup. Classic methods of calibration include
Bouguet’s camera calibration toolbox [18] and Zhang and Pless’s method based on a
checkerboard [19]. Recently, with the advancement of ultra-wide-angle imaging sensors,
numerous omnidirectional camera calibration techniques have also been developed. For in-
stance, Scaramuzza et al. [20] utilized the association of hand-clicked points in a full 3D
map with points in catadioptric images to achieve omnidirectional camera calibration.
Miao et al. [21] proposed an effective targetless method to simultaneously calibrate the
intrinsic parameters for the camera and the extrinsic parameters for the camera and LiDAR.

2.2. Geometry Reconstruction

The reconstruction of a static environment has been a subject of extensive research for
an extended period. Modern methods predominantly rely on the signed distance function
(SDF), which was first introduced by Curless and Levoy [22]. Subsequently, Rusinkiewicz
presented the first real-time reconstruction method based on SDF [23]. Later, the intro-
duction of low-cost RGB-D cameras by Microsoft brought the handheld-device-based
reconstruction method KinectFusion into public view [24]. Afterwards, Whelan et al. pro-
posed ElasticFusion with the truncated signed distance function (TSDF) [25], an enhanced
version of SDF to achieve high-density reconstruction.

SDF-based methods operate at the voxel level. However, regular voxels may lack
flexibility when dealing with large-scale environments that contain intricate details. Ad-
ditionally, they are constrained by predefined volume sizes and resolutions. To address
this issue, Fuhrmann and Goesele [26] proposed an adaptive octree data structure, known
as the layered SDF, to support varying spatial resolutions. Zeng et al. [27] introduced a
four-level hierarchy that stores the TSDF at the finest level. Steinbrucker et al. [28] presented
a multiresolution data structure capable of real-time accumulation on a CPU.

To mitigate memory consumption, Nießner et al. [12] introduced the concept of voxel
hashing. This innovation allows for theoretically infinite situations by organizing data into
voxel blocks, whose addresses are indexed by a hash table. The primary challenge with
hash tables is the issue of collisions. To address this, Kahler et al. [29] improved the hash



Sensors 2024, 24, 78 5 of 16

table method to reduce the likelihood of collisions. Additionally, Prisacariu et al. [30] imple-
mented the hash table framework with cross-platform support and achieved compatibility
in different hardware and operating systems.

2.3. Texture Noise Correction

In the realm of texture noise, specular highlight is the most prevalent issue, drawing
considerable research attention over an extended period. In recent years, many methods
have been proposed to remove highlights from images. Predominantly, most of these
methods are based on the dichromatic reflection model, which represents the image as
a linear superposition of the specular reflection component and the diffuse reflection
component. For instance, He et al. [1] used independent component analysis (ICA) to
separate the specular and diffuse components from an image, while Yang et al. [2] employed
a single image and a low-pass filter for the same purpose. Additionally, Shen et al. [3]
approached highlight removal by computing the specular fractions of the image pixels
with intensity ratio. Similarly, Fu et al. [4] focused on removing specular highlights by
promoting sparsity in encoding coefficients and adhering to color mixing theories. Further,
Yang et al. [5] separated reflection components by adjusting saturations of specular pixels
to match diffuse-only pixels with the same diffuse chromaticity. Expanding upon these
methods, Yamamoto et al. [6] used a nonlinear high-emphasis filter and a similarity function
to improve the separation of reflection components, and Wei et al. [7] went a step further by
not only separating highlights but also estimating the position of the light source, assuming
that surface geometry is known. Guo et al. [31] tackled specular reflection by decomposing
the transmitted and reflected layers for a sequence of images with strong structural priors.
Recently, there has been a shift towards learning-based methods for removing specular
highlights from images, such as the shadow/specular-aware (S-aware) network proposed
by Jin et al. [8].

Another texture noise problem is the color inconsistency between frames caused by
sensor pose changes, resulting in contouring phenomena on the model texture. To address
this issue, Li et al. [9] and Ye et al. [10] applied a local image translation on the image plane
to diminish seams between frames. Chuang et al. [11] proposed a method of using Poisson
equation in the gradient domain to hide seams and generate a convincing texture result.

While the aforementioned noise removal algorithms have made significant strides,
there remain some constraints. Primarily, the majority of these techniques primarily focus
on image processing and are rarely integrated directly into the 3D reconstruction workflow.
Additionally, they fall short of tackling the aforementioned challenges (specular highlight,
color inconsistency, and object occlusion) concurrently. Furthermore, these methods are
tailored for specialized datasets, thereby limiting the broader applicability. In contrast, our
method successfully addresses these challenges.

3. Methodology

Our entire process consists of three main stages. The first stage is the data organization
phase, where we obtain a colored point cloud with luminance value through color space
conversion, point cloud coloration, and multiframe registration. The second stage is the
geometry reconstruction stage. Here, we employ the voxel hashing method [12] to build
the geometry with the organized data obtained from the preceding stage. The final stage is
the texture optimization stage, where we eliminate texture noise by fusing frames with the
frame-voting rendering and the neighbor-aided rendering mechanisms. Our framework
follows the pipeline illustrated in Figure 3.

3.1. Data Organization

To initiate the reconstruction process, we organize the input data into a dense colored
point cloud with luminance value and mark all of the points with a source frame sequence
number. This is achieved through color space conversion, point cloud coloration, and
multiframe registration. In color space conversion, we convert RGB images into CIELAB



Sensors 2024, 24, 78 6 of 16

images [32] to perform luminance comparison for subsequent texture rendering, as shown
in Figure 4b. Within the CIELAB image, L channel values are used to represent the
luminance of the frame. Compared with the three-channel RGB images, the utilization of
the L channel from the CIELAB image allows for a more effective brightness comparison
between frames. In point cloud coloration, we map LiDAR points to image pixels for
point coloration using predetermined intrinsic and extrinsic matrices of the sensors. These
matrices are accessed from an effective omnidirectional camera and using a non-repetitive
LiDAR cocalibration method [21]. In frame registration, we employ the FAST-LIO [33] and
generalized iterative closest point (GICP) algorithm [34] to determine the transformation
matrices between frames to acquire a dense colored point cloud. In addition, the data
utilized for the reconstruction must guarantee at least an 80% overlap between consecutive
frames. This overlap ensures that each corner of the scene can be reconstructed using at
least four to five frames, thereby providing a robust dataset for enhancing the quality of
texture optimization in subsequent processing steps.

(c) LiDAR point cloud

(a) RGB image (d) Colored point cloud

(e) CIELAB cloud(b) CIELAB image

Figure 4. Process flow of data organization. (a) RGB image. (b) CIELAB color space image trans-
formed from RGB image, which facilitates luminance evaluation in the subsequent section of our
work. (c) LiDAR point cloud. (d) Fusion of LiDAR point cloud with RGB image. (e) Fusion of LiDAR
point cloud with CIELAB color space image.

3.2. Geometry Reconstruction

During the process of geometry reconstruction, we apply voxel hashing [12], a memory-
efficient method for large-scale scenes, to construct the geometry model. Voxel hashing is a
two-level voxel data structure indexed by a hash table. A voxel block comprises 8× 8× 8
constant-sized voxels, which preserves the texture details of the model. The process of
voxel hashing consists of two parts: hash table creation and point assignment.

In hash table creation, we calculate the voxel block coordinate for each LiDAR point
and map the coordinate to the corresponding index using the hash function described in
Formula (1). In the formula, x, y, and z are the coordinates of the voxel and µ is a predefined
mask used to limit the range of hash values. Additionally, the values of the parameters p1,
p2, and p3, which are large prime numbers, are determined through empirically driven
settings to minimize collisions in the hash function. The output indexes form the hash
table, serving as entries to the memory location of voxel blocks, as shown in Figure 5.
Consequently, the hash table allows for the continuous storage of discrete voxel blocks,
significantly improving memory efficiency.

I(x, y, z) = ((x · p1)⊕ (y · p2)⊕ (z · p3))&µ; (1)



Sensors 2024, 24, 78 7 of 16

Hash table

Point set

Voxel blocks

𝑖 + 1𝑖𝑖 − 1 …… 𝑗 − 1 𝑗 𝑗 + 1 …

Figure 5. Voxel hashing schematic. The mapping between point coordinates and voxel block indices
is achieved through a hash table, thereby efficiently allocating points while making reasonable use of
computer storage resources.

The point assignment process begins with the allocation of memory space for point
storage based on the number of points in each voxel block. Then, we assign the points to
the corresponding voxel blocks according to the hash entries. Furthermore, we assign the
the points to the voxel according to the relative position within the voxel block. The point
information comprises not only point coordinate, color, and luminance values, but also the
source frame number. The sequence number keeps track of the origin of each LiDAR point,
enabling the discrimination of frames during the optimization rendering stage.

3.3. Texture Optimization
3.3.1. Frame-Voting Rendering

The frame-voting rendering involves two steps: the calculation of the voxel target
color and the color optimization. As mentioned in the previous data organization stage,
the input data should ensure that there is a high overlap between frames covering the scene.
Normally, the overall color and luminance value within a voxel are consistent, with only
a minority of frames exhibiting significant color differences. Therefore, we can easily
remove the color discrepancy by excluding outlier frames from the voxel. This method
is particularly effective for addressing specular reflection-induced highlight texture noise.
As the relative pose of the sensor and light source changes in different frames, the highlight
location changes accordingly. This characteristic allows the frame-voting mechanism to
effectively eliminate the highlight. The method also mitigates object occlusion. Moving
entities, such as people or animals, and static object occlusion caused by occasional pose
errors appear only in certain frames. Therefore, the majority of frames without occlusion
can aid in filtering out these sporadic obstructions. Moreover, it resolves color inconsis-
tency through point-by-point color optimization that ensures seamless color transitions
between frames.

This paragraph presents the calculation process of the target color within a voxel.
The procedure begins by filtering outliers at the frame level, followed by computing the
average target color at the point level. Within this context, Lij represents the luminance
value of the jth point in frame i within the voxel. We calculate the average luminance for
each frame independently, using the formula Li =

1
ni

∑ni
j=1 Lij, where ni is the number of

points in frame i. Subsequently, the overall luminance of the voxel, denoted as Lmean, is
calculated according to Lmean = 1

n ∑n
i=1 Li, and the variable range of luminance, denoted



Sensors 2024, 24, 78 8 of 16

as Lvar, is calculated according to Lvar =
√

1
n ∑n

i=1(Li − Lmean)2, where n is the number of
frames within this voxel.

Ctarget =
1
N ∑

Li−Lmean≤Lvar

ni

∑
j=1

Cij, R, G, B ∈ C (2)

In Formula (2), we identify frames that meet the condition Li − Lmean ≤ Lvar to calculate
the target color for the voxel. Here, N refers to the total number of points contained in the
frames that satisfy the selection criterion. Based on this calculation method, frames with a
larger number of points have a greater influence on the final result of the target color.

During the color optimization process, we optimize the point colors based on the
previously calculated target color. Specifically, only the points whose brightness value
exceeds the variance range, expressed as Lij − Lmean > Lvar, need to be updated to the
target color. This selective optimization preserves the original texture details, ensuring a
more realistic and visually pleasing rendering outcome.

3.3.2. Neighbor-Aided Rendering

Indeed, the frame-voting rendering effectively mitigates texture noise in many scenar-
ios. However, certain voxels lack a sufficient number of points for self-rendering due to
the random distribution of points within the real scene, as depicted in Figure 6. To address
this limitation, we introduce the neighbor-aided rendering mechanism for target color
calculation. As the name implies, it leverages neighboring voxels to provide luminance and
color information for the central voxel which has insufficient points. This method ensures a
more complete and precise rendering outcome for the entire scene.

X

Y

Sensor coordinate system

O

Sufficient points

Insufficient points

Object surface

Figure 6. Motivation for proposing neighbor-aided rendering mechanism: points are randomly
distributed in voxels; thus, some voxels lack insufficient points for self-optimization.

The main idea of the neighbor-aided rendering is to cluster neighboring voxels based
on their overall luminance, and then select the cluster with the largest number of points
to calculate the ultimate target color. This method allows us to accurately perform color
compensation for the central voxel in scenes where neighboring voxels have significant
color differences, such as at the boundaries between a white wall and a door where adjacent
voxels display varying colors. The operational steps of the approach are demonstrated
in Algorithm 1. Initially, we start with no groups, and both the group number gn and
the voxel index i are initialized to 0. Moving forward, for each neighboring voxel vi,
the algorithm checks existing groups to determine if any group exhibits a luminance level
close to that of vi. If such a group exists, the algorithm adds vi to that group and updates
the overall luminance of the group; if not, a new group Ggn is created, vi is included within
it, and the group number gn is incremented. Upon completing the clustering process for
all neighboring voxels, the group Goptimal with the highest point count is selected. Finally,



Sensors 2024, 24, 78 9 of 16

the algorithm calculates the ultimate target color Ctarget for the voxel utilizing the average
color of the points contained within Goptimal .

Algorithm 1: Neighbor-Aided Rendering

Input: Central voxel v0, neighboring voxel vi, i = 1, 2 · · · 6;
Output: Target color Ctarget;

1 set group number gn← 0;
2 set voxel index i← 0;
3 while i ≤ 6 do
4 set group index j← 1;
5 while j ≤ gn do
6 retrieve group j;
7 if light difference between vi and Gj ≤ thresh then
8 add vi to Gj ;
9 update luminance of Gj;

10 break;

11 j← j + 1;

12 if vi not belongs to any group then
13 gn← gn + 1;
14 create a new group Ggn;
15 add vi to Ggn ;

16 i← i + 1;

17 Goptimal ← group with maximum number of points;
18 Ctarget ← average color of Goptimal ;

When the central voxel locates in the outermost layer of the voxel block, part of the
neighboring voxels are situated in adjacent voxel blocks, as depicted in Figure 7. However,
in computer memory, the physically adjacent voxel blocks are stored at distant memory
addresses which are challenging to access directly. To overcome this issue, we incorporate
the hash entries of adjacent voxel blocks as a component of the information stored within the
data structure of each voxel block. This design facilitates efficient retrieval of neighboring
information during the rendering process.

External neighbor

Internal neighbor

Voxel block

Voxel unit

Central voxel

Figure 7. Neighbor-aided rendering mechanism. The figure illustrates the configuration of a voxel
block and the interconnections between adjacent voxels.

4. Experiment

In this section, we showcase the experimental results along with an efficiency analysis
and visual representations of rendering optimization outcomes. In the efficiency analysis,
we begin by introducing the sensor setup and describing the data characteristics utilized in
the experiment. Subsequently, we conduct an analysis of both memory and time efficiency



Sensors 2024, 24, 78 10 of 16

within the reconstruction process. Regarding rendering optimization representation, we
illustrate the effects of employing frame-voting rendering and neighbor-aided rendering
mechanisms to mitigate texture noise, supported by experimental results.

4.1. Experimental Environment, Equipment, and Data

During the experiment, we employ an omnidirectional camera and the Mid-360
LiDAR (Livox Tech Co., Ltd., Shenzhen, China) for data collection, allowing us to capture a
360-degree field of view and ensure high overlap between frames, as depicted in Figure 8.
The whole tasks are evaluated on an Intel i7-10700K CPU @ 3.80 GHz with 16 GB memory.

Omnidirectional 

camera
Livox Mid-360 

LiDAR

Figure 8. Sensor setup for data collection.

Figure 9 visually represents the organization of our data, highlighting the collection
process across four distinct spots. Each spot consists of data captured from five specified
poses, determined by our gimbal setup. For a clearer understanding of the spatial rela-
tionships, we explain that the transformation matrices between poses are derived from
the gimbal’s configuration. Additionally, the matrices between different spots were ini-
tially generated using the Fast-LIO [33] algorithm and further refined using the GICP [34]
method. This detailed representation aims to provide a comprehensive understanding of
our data collection and processing methodology.

Spot 1

Spot 2

Spot 3

Spot 4

Pose 1 (0°) Pose 2 (25°) Pose 3 (50°) Pose 4 (−25°) Pose 5 (−50°)

Figure 9. Input data. The dataset consists of four spots, and each spot consists of five specified poses.



Sensors 2024, 24, 78 11 of 16

4.2. Efficiency Analysis

Table 1 presents detailed information about our data, the primary parameter settings
for voxel hashing, and the associated voxel block costs. Notably, we set the voxel resolution
to 0.05 m deliberately. A lower resolution would negatively affect appearance continuity,
whereas a higher one would result in insufficient points for effective voxel-based texture
optimization. Importantly, by implementing the voxel hashing data structure, we signif-
icantly reduced the number of voxel blocks from 44,000 to 11,284, compared with full
scene coverage without hash mapping. This amounts to an impressive 75% reduction in
computer memory consumption.

Table 2 summarizes the primary stages of the reconstruction process along with their
corresponding time efficiencies. The creation of the hash table is accomplished in about
1.35 s. Additionally, the allocation of memory space for voxel blocks and the assignment of
points to the relevant voxel blocks are carried out in approximately 5.93 s. The computation
for frame-voting rendering takes around 21.60 s, while the neighbor-aided rendering
procedure consumes roughly 21.37 s. The processing of the entire dataset is completed
within 60 s, dealing with nearly 70 million points. This equates to a processing rate of
over 1 million points per second, suggesting that the solution has the capability for real-
time processing.

Table 1. Analysis of data characteristics and memory efficiency.

Data Scale

Frame number 20
Point number 69,740,000

Scene size 22 m× 16 m× 8 m
Voxel resolution 0.05 m
Voxel block size 8× 8× 8

VB number without hash mapping 44,000
VB number with hash mapping 11,284

Table 2. Time efficiency analysis for key stages.

Stage Computation Time (s)

Hash table creation 1.35
Point assignment 5.93

Frame-voting rendering 21.60
Neighbor-aided rendering 21.37

4.3. Experiment Results of Texture Optimization
4.3.1. Results on Frame-Voting Rendering

In this subsection, we present the outcomes of our rendering optimization method.
Figure 10 illustrates the results of highlight noise correction in a scene where prominent light
spots and halation are caused by the specular reflection of the camera lens. The comparison
between the original point cloud and the optimized point cloud is displayed on the left
side, while the zoomed-in sections of the right side provide a clearer view of the highlight
noise correction effect. We can see that the highlight noise and halation phenomena were
significantly mitigated, and the quality of the texture was effectively improved.

Figure 11 illustrates the efficacy of our approach in mitigating texture noise arising
from object occlusion. The upper-right image presents the original RGB image of the scene,
highlighting the area with chair and table occlusion. On the left side, a comparison is made
between the original point cloud and the optimized point cloud, while the lower-right
figures provide a closer examination of the contrasting results. Through the frame-voting
rendering mechanism, object occlusion caused by occasional pose errors is well filtered out.



Sensors 2024, 24, 78 12 of 16

a

a

b

b

c

c

a

b

c

Scene 1 (optimized)

Scene 1 (original)

Original Optimized

Figure 10. Highlight noise correction in scene 1 according to frame-voting rendering. Regions (a)–(c)
present specular highlights phenomenon on the screen and wall surfaces in the scene.

a

a

Scene 2 (original)

Scene 2 (optimized)

b

b

a

b

Occlusion in scene 2

a

b

Occlusion in scene 2

Original Optimized

aa

b

Original Optimized

a

b

Figure 11. Elimination of object occlusion in scene 2 with frame-voting rendering. (a) Comparison
diagram of the elimination of misimaging caused by table occlusion. (b) Comparison diagram of the
elimination of misimaging caused by chair occlusion.

4.3.2. Results on Neighbor-Aided Rendering

Figure 12 is the experimental result of the neighbor-aided rendering mechanism, which
is shown in the following order: the original image, the result without neighbor-aided
rendering, and the result with neighbor-aided optimization. From (a) to (b), the image
quality is obviously enhanced by applying the frame-voting rendering. From (b) to (c),
the result demonstrates that the neighbor-aided rendering significantly reduces the texture
noise that cannot be removed directly due to the insufficient number of points inside
the voxel.



Sensors 2024, 24, 78 13 of 16

B

C

A

(a)

A

B

C

(b)

A

B

C

(c)

Figure 12. Enhanced outcome with neighbor-aided optimization. Regions A–C exhibite pronounced
contrastive effects. (a) Demonstration area of the original point cloud containing numerous types of
texture noise. (b) The result optimized using only frame-voting rendering. (c) The result optimized
further with neighbor-aided rendering.

4.3.3. Comparing Results of Highlight Removal

To demonstrate the effectiveness of our method in eliminating highlights, we con-
ducted comparisons with other highlight removal techniques. Since the majority of these
methods are designed for image processing rather than 3D LiDAR cloud data, we pro-
jected the reconstructed model onto images. The results are presented in Figure 13, where
(a) represents the projection of the reconstructed model without texture optimization;
(b) represents the projection of our method, and it is after texture optimization; and (c), (d),
(e), and (f) depict the results of highlight removal modifications applied to the projection of
a raw model using the techniques of Yang et al. (2010) [2], Shen et al. (2013) [3], Fu et al.
(2019) [4], and Jin et al. (2023) [8], respectively. Our approach effectively eliminates texture
noise while preserving the overall image brightness, contrast, saturation, and structural
information, thus preventing significant alterations that could lead to image distortion.
To gauge image quality in highlight removal tasks, we utilize the SSIM (structure similarity
index), PSNR (peak signal-to-noise ratio) [35], and FSIM (feature similarity index) [36]
metrics, with the corresponding numerical results provided in Table 3.

(a) (b) (c)

(d) (e) (f)

Figure 13. Comparing results of highlight removal method. (a) Projection of raw model (input).
The white boxes indicate areas with noise that should be corrected. The red box indicates area that
should not be corrected (lights). (b) Projection of texture optimized model (ours). (c) Yang et al.
(2010) [2]. (d) Shen et al. (2013) [3]. (e) Fu et al. (2019) [4]. (f) Jin et al. (2023) [8].



Sensors 2024, 24, 78 14 of 16

Table 3. Image quality evaluation on highlight removal.

Methods SSIM ↑ PSNR (dB) ↑ FSIM ↑
Yang et al. (2010) [2] 0.6451 13.7009 0.8373
Shen et al. (2013) [3] 0.6091 12.0770 0.8134

Fu et al. (2019) [4] 0.7907 16.5348 0.9086
Jin et al. (2023) [8] 0.2492 9.8382 0.7187

Ours 0.8852 21.6157 0.9153

5. Conclusions

In this paper, we proposed an omnidirectional-sensor-system-based texture noise
correction framework for large-scale 3D reconstruction according to data organization,
geometry reconstruction, and texture optimization. It fuses LiDAR points and RGB images
into a colored point cloud with luminance value and constructs a space-efficient geometry
model using voxel hashing [12]. Most importantly, it simultaneously reduces multivariate
mixed noise such as highlight problems, frame color inconsistency, and object occlusion
through frame-voting and neighbor-aided mechanisms.

Our approach holds significant promise in the surveying and mapping domain, as it
efficiently handles large volumes of input data and improves texture quality degraded
by sensor performance limitations and environmental disturbance. More specifically,
our research offers substantial advancements in geographic information systems (GIS)
development and cultural heritage preservation, effectively addressing challenges such
as occlusion in urban environments and illuminance limitations in indoor heritage sites.
The system currently places primary emphasis on texture optimization and requires the
precision of transformation matrices between frames. Therefore, in the future, we will
focus more on the accuracy of geometry reconstruction while ensuring texture optimization.
Considering our texture optimization’s capability to process up to one million points per
second, it holds significant potential for real-time processing. Current SLAM frameworks
that utilize image and LiDAR data for real-time applications, such as FAST-LIO [33] and
R3LIVE [37], excel in geometric accuracy but often do not focus as much on texture quality.
By integrating the strengths of our texture optimization approach with the precise geometric
localization and mapping capabilities of these SLAM frameworks, we envision creating a
more comprehensive and enhanced reconstruction framework in the future.

Author Contributions: Conceptualization, X.H.; methodology, W.X.; software, W.X.; validation, W.X.;
formal analysis, W.X.; investigation, W.X.; resources, W.X.; data curation, W.X.; writing—original draft
preparation, W.X.; writing—review and editing, X.H.; visualization, W.X.; supervision, X.H.; project
administration, X.H.; funding acquisition, X.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been funded by SUSTech startup fund grant number Y01966105, SUSTech-
DJI joint lab fund grant number K2096Z028, and Shenzhen Science and Technology Project grant
numbers JSGG20211029095803004 and JSGG20201103100401004.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available from the corresponding
author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. He, Y.; Khanna, N.; Boushey, C.J.; Delp, E.J. Specular highlight removal for image-based dietary assessment. In Proceedings

of the 2012 IEEE International Conference on Multimedia and Expo Workshops, Melbourne, Australia, 9–13 July 2012; IEEE:
Piscataway, NJ, USA, 2012; pp. 424–428.



Sensors 2024, 24, 78 15 of 16

2. Yang, Q.; Wang, S.; Ahuja, N. Real-time specular highlight removal using bilateral filtering. In Computer Vision–ECCV 2010,
Proceedings of the 11th European Conference on Computer Vision, Heraklion, Crete, Greece, 5–11 September 2010; Proceedings, Part IV 11;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 87–100.

3. Shen, H.L.; Zheng, Z.H. Real-time highlight removal using intensity ratio. Appl. Opt. 2013, 52, 4483–4493. [CrossRef] [PubMed]
4. Fu, G.; Zhang, Q.; Song, C.; Lin, Q.; Xiao, C. Specular Highlight Removal for Real-world Images. Comput. Graph. Forum 2019, 38,

253–263. [CrossRef]
5. Yang, J.; Liu, L.; Li, S. Separating specular and diffuse reflection components in the HSI color space. In Proceedings of the IEEE

International Conference on Computer Vision Workshops, Sydney, Australia, 2–8 December 2013; pp. 891–898.
6. Yamamoto, T.; Nakazawa, A. General improvement method of specular component separation using high-emphasis filter and

similarity function. ITE Trans. Media Technol. Appl. 2019, 7, 92–102. [CrossRef]
7. Wei, X.; Xu, X.; Zhang, J.; Gong, Y. Specular highlight reduction with known surface geometry. Comput. Vis. Image Underst. 2018,

168, 132–144. [CrossRef]
8. Jin, Y.; Li, R.; Yang, W.; Tan, R.T. Estimating reflectance layer from a single image: Integrating reflectance guidance and

shadow/specular aware learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14
February 2023; Volume 37, pp. 1069–1077.

9. Li, W.; Gong, H.; Yang, R. Fast texture mapping adjustment via local/global optimization. IEEE Trans. Vis. Comput. Graph. 2018,
25, 2296–2303. [CrossRef] [PubMed]

10. Ye, X.; Wang, L.; Li, D.; Zhang, M. 3D reconstruction with multi-view texture mapping. In Neural Information Processing,
Proceedings of the 24th International Conference, ICONIP 2017, Guangzhou, China, 14–18 November 2017; Proceedings, Part III 24;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 198–207.

11. Chuang, M.; Luo, L.; Brown, B.J.; Rusinkiewicz, S.; Kazhdan, M. Estimating the Laplace-Beltrami operator by restricting 3d
functions. Comput. Graph. Forum 2009, 28, 1475–1484. [CrossRef]

12. Nießner, M.; Zollhöfer, M.; Izadi, S.; Stamminger, M. Real-time 3D reconstruction at scale using voxel hashing. ACM Trans. Graph.
(TOG) 2013, 32, 169. [CrossRef]

13. Marr, D.; Poggio, T. Cooperative Computation of Stereo Disparity: A cooperative algorithm is derived for extracting disparity
information from stereo image pairs. Science 1976, 194, 283–287. [CrossRef] [PubMed]

14. Ullman, S. The Interpretation of Visual Motion; The MIT Press: Cambridge, MA, USA, 1979.
15. Snavely, N.; Seitz, S.M.; Szeliski, R. Photo tourism: Exploring photo collections in 3D. In Proceedings of the ACM SIGGRAPH

2006 Papers, Boston, MA, USA, 30 July–3 August 2006; pp. 835–846.
16. Lindner, M.; Kolb, A.; Hartmann, K. Data-fusion of PMD-based distance-information and high-resolution RGB-images. In

Proceedings of the 2007 International Symposium on Signals, Circuits and Systems, Iasi, Romania, 13–14 July 2007; IEEE:
Piscataway, NJ, USA, 2007; Volume 1, pp. 1–4.

17. Han, J.; Shao, L.; Xu, D.; Shotton, J. Enhanced computer vision with microsoft kinect sensor: A review. IEEE Trans. Cybern. 2013,
43, 1318–1334. [PubMed]

18. Bouguet, J.Y. Camera Calibration Toolbox for Matlab. 2004. Available online: https://data.caltech.edu/records/jx9cx-fdh55
(accessed on 5 November 2023).

19. Zhang, Q.; Pless, R. Extrinsic calibration of a camera and laser range finder (improves camera calibration). In Proceedings of the
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Sendai, Japan, 28
September–2 October 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 3, pp. 2301–2306.

20. Scaramuzza, D.; Harati, A.; Siegwart, R. Extrinsic self calibration of a camera and a 3d laser range finder from natural scenes. In
Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2
November 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 4164–4169.

21. Miao, Z.; He, B.; Xie, W.; Zhao, W.; Huang, X.; Bai, J.; Hong, X. Coarse-to-Fine Hybrid 3D Mapping System With Co-Calibrated
Omnidirectional Camera and Non-Repetitive LiDAR. IEEE Robot. Autom. Lett. 2023, 8, 1778–1785. [CrossRef]

22. Curless, B.; Levoy, M. A volumetric method for building complex models from range images. In Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996; pp. 303–312.

23. Rusinkiewicz, S.; Hall-Holt, O.; Levoy, M. Real-time 3D model acquisition. ACM Trans. Graph. (TOG) 2002, 21, 438–446. [CrossRef]
24. Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Shotton, J.; Hodges, S.; Freeman, D.; Davison, A.; et al.

Kinectfusion: Real-time 3d reconstruction and interaction using a moving depth camera. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology, Santa Barbara, CA, USA, 16–19 October 2011; pp. 559–568.

25. Whelan, T.; Salas-Moreno, R.F.; Glocker, B.; Davison, A.J.; Leutenegger, S. ElasticFusion: Real-time dense SLAM and light source
estimation. Int. J. Robot. Res. 2016, 35, 1697–1716. [CrossRef]

26. Fuhrmann, S.; Goesele, M. Fusion of depth maps with multiple scales. ACM Trans. Graph. (TOG) 2011, 30, 148. [CrossRef]
27. Zeng, M.; Zhao, F.; Zheng, J.; Liu, X. A memory-efficient kinectfusion using octree. In Computational Visual Media, Proceedings

of the First International Conference, CVM 2012, Beijing, China, 8–10 November 2012; Proceedings; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 234–241.

28. Steinbrücker, F.; Sturm, J.; Cremers, D. Volumetric 3D mapping in real-time on a CPU. In Proceedings of the 2014 IEEE
International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; IEEE: Piscataway, NJ,
USA, 2014; pp. 2021–2028.

http://doi.org/10.1364/AO.52.004483
http://www.ncbi.nlm.nih.gov/pubmed/23842242
http://dx.doi.org/10.1111/cgf.13834
http://dx.doi.org/10.3169/mta.7.92
http://dx.doi.org/10.1016/j.cviu.2017.10.010
http://dx.doi.org/10.1109/TVCG.2018.2831220
http://www.ncbi.nlm.nih.gov/pubmed/29993744
http://dx.doi.org/10.1111/j.1467-8659.2009.01524.x
http://dx.doi.org/10.1145/2508363.2508374
http://dx.doi.org/10.1126/science.968482
http://www.ncbi.nlm.nih.gov/pubmed/968482
http://www.ncbi.nlm.nih.gov/pubmed/23807480
https://data.caltech.edu/records/jx9cx-fdh55
http://dx.doi.org/10.1109/LRA.2023.3242874
http://dx.doi.org/10.1145/566654.566600
http://dx.doi.org/10.1177/0278364916669237
http://dx.doi.org/10.1145/2070781.2024182


Sensors 2024, 24, 78 16 of 16

29. Kähler, O.; Prisacariu, V.A.; Ren, C.Y.; Sun, X.; Torr, P.; Murray, D. Very high frame rate volumetric integration of depth images on
mobile devices. IEEE Trans. Vis. Comput. Graph. 2015, 21, 1241–1250. [CrossRef] [PubMed]

30. Prisacariu, V.A.; Kähler, O.; Golodetz, S.; Sapienza, M.; Cavallari, T.; Torr, P.H.; Murray, D.W. Infinitam v3: A framework for
large-scale 3d reconstruction with loop closure. arXiv 2017, arXiv:1708.00783.

31. Guo, X.; Cao, X.; Ma, Y. Robust separation of reflection from multiple images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2187–2194.

32. Guo, D.; Cheng, Y.; Zhuo, S.; Sim, T. Correcting over-exposure in photographs. In Proceedings of the 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; IEEE: Piscataway, NJ, USA,
2010; pp. 515–521.

33. Xu, W.; Zhang, F. Fast-lio: A fast, robust lidar-inertial odometry package by tightly-coupled iterated kalman filter. IEEE Robot.
Autom. Lett. 2021, 6, 3317–3324. [CrossRef]

34. Segal, A.; Haehnel, D.; Thrun, S. Generalized-icp. In Proceedings of the Robotics: Science and Systems, Seattle, WA, USA, 28
June–1 July 2009; Volume 2, p. 435.

35. Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern
Recognition, Istanbul, Turkey, 23–26 August 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 2366–2369.

36. Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process.
2011, 20, 2378–2386. [CrossRef] [PubMed]

37. Lin, J.; Zhang, F. R 3 LIVE: A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and
mapping package. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA,
USA, 23–27 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 10672–10678.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TVCG.2015.2459891
http://www.ncbi.nlm.nih.gov/pubmed/26439825
http://dx.doi.org/10.1109/LRA.2021.3064227
http://dx.doi.org/10.1109/TIP.2011.2109730
http://www.ncbi.nlm.nih.gov/pubmed/21292594

	Introduction
	Related Work
	Imaging Sensors
	Geometry Reconstruction
	Texture Noise Correction

	Methodology
	Data Organization
	Geometry Reconstruction
	Texture Optimization
	Frame-Voting Rendering
	Neighbor-Aided Rendering


	Experiment
	Experimental Environment, Equipment, and Data
	Efficiency Analysis
	Experiment Results of Texture Optimization
	Results on Frame-Voting Rendering
	Results on Neighbor-Aided Rendering
	Comparing Results of Highlight Removal


	Conclusions
	References

