
Citation: Jekateryńczuk, G.;
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Abstract: This study is a survey of sound source localization and detection methods. The study
provides a detailed classification of the methods used in the fields of science mentioned above. It
classifies sound source localization systems based on criteria found in the literature. Moreover, an
analysis of classic methods based on the propagation model and methods based on machine learning
and deep learning techniques has been carried out. Attention has been paid to providing the most
detailed information on the possibility of using physical phenomena, mathematical relationships, and
artificial intelligence to determine sound source localization. Additionally, the article underscores the
significance of these methods within both military and civil contexts. The study culminates with a
discussion of forthcoming trends in the realms of acoustic detection and localization. The primary
objective of this research is to serve as a valuable resource for selecting the most suitable approach
within this domain.
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1. Introduction

The terms detection and localization have been known for many years. Localization
pertains to identifying a specific point or area in physical space, while “detection” takes
on various meanings depending on the context. In a broader sense, detection involves
the process of discovery. Video images [1], acoustic signals [2], radio signals [3], or even
smell [4] can be used for detection and localization. This review focuses on the methods of
detecting and localizing sound sources—that is, the acoustic signal.

The most original ideas for sound source localization are based on animal behaviors
that determine the direction and distance of acoustic sources using echolocation. Good
examples are bats [5] or whales [6] that use sound waves to detect the localization of
obstacles or prey. Consequently, it is logical that individuals seek to adapt and apply
such principles to real-world scenarios, seamlessly integrating these insights into their
daily lives.

Acoustic detection and localization are related but separate concepts in acoustic sig-
nal processing [7]. Acoustic detection is the process of identifying sound signals in the
environment, and acoustic localization is the process of determining the localization of the
source generating that sound [8]. They are used in many areas of everyday life, both in
military and civilian applications, e.g., robotics [9,10], rescue missions [11,12], or marine
detection [13,14]. However, these are only examples of the many application areas of
acoustic detection and localization, often used in parallel with video detection and local-
ization [15–17]. Using both of these data sources increases the localization’s accuracy. The
task of the video module is to detect potential objects that are the source of sound, and
the audio module uses the time–frequency spatial filtering technique to amplify sound
from a given direction [18]. However, this does not mean that in each of the applications,
these methods are better than methods using only one of the mentioned modules. Their
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disadvantages include greater complexity due to the presence of two modules. In turn, the
advantages include greater flexibility of operation, e.g., depending on weather conditions.
When weather conditions do not allow for accurate image capture, e.g., rain, the audio
module should still fulfil its functions. Conversely, the video module can still be located
when the audio signal is interfered with by another signal of greater intensity.

Creating an effective method of acoustic detection and localization is a complex
process. In many cases, their operation must be reliable because the future of enterprises in
civil applications or people’s lives in military applications may depend on it. In natural
acoustic environments, challenges such as reverberation [19] or background noise [20]
can be encountered, among others. In addition, there are often dynamics associated
with the participation of moving sound sources, e.g., drones, planes, or people, i.e., the
Doppler phenomenon [21]. Therefore, localization methods should be characterized not
only by accuracy in the distance, elevation, and azimuth angles (Figure 1), but also by the
algorithm’s speed.
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Figure 1. Polar coordinates [22].

This is due to the need to quickly update the estimated localization of the sound
source [23]. In addition, the physical phenomena occurring during sound propagation in
an elastic medium are of great importance. Sound reflected from several boundary surfaces,
with the direct sound from the source and sounds from other localizations, can build up
such a complex sound field that even the most accurate analysis cannot fully describe it [24].
These challenges make the subject of acoustic detection and localization a complex issue,
the solution of which requires complex computational algorithms.

Significantly, amidst the reviews on sound source localization [10,25–29], a notable
gap exists in providing examples that illustrate the practical applications of these methods
in real-life scenarios. This deficiency underscores the pressing need for an article that not
only delves into the intricacies of sound source localization and detection but also explicitly
showcases their utilization in contemporary, real-world situations. This paper aims to
address this by offering a detailed exploration of sound source detection and localization
methods, shedding light on their practical applications across diverse real-life contexts.

The paper is organized as follows: Section 2 contains a classification of sound source
detection and localization methods and presents the taxonomy proposed in the review.
Then, Section 3 presents a detailed overview of the methods according to the division
proposed in the previous chapter. Section 4 presents military and civilian applications
proposed in the literature, and Section 5 deals with future trends in the proposed topic.
Finally, Section 6 presents the conclusions of the review.
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2. Methods’ Classification

Over the years, many acoustic detection and localization methods have been devel-
oped. However, all of the methods require capturing the audio signal. Therefore, any
method’s essential element and requirement is using an acoustic sensor. In addition to
converting sound waves into an electrical signal, they also perform other functions, such
as: reducing ambient noise [30], or capturing sounds with frequencies beyond the hearing
range of the human ear [31]. This means there is a possibility of localizing sources of
acoustic signals that are impossible to hear without technology.

Methods can be categorized in various ways, and within the realm of literature, one
can observe the classifications illustrated in Figure 2.
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The first classification is based on the number of microphones used. Typically, more
than one microphone is utilized [32], but there are also solutions that make use of a single
microphone [33–35]. The use of more microphones is referred to in the literature as the
Wireless Sensor Network [36,37]. Another way to classify sound source localization meth-
ods is based on their spatial localization capabilities. This classification refers to whether a
method can estimate the position of a sound source in one dimension (1D), two dimensions
(2D), or three dimensions (3D). Another important classification parameter for sound source
localization systems is the number of sound sources they can detect. While the simplest
option is the localization of a single source, techniques that enable the detection of multiple
sources are generally more practical and realistic. SSL can also be distinguished in terms of
the microphone arrays’ arrangement [26]. Circular arrays [38] utilize microphones posi-
tioned around a circular boundary, facilitating omnidirectional sound source localization
while presenting challenges in elevation angle determination. Linear arrays [39] employ
linearly aligned microphones, enabling accurate direction estimation within the horizontal
plane. Hexagonal arrays [40], organized in a hexagonal grid, balance azimuth and elevation
precision, proving valuable in applications such as immersive audio and robotics. Ad-hoc
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arrays [26] encompass irregular microphone configurations chosen for research to achieve
adaptable and customized spatial sensing solutions based on specific experimental needs.

The fifth classification criterion involves both passive and active positioning of the
sound source [41]. Passive positioning relies on the source’s sound to infer information
about its spatial position [42]. In contrast, active positioning does not determine the
localization of the sound source, but enables the determination of the object’s localization
by emitting sound to create an echo [43].

Another classification criterion is the method of determining the sound source. Classic
methods can be distinguished by using simple mathematical models [44–46]. This is
because sound source localization was initially perceived as a signal-processing problem
based on the definition of a propagation model. In recent years, there has been a significant
increase in the popularity of solutions based on artificial intelligence [47]. It is unsurprising
that in addition to classic methods, one can find solutions using neural networks in the
literature [48–50]. Therefore, this review focuses on classifying methods according to how
the sound source is determined.

First, a thorough review of classic methods used in detecting and localizing acoustic
signal sources is presented. Then, the focus shifts to presenting solutions based on artificial
intelligence. Finally, the fields of application are presented. These examples concern
applications in the military area, critical from the point of view of ensuring the security of
the state and the army. These solutions also play a crucial role in modern combat operations
on the battlefield. In addition to military applications, solutions for civilian applications
where the detection and localization of the sound source are needed are also presented.

The taxonomy shown in the Figure 3 was used. It presents an overview of the literature,
from classic methods to methods using solutions in the field of artificial intelligence, ending
with specific application cases. All methods are briefly described to better understand how
they work.
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3. Acoustic Source Detection and Localization Methods

Detecting and localizing an acoustic source is a fundamental task in various fields
of science. The purpose of this section is to present various methods for detecting and
localizing sound sources in the environment. We will discuss various techniques and
types of neural networks presented in the literature. Each method has its strengths and
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limitations, and the choice of technique depends on the application’s specific requirements.
This section overviews the most common methods of detecting and localizing acoustic
sources and highlights their advantages and disadvantages.

3.1. Classic Methods

Classic methods have stood the test of time and are still widely used due to their
simplicity, reliability, and effectiveness. There are three main mathematical methods for
determining the sound source. These include triangulation, trilateration, and multilatera-
tion [51]. They are described below:

• Triangulation—Employs the geometric characteristics of triangles for localization de-
termination. This approach calculates the angles at which acoustic signals arrive at the
microphones. To establish a two-dimensional localization, a minimum of two micro-
phones is requisite. For precise spatial coordinates, a minimum of three microphones is
indispensable. It is worth noting that increasing the number of microphones amplifies
the method’s accuracy. Moreover, the choice of microphone significantly influences
the precision of the triangulation. Employing directional microphones enhances the
accuracy by precisely capturing the directional characteristics of sound. Researchers
in [48] demonstrated the enhanced outcomes of employing four microphones in a
relevant study. The triangulation schema is shown on Figure 4.

• Trilateration—Used to determine localization based on the distance to three micro-
phones (Figure 5). Each microphone captures the acoustic signal at a different time,
based on which the distance to the sound source is calculated. On this basis, the
localization is determined by creating three circles with a radius corresponding to the
distances from the microphones. The intersection point is the localization of the sound
source [52]. It is less dependent on the directional characteristics of the microphones,
potentially providing more flexibility in microphone selection.

• Multilateration—Used to determine the localization based on four or more micro-
phones. The principle of operation is identical to trilateration. Using more reference
points allows for a more accurate determination of the localization because, with
their help, measurement errors can be compensated. However, this results in greater
complexity and computational requirements. Despite this increased intricacy, the
accuracy and error mitigation benefits make multilateration a crucial technique in
applications where precise localization determination is paramount [53].
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To ascertain localizations using the above-mentioned methods, it is necessary to
establish the parameters the method implies. The most popular are Time of Arrival (ToA),
Time Difference of Arrival (TDoA), Time of Flight (ToF), and Angle of Arrival (AoA), often
referred to as Direction of Arrival (DoA) [54]. They are described below:

• Time of Arrival—This method measures the time from when the source emits the
sound until the microphones detect the acoustic signal. Based on these data, it is
possible to calculate the time it takes for the signal to reach the microphone. In ToA
measurements, it is a requirement that the sensors and the source cooperate with each
other, e.g., by synchronizing the time between them. The use of more microphones
increases the accuracy of the measurements. This is due to the larger amount of data
to be processed [55].

• Time Difference of Arrival—This method measures the difference in time taken to
capture the acoustic signal by microphones placed in different localizations. This
makes it possible to determine the distance to a sound source based on the difference
in the arrival times of the signals at the microphones based on the speed of sound
in a given medium. The use of the TDoA technique requires information about the
localization of the microphones and their acoustic characteristics, which include sensi-
tivity and directionality. With these data, it is possible to determine the localization of
the sound source using computational algorithms. For this purpose, the Generalized
Cross-Correlation Function (GCC) is most often used [56]. Localizing a moving sound
source using the TDoA method is a problem due to the Doppler effect [57].

• Angle of Arrival—This method determines the angle at which the sound wave reaches
the microphone. There are different ways to determine the angles. These include
time-delay estimation, the MUSIC algorithm [58], and the ESPRIT algorithm [59].
Additionally, the sound wave frequency in spectral analysis can be used to estimate
the DoA. As in the ToA, the accuracy of this method depends on the number of
microphones, but the coherence of the signals is also very important. Since each node
conducts individual estimations, synchronization is unnecessary [60].

• Received Signal Strength—This method measures the intensity of the received acoustic
signal and compares it with the signal attenuation model in a given medium. This is
difficult to achieve due to multipath and shadow fading [61]. However, compared to
Time of Arrival, it does not require time synchronization, and is not affected by the
clock skew and clock offset [62].

• Frequency Difference of Arrival (FDoA)—This method measures the frequency dif-
ference of the sound signal between two or more microphones [63]. Unlike TDoA,
FDoA requires relative motion between observation points and the sound source,
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leading to varying Doppler shifts at different observation localizations due to the
source’s movement. Sound source localization accuracy using FDoA depends on the
signal bandwidth, signal-to-noise ratio, and the geometry of the sound source and
observation points.

• Time of Flight—This method measures the time from when the source emits the
sound until the microphone detects the acoustic signal, including the additional time
needed for the receiver to process the signal. Therefore, the duration is longer than in
ToA [64,65].

• Beamforming—Beamforming is an acoustic imaging technique that uses the power
of microphone arrays to capture sound waves originating from various localizations.
This method processes the collected audio data to generate a focused beam that con-
centrates sound energy in a specified direction. By doing so, it effectively pinpoints
the source of sound within the environment. This is achieved by estimating the di-
rection of incoming sound signals and enhancing them from desired angles, while
suppressing noise and interference from other directions. Beamforming stands out as
a robust solution, particularly when dealing with challenges such as reverberation and
disturbances. However, it is important to note that in cases involving extensive micro-
phone arrays, the computational demands can be relatively high [66]. An additional
challenge posed by these methods is the localization of sources at low frequencies
and in environments featuring partially or fully reflecting surfaces. In such scenarios,
conventional beamforming techniques may fail to yield physically reasonable source
maps. Moreover, the presence of obstacles introduces a further complication, as they
cannot be adequately considered in the source localization process [67].

• Energy-based—This technique uses the energy measurements gathered by sensors in a
given area. By analyzing the energy patterns detected at different sensor localizations,
the method calculates the likely localizations of the sources, taking into account factors
such as noise and the decay of acoustic energy over distance. Compared to other
methods, such as TDoA and DoA, energy-based techniques require a low sampling
rate, leading to reduced communication costs. Additionally, these methods do not
require time synchronization, often yielding lower precision compared to alternative
methods [68].

The methods mentioned above have been used many times in practical solutions and
described in the literature: ToA [69–72], TDoA [73,74], AoA [75], and RSS [76]. The most
popular are Time Difference of Arrival and Angle of Arrival. The authors of [77] claim
that the fusion of measurement data obtained using different measurement techniques can
improve the accuracy. This is due to the inherent limitations of each localization estimation
technique. An example of such an application is TDoA with AoA [63] or ToF with AoA [78].

In addition to the methods mentioned above, there are also signal-processing methods
used in order to estimate the parameters of the above-mentioned methods. The most
popular are described below:

• Delay-and-Sum (DAS)—The simplest and the most popular beamforming algorithm.
The principle of this algorithm is based on delaying the received signals at every micro-
phone in order to compensate the signals’ relative arrival time delays. The algorithms
generate an array of beamforming signals by processing the acoustic signals. These
signals are combined to produce a consolidated beam that amplifies the desired sound
while suppressing noise originating from other directions [25,66]. This method has a
drawback of yielding poor spatial resolution, which leads to so-called ghost images,
meaning that the beamforming algorithm outputs additional, non-existing sources.
However, this problem can be addressed by using deconvolution beamforming and
implementing the Point Spread Function, which is based on increasing the spatial
resolution by examining the beamformer’s output at specific points [79]. The basic
idea is shown in Figure 6.

• Minimum Variance Distortion-less Response (MVDR)—A beamforming-based algo-
rithm that introduces a compromise between reverberation and background noise. It
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evaluates the power of the received signal in all possible directions. MVDR sets the
beamformer gain to be 1 in the direction of the desired signal, effectively enhancing its
reception. This step allows the algorithm to focus on the primary signal of interest. By
dynamically optimizing beamforming coefficients, MVDR enhances the discernibility
of target signals while diminishing unwanted acoustic components. It provides higher
resolution than DAM and LMS methods [80].

• Multiple Signal Classifier (MUSIC)—The fundamental concept involves performing
characteristic decomposition on the covariance matrix of any array output data, lead-
ing to the creation of a signal subspace that is orthogonal to a noise subspace associated
with the signal components. Subsequently, these two distinct subspaces are employed
to form a spectral function, obtained through spectral peak identification, enabling the
detection of DoA signals. This algorithm exhibits high resolution, precision, and consis-
tency when the precise arrangement and calibration of the microphone array are well
established. In contrast, ESPRIT is more resilient and does not require searching for all
potential directions of arrival, which results in lower computational demands [58].

• Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)—
This technique was initially developed for frequency estimation, but it has found a
significant application in DoA estimation. ESPRIT is similar to the MUSIC algorithm in
that it capitalizes on the inherent models of signals and noise, providing estimates that
are both precise and computationally efficient. This technique leverages a property
called shift invariance, which helps mitigate the challenges related to storage and
computational demands. Importantly, ESPRIT does not necessitate precise knowledge
of the array manifold steering vectors, eliminating the need for array calibration [81].

• Steered Response Power (SRP)—This algorithm is widely used for beamforming-based
localization. It estimates the direction of a sound source using the spatial properties
of signals received by a microphone array. The SRP algorithm calculates the power
across different steering directions and identifies the direction associated with the
maximum power [82]. SRP is often combined with Phase Transform (PHAT) filtration
to broaden the signal spectrum to improve the spatial resolution of SRP [83] and
features robustness against nose and reverberation. However, it has disadvantages,
such as heavy computation due to the grid search scheme, which limits its real-time
usage [84].

• Generalized Cross-Correlation—One of the most widely used cross-correlation algo-
rithms. It operates by determining the phase using time disparities, acquiring the
correlation function featuring a sharp peak, identifying the moment of highest correla-
tion, and then merging this with the sampling rate to derive directional data [34].
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Each method mentioned above has distinct prerequisites, synchronization challenges,
benefits, and limitations. The choice of which method to employ depends on the specific
usage scenario, the balance between the desired accuracy, and the challenges posed by the
environment in which the acoustic source localization is conducted.

The same principle applies for methods concerning sound source detection. Among
them is the hidden Markov model (HMM). This model stands out as one of the most widely
adopted classifiers for sound source detection. HMMs are characterized by a finite set
of states, each representing a potential sound source class, and probabilistic transitions
between these states to capture the dynamic nature of audio signals. In the context of
sound source detection, standard features, such as Mel-Frequency Cepstral Coefficients
(MFCC), are often employed in conjunction with HMMs. These features, such as MFCC,
serve to extract relevant spectral characteristics from audio signals, providing a compact
representation conducive to analysis by HMMs. During the training phase, HMMs learn
the statistical properties associated with each sound source class, utilizing algorithms such
as the Baum–Welch or Viterbi algorithm. The learning process allows HMMs to adapt to
specific sound source classes and improve the detection accuracy over time. HMMs can
be extended to model complex scenarios, such as multiple overlapping sound sources or
varying background noise. However, HMMs are not without limitations. They assume
stationarity, implying that the statistical properties of the signal remain constant over time,
which may not hold true in rapidly changing sound environments. The finite memory of
HMMs limits their ability to capture long-term dependencies in audio signals, particularly
in dynamic acoustic scenes. Sensitivity to model parameters and the quality of training
data pose challenges, and the computational complexity of the Viterbi decoding algorithm
may be demanding for large state spaces [85]. Another approach is the Gaussian Mixture
Model (GMM), which is commonly employed in sound event detection. GMMs model
the statistical distribution of audio features, allowing for the identification of complex
patterns and variations in sound [86]. These models, while highly valuable in speech
and music modeling due to specific techniques, such as state-tying of phonemes or left-
to-right topologies, may be less suited for general sound event detection. Sound events,
unlike speech or music, often lack similar elementary units, making the adaptability of
such models to diverse soundscapes a crucial consideration in sound event detection
applications. In [87], the authors proposed an approach based on MFCCs and underscored
that their algorithm detects events that have unique, identifiable characteristics, such as
clanking sounds or children’s voices, and its duration is not too short.

In [88], the authors focused on Support Vector Machines (SVM), which have proved
to be highly successful in a number of classification tasks recently. SVM is a classifier
that distinguishes data by establishing boundaries between classes, as opposed to esti-
mating class-conditional densities, and might require significantly less data to achieve
accurate classification compared to HMM and GMM. In [89], the authors’ feature extraction
module incorporates various audio features, such as perceptual linear predictive (PLP),
linear-frequency cepstral coefficients (LFCC), short-time energy (STE), sub-band energy
distribution, spectrum flux, brightness, bandwidth, and pitch. Support Vector Machines
learn optimal hyperplanes to minimize the structural risk, i.e., the probability of misclas-
sifying unseen patterns. This differs from traditional pattern recognition techniques that
focus on minimizing empirical risk on training data. SVM can be linear or nonlinear, with
the latter, kernel-based version suitable for handling complex feature distributions, as
seen in audio data where different classes may have overlapping areas. In this scenario,
the authors proposed the sliding-window classification module, which utilizes SVM to
classify short audio segments into five classes: speech, music, cheering, applause, and
others. A smoothing module is then applied to obtain the final detected results, employing
conventional smoothing rules.

Non-negative Matrix Factorization (NMF) offers an alternative approach in the realm
of signal processing and pattern recognition. In contrast to traditional methods, such as
generative probabilistic models, NMF introduces a distinctive strategy. In the context
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of detecting multiple labels simultaneously, NMF involves learning spectral templates
from isolated events. The process entails decomposing the test data into an activation
matrix through the application of NMF. Subsequently, the identification of relevant events
is achieved by applying a threshold to this activation matrix. This methodology provides
a unique perspective by leveraging matrix factorization techniques to extract meaningful
patterns and relationships within the data [90]. The authors of [91] claimed that their
approach is robust to the complexity of the audio data and to possible variability in event
classes. Compared to other methods, NMF excels in scenarios where the data exhibit
non-negative and sparse patterns, and interpretability is crucial.

While there are methods specifically designed for the direct detection of acoustic
sources, it is worth noting that neural networks excel in this field. Advanced machine
learning models demonstrate superior performance in processing intricate sound patterns.
With the ability to automatically extract relevant features from audio data, neural networks
can adapt to various acoustic conditions, leading to precise and highly accurate results in
acoustic source detection.

3.2. Artificial Intelligence Methods

In recent years, there has been significant development of artificial intelligence. It
has a wide range of applications, which results in its vast impact in many fields of sci-
ence. Acoustic detection and localization is also such a field. Unlike methods focused
on localization, which aim to directly determine the spatial coordinates of sound sources,
AI-based detection methods often involve pattern matching and analysis of learned features
to identify the presence or absence of specific sounds [92]. For this purpose, creating a
model capable of effectively learning these features is necessary. The strength of AI lays in
creating algorithms from datasets instead of mathematically describing the physics. The
purpose of this section is not to discuss the hyperparameters used, such as the number
of epochs, hidden layers, or perceptrons, the selection of which is, in most cases, based
on the trial-and-error method. Architectures will be analyzed in a progressive manner,
considering that networks within one category may incorporate layers from previously
discussed categories. This is due to the fact that contemporary neural networks often build
upon earlier architectures, necessitating the integration of various architectural elements
and the fine-tuning of associated hyperparameters.

In [93], the authors proposed using the Feed-Forward Neural Network (FFNN). A
Feed-Forward Neural Network is an artificial neural network where node connections do
not form a cycle. The opposite of a Feed-Forward Neural Network is a recursive neural
network, where specific paths are cyclical. The feed-forward model is the simplest form
of a neural network because the information is processed in only one direction. Although
data can pass through many hidden nodes, they always move in one direction and never
backwards [94]. The method proposed by the authors is trained with noise-free input data
and is based on energy use. The proposed approach aims to overcome the limitations of
traditional energy-based methods that can be affected by noise and reverberation. Therefore,
measurements of the energy of the sound signal at various points in space were selected
as input data. The authors conducted tests on a real dataset of acoustic signals recorded
in a large room. The results showed that the neural network approach is superior to
traditional energy-based methods regarding localization accuracy, especially in noise and
reverberation. In [95], they proposed using FFNN for TDoA data processing. As input,
the network takes TDoA measurements, based on which it estimates the localization of
the sound source. The authors trained it on a set of simulated TDoA measurements and
their corresponding localizations and then tested it on real data. The proposed method
was tested under adverse conditions, such as noisy or reverberant acoustic environments
and closely spaced sensors. The results showed that the neural network can accurately
locate sound sources, even in these harsh environments. As can be seen, the benefits of
machine learning appear in complex localization scenarios that challenge conventional
models [96,97].
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Convolutional Neural Networks (CNNs) are the most widely recognized deep learning
models (Figure 7). CNN is a deep learning algorithm that can take an input image, assign
weights to different objects in the image, and be able to distinguish one from another [98].
In [99], the authors proposed an approach based on the estimation of the DoA parameter.
The phase components of the Short-Time Fourier Transform (STFT) coefficients of the
received signals were adopted as input data, and the training consisted in learning the
features needed for DoA estimation. This method turned out to be effective in adapting
to unprecedented acoustic conditions. The authors proposed another interesting solution
in [100]. They proposed the use of phase maps to estimate the DoA parameter. In CNN-
based acoustic localization, a phase map visualizes the phase difference between two audio
signals a pair of microphones picked up. By calculating the phase difference between the
signals, it is possible to estimate the Direction of Arrival (DoA) of the sound source. The
phase map is often used as an input feature for a CNN, allowing the network to learn to
associate certain phase patterns with the direction of the sound source. Other interesting
solutions were proposed by the authors of [101,102], who used CNN to classify objects
based on spectrograms. A spectrogram is a visual representation of the frequency content
of an audio signal over time. By processing the spectrogram of the audio signal, CNN
can learn to recognize patterns in the frequency domain that correspond to specific objects
or sounds. Once trained, CNN can be used to classify new spectrograms it has not seen
before. The spectrogram is run through CNN, and the model outputs the probability
distributions for different classes of objects. The class with the highest probability is the
predicted class for the input spectrogram. This feature of Convolutional Neural Networks
makes them ideal for sound detection. In [103], the authors have used hybrid CNN and
random forest. The feature extraction involves Mel-log energies. The proposed method
shows superiority, with remarkable improvement in performance compared to the classic
random forest method.
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The Recurrent Neural Network (RNN) is a neural network used for analyzing se-
quence data, but it does not fully address the requirements of this domain, unlike the
CRNN—Convolutional Recurrent Neural Network. CRNNs meet the needs of a neural
network architecture that can handle sequential data while learning features from the data,
as CNNs can automatically. The authors of [105] proposed a method based on CRNN
capable of simultaneously localizing up to three sound sources. The CRNN architecture
is used to classify audio signals based on their Direction of Arrival (DoA). The network
is trained on a large dataset of simulated audio signals with multiple sound sources and
background noise conditions. The authors’ experimental results showed the proposed
approach’s effectiveness and suggested its potential in various applications. Other inter-
esting solutions were proposed in [106,107]. The authors focused on using Mel-Frequency
Cepstral Coefficients (MFCC) and Log-Mel-Spectrograms (LMS) as inputs to the network
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to capture the spectral and temporal characteristics of audio signals. Experimental results
showed that the proposed approach achieved high accuracy in detecting audio events and
their localization, even in background noise. A similar approach, using MFCC with CRNN,
was proposed in neural networks for sound source detection in [108]. However, together
with MFCC, the authors proposed the use of relative spectral-perceptual linear predic-
tion (RASTA-PLP). The authors indicated that using this approach resulted in significant
improvement, reaching an accuracy almost equal to 90%.

An additional network architecture to consider is the Residual Neural Network,
commonly known as ResNet. It was first introduced in [109]. It was designed in such
a way that it avoids the phenomenon of the vanishing gradient. This makes it harder
for the first layers of the model to learn essential features from the input data, leading
to slower convergence or even stagnation in training [110]. As seen in the literature, the
authors have proposed many solutions with ResNet networks in recent years. In [111], the
authors proposed an approach to sound source localization using a single microphone. The
network was trained on simulated data from a geometric sound propagation model in a
given environment. In turn, the authors of [112] proposed a solution using ResNet and
CNN (ResCNN). The authors used Squeeze-Excitation (SE) blocks to recalibrate feature
maps. The modules were designed to improve the modeling of interdependencies between
input feature channels compared to classic convolutional layers. Additionally, a noteworthy
example of utilizing the ResNet architecture was presented in [113]. This solution combines
Residual Networks with a channel attention module to enhance the efficiency of time–
frequency information utilization. The residual network extracts input features, which are
then weighted using the attention module. This novel approach demonstrates remarkable
results when compared to popular baseline architectures based on Convolutional Recurrent
Neural Networks and other improved models. It outperforms them in terms of localization
accuracy and error, achieving an impressive average accuracy of nearly 98%.

The transformer [114] architecture stands as one of the most widely recognized and
influential developments in the realm of artificial intelligence. Originally designed for
natural language-processing tasks, transformers have since found applications in various
domains, including sound source localization.

In the context of sound source localization, transformers offer a unique and effective
approach. They excel in processing sequences of data, making them well suited for tasks
that involve analyzing audio signals over time. By leveraging their self-attention mecha-
nisms and deep neural networks, transformers can accurately pinpoint the origin of sound
sources within an environment. In [115], the author introduced a novel model, called the
Binaural Audio Spectrogram Transformer (BAST), for sound azimuth prediction in both
anechoic and reverberant environments. The author’s approach was employed to surpass
CNN-based models, as CNNs exhibited limitations in capturing global acoustic features.
The Transformer model, with its attention mechanism, overcomes this limitation. In this
solution, the author has used three transformer encoders. The model is shown in Figure 8.

A dual-input hierarchical architecture is utilized to simulate the human subcortical
auditory pathway. The spectrogram is initially divided into overlapping patches, which
help capture more context from input data. Each patch undergoes a linear projection to
transform its features to learn appropriate representations for each patch. The resulting
linearly projected patches are then embedded into a vector space, and position embeddings
are added to capture temporal relationships of the spectrogram in the Transformer. These
embeddings are fed into a transformer encoder, which employs multi-head attention to
capture both local and global dependencies within the spectrogram data. Following the
transformer encoder, there is an interaural integration step, where two instances of the
aforementioned architecture process the left and right channel spectrograms independently.
The outputs from the two channels are integrated and fed into another transformer encoder
to process the features together to produce the final results as sound localization coordinates.
Results show that the attention-based model leads to significant azimuth improvement
compared to CNN-based methods. Another interesting approach was used for robotics’
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sound source localization in [116]. The authors used Generalized Cross-Correlation with
Phase Transform and Speech Mask (GCC-PHAT-SM) as an input feature, which significantly
outperformed the traditional GCC feature in noisy and reverberant acoustic environments.
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An encoder–decoder network comprises two key components: an encoder that takes
input features and produces a distinct representation of the input data, and a decoder
that converts this encoded data into the desired output information. This architectural
concept has been extensively studied in the field of deep learning and finds applications
in various domains, including sound source localization. The authors of [117] proposed
a method based on Autoencoders (AE). In their method, they employed a group of AEs,
with each AE dedicated to reproducing the input signal from a specific candidate source
localization within a multichannel environment. As each channel contains common latent
information, representing the signal, individual encoders effectively separate the signal
from their respective microphones. If the source indeed resides at the assumed localization,
these estimated signals should closely resemble each other. Consequently, the localization
process relies on identifying the AE with the most consistent latent representation. Another
interesting approach was suggested involving the use of an encoder network followed by
two decoders [118]. The encoder acquires a compact representation of the input likelihoods.
Subsequently, one of the decoders addresses the multipath effects induced by reverberation,
while the other decoder is responsible for estimating the source’s localization. Variational
Autoencoders (VAEs), which can also be found in the literature [119,120], have gained
recognition for their applications in sound source localization. In contrast to a traditional
AE, a VAE not only learns to reconstruct data at the output of the decoder but also models
the probability distribution of the latent vector, located at the bottleneck layer. The authors
introduced a method involving the creation of a Variational Autoencoder (VAE) that
incorporated convolutional layers. This VAE was specifically trained to generate the phase
information of inter-microphones. In parallel, a sophisticated classifier was developed to
estimate the Direction of Arrival using the generated phase data. What sets this approach
apart is its remarkable performance, particularly in situations where labeled data are
limited. It significantly outperformed conventional techniques, such as SRP-PHAT and
Convolutional Neural Networks.

Within the realm of literature, one can discover hybrid neural network approaches that
seamlessly integrate both sound and visual representations. These approaches frequently
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involve the utilization of two distinct networks, each tailored to handle specific modalities.
One network is typically dedicated to processing audio data, while the other specializes
in visual information. One of those methods is proposed in [121] and is named SSLNet.
The input data are a pair of sound and image. The sound signal is a 1D raw waveform
and the image is a single frame taken from the video. Then, both are processed to a 2D
spectrogram before they are fed to the neural networks. Another interesting architecture
was proposed in [122] for detecting sound source objects by autonomous robots. This
approach enables to distinguish multiple sound source objects and localize them in images
with the use of 360-degree visual data and multichannel audio signals. The authors asserted
that their algorithm successfully identified each individual and determined whether they
were speaking.

It can be seen that the methods of sound source detection and localization based on
artificial intelligence focus their attention on improving the results possible to obtain using
classic methods. The authors use different types of networks, trying to choose the suitable
model through trial and error. Nevertheless, a decrease in network performance can be
observed when a network trained on training data is evaluated on test data. This is a well-
known effect of deep learning due to the inability to generalize when there is a significant
mismatch between test and training data. This problem is particularly important in sound
source detection and localization, where developing large, labeled, and reliable datasets is
difficult. Nevertheless, most authors claim that they obtained good results, which means
that neural networks are a powerful and flexible tool for detecting and localizing sound
sources, offering high performance and adaptability.

One of the remarkable advantages of AI solutions over classic algorithms in the
realm of acoustic detection and localization lies in their ability to continuously learn and
improve over time through the acquisition of new data. Unlike static classic algorithms
that often rely on predefined rules and fixed parameters, AI models, particularly those
employing machine learning and neural networks, can adapt and refine their performance
as they receive additional data. This capability enables AI-powered systems to dynamically
adjust to changing acoustic environments, account for variations, and learn from real-
world scenarios, leading to enhanced accuracy and robustness in acoustic detection and
localization tasks.

It can be seen that many different neural networks are used for sound source localiza-
tion; however, for sound source detection, CNN, RNN, and hybrid approaches are the most
widely used. This is due to their better performance in extracting features in spectrograms
compared to other neural networks [123].

4. Acoustic Source Detection and Localization Applications

The purpose of this section is to present the applications of detection and localization
of acoustic signal sources. The division will be carried out for military and civilian applica-
tions. In Tables 1 and 2, we will present the implementations and reviews for a given topic
described in the literature in recent years and define what methods were used for practical
implementation. The results encompass accuracy of detection, distance, and direction,
presented in varying formats depending on the authors—either as percentages, degrees,
or units of length measurement. An exception arises in the context of videoconferencing
and visual scenes, where Consensus Intersection over Union (cIoU) and Area Under the
Curve (AUC) are employed. cIoU stands out as a popular metric for evaluating localization
accuracy and computing localization error in object detection models, while AUC evaluates
discrimination performance, particularly in discerning sound source directions or local-
izations. In certain instances, no results are available because the authors did not furnish
precise outcomes but instead presented the architecture.
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Table 1. Military acoustic source detection and localization applications. The tilde (~) is used to
signify that the mentioned values are approximate.

Application Reference
Number

Year Method
Accuracy

Detection Distance Direction

Gunshot

[124] 2022 DNN 93.84% 91.5% 93.1%

[49] 2022 Extreme Machine Learning
(EML) - 99.95% -

[125] 2022 CNN ~90% - -
[126] 2015 TDoA - - -

UAV

[127] 2023 - - - 1.47◦

[128] 2021 DNN 94.7% - -
[129] 2021 NN 92.63% - -

[130] 2020 Concurrent Neural
Network (CoNN) 96.3% - -

[131] 2019 SRP-PHAT - - -

Aircraft
[132] 2021 SE-MUSIC - - -
[133] 2016 TDoA + DoA - - -

Underwater

[134] 2023 DNN - 0.13 m -
[135] 2022 TDoA - - ~18◦

[136] 2022 TDoA + ToA + ML 96.4% - -
[137] 2022 DoA - - -
[138] 2020 STDoA - 4.92 m -
[139] 2019 GCC-PHAT + TDoA - 0.5~2 m -
[140] 2019 TDoA - - -
[141] 2018 Beamforming - ~1 m -

Table 2. Civil acoustic source detection and localization applications. The tilde (~) is used to signify
that the mentioned values are approximate, while (≤) stand for less or equal.

Application Reference
Number Year Method

Accuracy
Detection Distance Direction

Robotics

[142] 2022 DNN - 97% 97%
[122] 2020 DNN 85% - -
[143] 2019 TDoA - ≤0.24 m ≤1.5◦

[144] 2015 DoA - ≤0.07 m ≤1.15◦

Healthcare [32] 2018 Beamforming - - -

Pipeline leak [145] 2022 TDoA - 95.7% -
[146] 2020 TDoA - 92.68% -

Leaks [147] 2018 MUSIC - - ≤2.5◦

IoT
[148] 2022 CNN ~90% - -
[149] 2020 DoA - - -
[15] 2019 SRP-PHAT - - -

Partial discharge [150] 2018 TDoA - 97.27% -
[151] 2017 TDoA - ≤1.5 cm -

Underground
(earthquake) [152] 2019 SRP-PHAT - ~0.77 m -

Underwater
measurements [153] 2019 - - - ~30◦
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Table 2. Cont.

Application Reference
Number Year Method

Accuracy
Detection Distance Direction

Wildlife
[154] 2021 TDoA - - -
[155] 2020 Overview (ToA/TDoA/DoA) - - -

Videoconferencing/
Visual scenes

[156] 2022 DNN cIoU (77), AUC (60.5)
[121] 2022 DNN (SSLNET) cIoU (85), AUC (78)
[84] 2021 ODB-SRP-PHAT ~95% - -

[157] 2018 DNN cIoU (75.2), AUC (57.2)
[158] 2010 SRP-PHAT - - -

Sport [159] 2019 Beamforming (DSBF) - ≤3 cm -

Disaster victims [12] 2020 GCC-PHAT - - ≤2◦

Authentication [160] 2023 TDOA ~99% - -

Hearing aid devices [161] 2016 SVD - - ≤3◦

Multimedia
surveillance

[162] 2018 Gaussian filter + TDOA - - -
[8] 2014 TDOA, SRP-PHAT - - -

Noise monitoring [163] 2022 TDoA - ≤0.5 m -
[164] 2020 Beamforming - - -

It should be taken into account that the number of methods is vast, so only some
methods are described in this work. These tables can be handy for quickly finding methods
for particular applications.

The tables above show examples from the literature where sound source detection and
localization methods were used. Most of the classic methods were used. Nevertheless, there
is a tendency in the literature to propose new methods without specifying their applications.
In many cases, the authors also list many solutions where the proposed methods can be
used. Therefore, it does not mean that classic methods, to such a large extent, displace
methods based on artificial intelligence. Authors have mentioned solutions that build
upon the methods explained in the third section. One such approach, as detailed in [84], is
referred to as ODB-SRP-PHAT. This method introduces an Offline Database as an innovative
element. The main idea behind it is to determine potential sound source localizations
using SRP-PHAT and density peak clustering before conducting real-time sound source
localization. These identified localizations are then stored in the Offline Database (ODB).
When it comes to real-time localization, only the power values of the localizations stored in
the ODB are calculated. This significantly reduces the computational load, making it highly
beneficial for tasks such as real-time speaker localization in video conferences. Another
illustration involves the application of a Gaussian filter, which enhanced both the precision
and reliability of the results. The authors assert that this approach demonstrated a notable
enhancement compared to the state-of-the-art TDOA-based algorithm. In [132], the authors
presented an extension of the MUSIC algorithm incorporating sub-band extraction. This
extension involves identifying sub-bands associated with characteristic frequency points
and subsequently conducting Direction of Arrival estimation. The experiments conducted
in this study demonstrated that the SE-MUSIC method offers reduced computational
complexity and a nearly halved operation time in comparison to the traditional MUSIC
algorithm, while providing a better resolution performance.

It may also be noticed that more civilian uses are listed. However, it should be
mentioned that finding solutions for military applications in the literature was easier. Areas
such as shot source localization, UAV, and underwater detection are popular. Although
some applications have been assigned to military applications, it is certainly possible to
use them in civil applications, e.g., underwater localization of objects. Conversely, civilian
applications can also find military applications.
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5. Future Directions and Trends

Artificial intelligence continues to revolutionize the field of acoustic detection and
localization methods, standing at the forefront of technological advancements. The rapid
pace of innovation has led to the constant emergence of novel models and the enhancement
of existing ones. These efforts are fueled by the recognition that conventional approaches
relying on physical phenomena, while well documented in the literature, often exhibit limi-
tations when applied to diverse applications. As a result, the drive to push the boundaries
of AI-powered solutions remains unwavering. Reinforcement learning, in particular, has
garnered significant attention and adoption in recent years, solidifying its position as a cor-
nerstone of contemporary machine learning methodologies alongside the more established
realms of supervised and unsupervised learning [165]. The principle of reinforcement
learning is shown in the Figure 9.
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In reinforcement learning [166], agents are trained on a reward-and-punishment basis.
The agent sends an action to the environment, and the environment sends an observation
as a reward or punishment. Observation is nothing but the internal state of the environ-
ment. Correct moves result in the agent receiving a reward, and incorrect moves result
in a punishment. In this way, the agent tries to minimize the number of incorrect moves
and maximize the number of correct ones. Thus, reinforcement learning can be used when
a clear reward can be identified. This is a common technique for learning deep neural
networks where access to training data is limited or impossible to obtain. An example is
robotics, where this type of learning task can be applied as the human teacher is unable to
demonstrate the task to be taught due to the lack of analytical formulation available [167].
Today, reinforcement learning is used in many fields, such as computer games, robotics,
healthcare, and autonomous cars [168]. Sound source localization, however, presents a
unique challenge in this context, as the development of a suitable environment for this spe-
cific application. While existing environments for reinforcement learning have successfully
simulated visual and physical scenarios, the intricacies of sound propagation, reflection,
and absorption introduce a level of complexity. Creating a realistic learning environment
involves also incorporating variables such as room acoustics, material properties, and
interference from other sound sources. Algorithms based on this approach may appear, but
this requires creating an appropriate learning environment that allows mapping conditions
close to real, including all related physical phenomena.

In the realm of acoustic source localization and detection, it is crucial to acknowledge
that while reinforcement learning stands as a powerful tool for enhancing results, it does
not monopolize the path to progress. This field is in a constant state of evolution, with
ongoing development of novel models and approaches that continually redefine the state-
of-the-art. Moreover, the growth of larger and more diverse datasets plays a pivotal role in
propelling machine learning techniques to new heights in this domain. These expansive
datasets empower models to adapt to an increasingly wide array of real-world scenarios.
Furthermore, as the influx of extensive and varied datasets continues, machine learning
algorithms not only gain the ability to adapt to an ever-expanding range of real-world
scenarios but also enhance their predictive accuracy and robustness.
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6. Conclusions

The primary objective of this submitted work was to comprehensively delve into the
techniques of sound source detection and acoustic localization, elucidating their diverse
applications across both military and civil domains. The paper initially focused on classify-
ing the methods employed in this realm by reviewing existing literature. Subsequently, it
delved into a detailed exposition of contemporary methodologies that have gained promi-
nence recently. Notably, the study underscored the broad expanse of sectors to which these
sound detection and localization methods are relevant, illuminating their impact on many
domains. The authors have highlighted the remarkable strides in artificial intelligence
over the past few years, elucidating its pivotal role in propelling advancements within
acoustic detection and localization algorithms. The burgeoning popularity of this subject is
palpable through the voluminous body of literature dedicated to these emerging methods,
attesting to the critical significance of this branch of knowledge. Nonetheless, despite the
notable progress, the work appropriately pointed out the pressing need for further research
to refine these algorithms’ precision and reliability. The quest for newer, more accurate
methods is imperative, underscoring this field’s evolving nature and continual thirst for
innovation.

In essence, this study contributes substantively to understanding sound source de-
tection and acoustic localization methods, contextualizing their applications, highlighting
technological advancements driven by artificial intelligence, and advocating for sustained
research efforts to augment their efficacy.
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95. Kovandžić, M.; Nikolić, V.; Al-Noori, A.; Ćirić, I.; Simonović, M. Near Field Acoustic Localization under Unfavorable Conditions
Using Feedforward Neural Network for Processing Time Difference of Arrival. Expert. Syst. Appl. 2017, 71, 138–146. [CrossRef]

96. Chi, J.; Li, X.; Wang, H.; Gao, D.; Gerstoft, P. Sound Source Ranging Using a Feed-Forward Neural Network Trained with
Fitting-Based Early Stopping. J. Acoust. Soc. Am. 2019, 146, EL258–EL264. [CrossRef] [PubMed]

97. Hahmann, M.; Fernandez-Grande, E.; Gunawan, H.; Gerstoft, P. Sound Source Localization Using Multiple Ad Hoc Distributed
Microphone Arrays. JASA Express Lett. 2022, 2, 074801. [CrossRef]

98. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional Neural Networks: An Overview and Application in Radiology.
Insights Imaging 2018, 9, 611–629. [CrossRef]

99. Chakrabarty, S.; Habets, E.A.P. Multi-Speaker DOA Estimation Using Deep Convolutional Networks Trained With Noise Signals.
IEEE J. Sel. Top. Signal Process. 2019, 13, 8–21. [CrossRef]

100. Chakrabarty, S.; Habets, E.A.P. Broadband DOA Estimation Using Convolutional Neural Networks Trained with Noise Signals.
In Proceedings of the 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz,
NY, USA, 15–18 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 136–140.

101. Xu, C. Spatial Stereo Sound Source Localization Optimization and CNN Based Source Feature Recognition. Master’s Thesis,
University of South Florida, Tampa, FL, USA, 2020.

102. Cabrera-Ponce, A.A.; Martinez-Carranza, J.; Rascon, C. Detection of Nearby UAVs Using CNN and Spectrograms. In Proceedings
of the International Micro Air Vehicle Conference and Competition (IMAV), Madrid, Spain, 30 September–4 October 2019.

103. Md Afendi, M.A.S.; Yusoff, M. A Sound Event Detection Based on Hybrid Convolution Neural Network and Random Forest.
IJ-AI 2022, 11, 121. [CrossRef]

104. Yalta, N.; Nakadai, K.; Ogata, T.; Intermedia Art and Science Department, Waseda University; Honda Research Institute Japan
Co., Ltd. Sound Source Localization Using Deep Learning Models. J. Robot. Mechatron. 2017, 29, 37–48. [CrossRef]

105. Grumiaux, P.-A.; Kitic, S.; Girin, L.; Guérin, A. Improved Feature Extraction for CRNN-Based Multiple Sound Source Localization.
In Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021.

106. Suruthhi, V.S.; Smita, V.; John, R.G.; Ramachandran, K. Detection and Localization of Audio Event for Home Surveillance Using
CRNN. Int. J. Electron. Telecommun. 2023, 67, 735–741. [CrossRef]

107. Yiwere, M.; Rhee, E.J. Sound Source Distance Estimation Using Deep Learning: An Image Classification Approach. Sensors 2019,
20, 172. [CrossRef] [PubMed]

108. Khan, M.S.; Shah, M.; Khan, A.; Aldweesh, A.; Ali, M.; Tag Eldin, E.; Ishaq, W.; Hussain, L. Improved Multi-Model Classification
Technique for Sound Event Detection in Urban Environments. Appl. Sci. 2022, 12, 9907. [CrossRef]

109. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

110. Residual Neural Network (ResNet). Available online: https://iq.opengenus.org/residual-neural-networks/ (accessed on 3
November 2023).

111. Kujawski, A.; Herold, G.; Sarradj, E. A Deep Learning Method for Grid-Free Localization and Quantification of Sound Sources. J.
Acoust. Soc. Am. 2019, 146, EL225–EL231. [CrossRef] [PubMed]

112. Naranjo-Alcazar, J.; Perez-Castanos, S.; Ferrandis, J.; Zuccarello, P.; Cobos, M. Sound Event Localization and Detection Using
Squeeze-Excitation Residual CNNs. arXiv 2021, arXiv:2006.14436v3.

113. Hu, F.; Song, X.; He, R.; Yu, Y. Sound Source Localization Based on Residual Network and Channel Attention Module. Sci. Rep.
2023, 13, 5443. [CrossRef]

114. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.
arXiv 2023, arXiv:1706.03762v7.

115. Kuang, S.; van der Heijden, K.; Mehrkanoon, S. BAST: Binaural Audio Spectrogram Transformer for Binaural Sound Localization.
arXiv 2022, arXiv:2207.03927v1.

https://doi.org/10.3390/s18103418
https://www.ncbi.nlm.nih.gov/pubmed/30322007
https://doi.org/10.3390/jsan10020029
https://www.turing.com/kb/mathematical-formulation-of-feed-forward-neural-network
https://www.turing.com/kb/mathematical-formulation-of-feed-forward-neural-network
https://doi.org/10.1016/j.eswa.2016.11.030
https://doi.org/10.1121/1.5126115
https://www.ncbi.nlm.nih.gov/pubmed/31590517
https://doi.org/10.1121/10.0011811
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1109/JSTSP.2019.2901664
https://doi.org/10.11591/ijai.v11.i1.pp121-128
https://doi.org/10.20965/jrm.2017.p0037
https://doi.org/10.24425/ijet.2021.139771
https://doi.org/10.3390/s20010172
https://www.ncbi.nlm.nih.gov/pubmed/31892213
https://doi.org/10.3390/app12199907
https://iq.opengenus.org/residual-neural-networks/
https://doi.org/10.1121/1.5126020
https://www.ncbi.nlm.nih.gov/pubmed/31590523
https://doi.org/10.1038/s41598-023-32657-7


Sensors 2024, 24, 68 23 of 25

116. Wang, J.; Qian, X.; Pan, Z.; Zhang, M.; Li, H. GCC-PHAT with Speech-Oriented Attention for Robotic Sound Source Localization.
In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 5876–5883.

117. Huang, Y.; Wu, X.; Qu, T. A Time-Domain Unsupervised Learning Based Sound Source Localization Method. In Proceedings of
the 2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP), Shanghai, China,
12–15 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 26–32.

118. Wu, Y.; Ayyalasomayajula, R.; Bianco, M.J.; Bharadia, D.; Gerstoft, P. SSLIDE: Sound Source Localization for Indoors Based
on Deep Learning. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Toronto, ON, Canada, 6–11 June 6 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4680–4684.

119. Bianco, M.J.; Gannot, S.; Gerstoft, P. Semi-Supervised Source Localization with Deep Generative Modeling. In Proceedings of the
2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP), Espoo, Finland, 21–24 September
2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.

120. Bianco, M.J.; Gannot, S.; Fernandez-Grande, E.; Gerstoft, P. Semi-Supervised Source Localization in Reverberant Environments
With Deep Generative Modeling. IEEE Access 2021, 9, 84956–84970. [CrossRef]

121. Feng, F.; Ming, Y.; Hu, N. SSLNet: A Network for Cross-Modal Sound Source Localization in Visual Scenes. Neurocomputing 2022,
500, 1052–1062. [CrossRef]

122. Masuyama, Y.; Bando, Y.; Yatabe, K.; Sasaki, Y.; Onishi, M.; Oikawa, Y. Self-Supervised Neural Audio-Visual Sound Source
Localization via Probabilistic Spatial Modeling. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2020, Las Vegas, NV, USA, 25–29 October 2020.

123. Kwak, J.-Y.; Chung, Y.-J. Sound Event Detection Using Derivative Features in Deep Neural Networks. Appl. Sci. 2020, 10, 4911.
[CrossRef]

124. Park, J.; Cho, Y.; Sim, G.; Lee, H.; Choo, J. Enemy Spotted: In-Game Gun Sound Dataset for Gunshot Classification and
Localization. In Proceedings of the 2022 IEEE Conference on Games (CoG), Beijing, China, 21–24 August 2022; IEEE: Piscataway,
NJ, USA, 2022; pp. 56–63.

125. Raponi, S.; Oligeri, G.; Ali, I.M. Sound of Guns: Digital Forensics of Gun Audio Samples Meets Artificial Intelligence. Multimed.
Tools Appl. 2022, 81, 30387–30412. [CrossRef]

126. Damarla, T. Detection of Gunshots Using Microphone Array Mounted on a Moving Platform. In Proceedings of the 2015 IEEE
SENSORS, Busan, Republic of Korea, 1–4 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–4.

127. Fang, J.; Li, Y.; Ji, P.N.; Wang, T. Drone Detection and Localization Using Enhanced Fiber-Optic Acoustic Sensor and Distributed
Acoustic Sensing Technology. J. Light. Technol. 2023, 41, 822–831. [CrossRef]

128. Casabianca, P.; Zhang, Y. Acoustic-Based UAV Detection Using Late Fusion of Deep Neural Networks. Drones 2021, 5, 54.
[CrossRef]

129. Ohlenbusch, M.; Ahrens, A.; Rollwage, C.; Bitzer, J. Robust Drone Detection for Acoustic Monitoring Applications. In Proceedings
of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January 2021; IEEE:
Piscataway, NJ, USA, 2019; pp. 6–10.

130. Dumitrescu, C.; Minea, M.; Costea, I.M.; Cosmin Chiva, I.; Semenescu, A. Development of an Acoustic System for UAV Detection.
Sensors 2020, 20, 4870. [CrossRef]

131. Jin, H. Design of UAV Detection Scheme Based on Passive Acoustic Detection. IOP Conf. Ser. Mater. Sci. Eng. 2019, 563, 042085.
[CrossRef]

132. Zhu, J.; Cheng, R.; Li, J.; Tian, Y.; Zhang, Y. Sound Source Location for Low-Altitude Aircraft Based on Sub-Band Extraction.
MATEC Web Conf. 2021, 336, 01004. [CrossRef]

133. Passive Acoustic System for Tracking Low-flying Aircraft—Sedunov—2016—IET Radar, Sonar & Navigation—Wiley Online Library.
Available online: https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-rsn.2016.0159 (accessed on 3 November 2023).

134. Lin, B.-J.; Guan, P.-C.; Chang, H.-T.; Hsiao, H.-W.; Lin, J.-H. Application of a Deep Neural Network for Acoustic Source
Localization Inside a Cavitation Tunnel. J. Mar. Sci. Eng. 2023, 11, 773. [CrossRef]

135. Hung, C.-T.; Zhang, Y.-C.; Chen, C.-F. Autonomous Underwater Acoustic Localization through Multiple Unmanned Surface
Vehicle. In Proceedings of the OCEANS 2022, Hampton Roads, VA, USA, 17–20 October 2022; IEEE: Piscataway, NJ, USA, 2022;
pp. 1–5.

136. Sun, S.; Liu, T.; Wang, Y.; Zhang, G.; Liu, K.; Wang, Y. High-Rate Underwater Acoustic Localization Based on the Decision Tree.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 3127919. [CrossRef]

137. Tian, T.; Xiao, J.; Sun, H.; Feng, X. Underwater Acoustic Source Localization via an Improved Triangular Method. In Proceedings
of the 2022 14th International Conference on Communication Software and Networks (ICCSN), Chongqing, China, 10–12 June
2022; IEEE: Piscataway, NJ, USA, 2022; pp. 174–181.

138. Sun, S.; Zhang, X.; Zheng, C.; Fu, J.; Zhao, C. Underwater Acoustical Localization of the Black Box Utilizing Single Autonomous
Underwater Vehicle Based on the Second-Order Time Difference of Arrival. IEEE J. Ocean. Eng. 2020, 45, 1268–1279. [CrossRef]

139. Sun, X.; Li, N.; Liu, X. Three-Dimensional Passive Localization Method for Underwater Target Using Regular Triangular Array. In
Proceedings of the 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA), Harbin, China,
11–14 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7.

https://doi.org/10.1109/ACCESS.2021.3087697
https://doi.org/10.1016/j.neucom.2022.05.098
https://doi.org/10.3390/app10144911
https://doi.org/10.1007/s11042-022-12612-w
https://doi.org/10.1109/JLT.2022.3208451
https://doi.org/10.3390/drones5030054
https://doi.org/10.3390/s20174870
https://doi.org/10.1088/1757-899X/563/4/042085
https://doi.org/10.1051/matecconf/202133601004
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-rsn.2016.0159
https://doi.org/10.3390/jmse11040773
https://doi.org/10.1109/TGRS.2021.3127919
https://doi.org/10.1109/JOE.2019.2950954


Sensors 2024, 24, 68 24 of 25

140. Jiang, F.; Zhang, Z.; Sabahi, M.F. An Acoustic Source Localization Algorithm Based on Maximum or Minimum Value Screening in
Deep Sea Multipath Environment. In Proceedings of the 2019 IEEE Canadian Conference of Electrical and Computer Engineering
(CCECE), Edmonton, AB, Canada, 5–8 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4.

141. Oudompheng, B.; Nicolas, B.; Lamotte, L. Localization and Contribution of Underwater Acoustical Sources of a Moving Surface
Ship. IEEE J. Ocean. Eng. 2018, 43, 536–546. [CrossRef]

142. Boztas, G. Sound Source Localization for Auditory Perception of a Humanoid Robot Using Deep Neural Networks. Neural
Comput. Applic 2023, 35, 6801–6811. [CrossRef]

143. Chen, G.; Xu, Y. A Sound Source Localization Device Based on Rectangular Pyramid Structure for Mobile Robot. J. Sens. 2019,
2019, 4639850. [CrossRef]

144. Ogiso, S.; Kawagishi, T.; Mizutani, K.; Wakatsuki, N.; Zempo, K. Self-Localization Method for Mobile Robot Using Acoustic
Beacons. Robomech J. 2015, 2, 12. [CrossRef]

145. Kousiopoulos, G.-P.; Kampelopoulos, D.; Karagiorgos, N.; Papastavrou, G.-N.; Konstantakos, V.; Nikolaidis, S. Acoustic Leak
Localization Method for Pipelines in High-Noise Environment Using Time-Frequency Signal Segmentation. IEEE Trans. Instrum.
Meas. 2022, 71, 9600211. [CrossRef]

146. Xu, C.; Du, S.; Gong, P.; Li, Z.; Chen, G.; Song, G. An Improved Method for Pipeline Leakage Localization With a Single Sensor
Based on Modal Acoustic Emission and Empirical Mode Decomposition With Hilbert Transform. IEEE Sens. J. 2020, 20, 5480–5491.
[CrossRef]

147. Yan, Y.; Shen, Y.; Cui, X.; Hu, Y. Localization of Multiple Leak Sources Using Acoustic Emission Sensors Based on MUSIC
Algorithm and Wavelet Packet Analysis. IEEE Sens. J. 2018, 18, 9812–9820. [CrossRef]

148. Ko, J.; Kim, H.; Kim, J. Real-Time Sound Source Localization for Low-Power IoT Devices Based on Multi-Stream CNN. Sensors
2022, 22, 4650. [CrossRef]

149. Fabregat, G.; Belloch, J.A.; Badia, J.M.; Cobos, M. Design and Implementation of Acoustic Source Localization on a Low-Cost IoT
Edge Platform. IEEE Trans. Circuits Syst. II 2020, 67, 3547–3551. [CrossRef]

150. Antony, D.; Punekar, G.S. Noniterative Method for Combined Acoustic-Electrical Partial Discharge Source Localization. IEEE
Trans. Power Deliv. 2018, 33, 1679–1688. [CrossRef]

151. Ghosh, R.; Chatterjee, B.; Dalai, S. A Method for the Localization of Partial Discharge Sources Using Partial Discharge Pulse
Information from Acoustic Emissions. IEEE Trans. Dielect. Electr. Insul. 2017, 24, 237–245. [CrossRef]

152. Nie, P.; Liu, B.; Chen, P.; Li, K.; Han, Y. SRP-PHAR Combined Velocity Scanning for Locating the Shallow Underground Acoustic
Source. IEEE Access 2019, 7, 161350–161362. [CrossRef]

153. Jiang, C.; Li, J.; Xu, W. The Use of Underwater Gliders as Acoustic Sensing Platforms. Appl. Sci. 2019, 9, 4839. [CrossRef]
154. Verreycken, E.; Simon, R.; Quirk-Royal, B.; Daems, W.; Barber, J.; Steckel, J. Bio-Acoustic Tracking and Localization Using

Heterogeneous, Scalable Microphone Arrays. Commun. Biol. 2021, 4, 1275. [CrossRef] [PubMed]
155. Rhinehart, T.A.; Chronister, L.M.; Devlin, T.; Kitzes, J. Acoustic Localization of Terrestrial Wildlife: Current Practices and Future

Opportunities. Ecol. Evol. 2020, 10, 6794–6818. [CrossRef] [PubMed]
156. Song, Z.; Wang, Y.; Fan, J.; Tan, T.; Zhang, Z. Self-Supervised Predictive Learning: A Negative-Free Method for Sound Source

Localization in Visual Scenes 2022. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
New Orleans, LA, USA, 18–24 June 2022.

157. Senocak, A.; Oh, T.-H.; Kim, J.; Yang, M.-H.; Kweon, I.S. Learning to Localize Sound Source in Visual Scenes. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018.

158. Guerola, M.; Serrano, C. Real-Time Sound Source Localization in Videoconferencing Environments. Master’s Thesis, Universitat
Politècnica de València, Valencia, Spain, 2010.

159. Seo, S.-W.; Yun, S.; Kim, M.-G.; Sung, M.; Kim, Y. Screen-Based Sports Simulation Using Acoustic Source Localization. Appl. Sci.
2019, 9, 2970. [CrossRef]

160. Zhang, L.; Tan, S.; Chen, Y.; Yang, J. A Phoneme Localization Based Liveness Detection for Text-Independent Speaker Verification.
IEEE Trans. Mob. Comput. 2023, 22, 5611–5624. [CrossRef]

161. Ganguly, A.; Reddy, C.; Hao, Y.; Panahi, I. Improving Sound Localization for Hearing Aid Devices Using Smartphone Assisted
Technology. In Proceedings of the 2016 IEEE International Workshop on Signal Processing Systems (SiPS), Dallas, TX, USA, 26–28
October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 165–170.

162. Zhu, M.; Yao, H.; Wu, X.; Lu, Z.; Zhu, X.; Huang, Q. Gaussian Filter for TDOA Based Sound Source Localization in Multimedia
Surveillance. Multimed. Tools Appl. 2018, 77, 3369–3385. [CrossRef]

163. Kim, I.-C.; Kim, Y.-J.; Chin, S.-Y. Sound Localization Framework for Construction Site Monitoring. Appl. Sci. 2022, 12, 10783.
[CrossRef]
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