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Abstract: The stator current in an induction motor contains a large amount of information, which is
unrelated to bearing faults. This information is considered as the noise component for the detection
of bearing faults. When there is noise information in the current signal, it can affect the detection
of motor bearing faults and lead to the possibility of false alarms. Therefore, to accomplish an
effective bearing fault detection, all or some of these noise components must be properly eliminated.
This paper proposes the use of fractional linear prediction (FLP) as a noise elimination method in
bearing fault diagnosis, which makes these noise components the predictable components and this
bearing fault information the unpredictable components. The basis of the FLP is to eliminate noise
components in the current signal by predicting predictable components through linear prediction
theory and optimal prediction order. Meanwhile, this paper adopts the FLP model with limited
memory samples. After determining the optimal number of memories, only the fractional derivative
order parameter needs to be optimized, which greatly reduces the computational complexity and
difficulty in parameter optimization. In addition, this paper uses spectral analysis of the current
signals through experimental simulation to compare the FLP method with the linear prediction
(LP) method and the time-shifting (TS) method that have been successfully applied to bearing fault
diagnosis. Based on the analysis results, the FLP method can better extract fault features and achieve
better bearing fault diagnosis results, verifying the effectiveness and superiority of the FLP method
in the field of bearing fault diagnosis. Additionally, the predictive performance of thevFLP and LP
was compared based on experimental data, verifying the advantages of the FLP method in predictive
performance, indicating that this method has a better noise cancellation effect.

Keywords: fractional linear prediction (FLP); linear prediction (LP); time-shifting (TS); bearing fault
detection; spectrum analysis

1. Introduction

As significant energy conversion equipment, induction motors (IMs) are widely ap-
plied in agriculture, industry, and other fields. To guarantee the continuity of production
and reduce the system’s maintenance costs, the health and stability of IMs are becoming
increasingly important [1]. At present, the failure of the IM is the biggest factor for health
and stability. Among the various fault types of the motor, there are bearing faults, stator
winding faults, rotor faults, and others [2,3]. The majority (45–55%) of motor failures are
related to bearings, including generalized roughness and single-point bearing faults [4,5].
When the bearing failure occurs, the damage to the bearing increases over time, which
results in the motor being unable to operate properly [6]. Therefore, early bearing fault
diagnosis is crucial for unnecessary downtime, reducing costs, and improving efficiency,
and it has gradually become a research hotspot in the industry and academia [7,8].

Currently, the bearing failure diagnosis mostly employs vibration signal analysis,
because the vibration signals are non-invasive and can detect motor faults without shutting
down the unit [9]. Nevertheless, this method incurs additional investment costs and
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maintenance efforts with additional vibration sensors. Moreover, in some applications,
after the erection of the plant, it is difficult to install the vibration sensors on the machines. In
contrast, the motor current signals are easily accessible, which can decrease the investment
and monitoring costs effectively [10]. Therefore, the diagnosis of bearing faults based on
current signal analysis has emerged as a popular research topic [1].

The foundation of motor current signal analysis (MCSA) is the evaluation of motor cur-
rents [11]. Online fault diagnosis can be achieved while reducing costs through MCSA [12].
The characteristic of this method is the use of simple current clamps or current transformers,
as well as the ability to achieve fast and efficient signal processing [10,13]. Additionally, the
use of current signal analysis has shown effective results in diagnosing electrical faults [14].
However, when it comes to diagnosing bearing faults, the low signal-to-noise ratio (SNR)
contributes to a relatively higher false alarm rate. This is because the current signal contains
not only the fundamental waveform but also harmonics and non-Gaussian noise, which to
some extent, interfere with the diagnosis. To improve bearing fault diagnosis, it is neces-
sary to accurately extract fault feature components from the noisy signal [15]. Therefore,
significant research efforts are required to fully eliminate noise components and improve
the SNR of the current signal [16].

To improve the signal-to-noise ratio and eliminate the noise components in current
signals, researchers have developed various noise reduction techniques to enhance the
performance of bearing fault diagnosis. Ma et al. [17] proposed a deep learning-based fault
diagnosis method for unmanned aerial vehicles, which uses empirical mode decomposition
(EMD) to reduce high-frequency noise in the signal. However, EMD has mode aliasing
and endpoint effects, which seriously affect the decomposition results, the calculation is
complex, and the running speed is slow [18]. Zhao et al. [19] proposed a deep residual
contraction network suitable for strong noise environments. This network uses a soft
threshold denoising operator as a denoising module to eliminate noise. However, the
denoising module does not consider the multi-scale distribution pattern of the fault sig-
nal, resulting in low diagnostic accuracy [20]. Lin et al. [21] proposed a motor-bearing
fault detection method based on Gaussian filter denoising, Hilbert transform envelope
extraction, and a convolutional neural network, which improved the performance of fault
diagnosis. However, the Gaussian filtering cannot effectively denoise non-Gaussian noise.
Gao et al. [22] proposed a composite fault diagnosis method for rolling bearings based on
parameter-optimized maximum correlation kurtosis deconvolution (MCKD) and a convo-
lutional neural network (CNN). The use of MCKD for signal denoising has improved the
accuracy of fault diagnosis. However, these bearing fault diagnosis methods that use noise
reduction are all based on deep learning techniques. The current deep learning technology
still faces problems such as scarce fault data, imbalanced samples, and a long network
training time [23].

Therefore, in response to the shortcomings of deep learning technology, noise sup-
pression technology is adopted for the original signal to improve the SNR of the signal,
thereby enhancing the fault feature extraction ability of the signal. By quickly identifying
fault features through spectrograms, good bearing fault diagnosis results are achieved. Xu
et al. [24] proposed the use of adaptive filtering algorithms, such as the least-mean-square
(LMS) algorithm, for noise reduction. However, for traditional LMS algorithms, their
steady-state bias increases rapidly with a fast convergence rate. This results in a lower
signal-to-noise ratio and complicates the noise components, particularly in the presence of
strong background noise. Zhou et al. [25,26] proposed an analog notch filter and a Wiener
filter to estimate the noise components of most current signals. However, this approach
requires re-optimization of the Wiener filter coefficients when changing the corresponding
motor operating conditions. Additionally, it does not provide accurate noise prediction
when the motor experiences other types of faults. In [27], an improved drive algorithm
was proposed, which eliminates the power supply fundamental frequency and its sec-
ond harmonic before data acquisition. This approach demonstrates its advantages, in
low-speed detection particularly. Based on this algorithm, Pecht et al. proposed a current
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noise elimination method based on time-shifting (TS), which involves adding a delayed
signal to the collected current signal as an anti-noise component to eliminate power supply
fundamental frequency and odd harmonics. Unlike other methods, this method does not
require the estimation of pure noise components, and the delay is only dependent on the
power frequency and sampling rate [10]. Subsequently, Nazari et al. proposed a method of
time-shifting in two phases of the three-phase current and integrating them with the third-
phase current as a noise cancellation method, and the fault diagnosis is carried out through
the spectrum of the residual square of synchronous current [28]. However, the method of
reference [10] primarily focuses on eliminating the power supply fundamental frequency
and odd harmonics, and the method of reference [28] primarily focuses on the fault of the
single-point. To address other components such as eccentric harmonics, slot harmonics, and
environmental noise in the stator current, Pecht et al. further proposed a noise suppression
strategy using the linear prediction (LP) method [29]. This method separates the current
signal into predictable and unpredictable components based on the characteristics of stator
current signals related to bearing faults. The predictable component is modeled as the noise
using optimal linear theory to eliminate all noise components from the current signal. Fur-
thermore, the LP-based current noise elimination method can diagnose single-point bearing
faults and generalized-roughness bearing faults. Principal component analysis (PCA) and
wavelet analysis are also methods used for feature extraction and noise reduction. Sophian
et al. [30] proposed a pulse eddy current (PEC) non-destructive testing feature extraction
method based on PCA, which extracts relevant features through dimensionality reduction
to achieve fault classification. Xu et al. [31] first denoised the original signal using wavelet
thresholding, and then obtained the required feature parameters through PCA dimen-
sionality reduction for the subsequent fault diagnosis. However, the selection of wavelet
functions and thresholds in wavelet analysis is a challenge, and using the PCA method for
dimensionality reduction may lose some information, which is usually used in conjunction
with deep learning techniques [32]. The LP method directly predicts the original signal and
its ability to eliminate noise is related to its predictive performance, without any loss of
information. However, the use of the LP method involves relatively complex computations.
As the order of LP increases, the corresponding prediction coefficients also increase, which
leads to difficulties in parameter optimization.

To achieve effective current noise elimination while simplifying the computational
complexity of the algorithm, this paper uses fractional linear prediction (FLP) as a noise
reduction technique for bearing fault diagnosis. The FLP method offers lower compu-
tational complexity compared to the LP method while providing comparable predictive
performance [33]. To demonstrate the effectiveness of the FLP algorithm in the field of
bearing fault diagnosis, this paper conducted experiments to compare the fault feature
extraction effectiveness of the TS and the LP algorithms, as well as the FLP algorithm. The
results confirmed that the FLP method is effective in the field of bearing fault diagnosis and
performs better than the TS and the LP algorithms. Based on experimental data, FLP has
better predictive performance than LP, which means that FLP can better eliminate noise
and ultimately achieve better fault feature extraction. Applying this method in the field
of speech signals to the field of bearing fault diagnosis and achieving better results is a
good innovation.

The structure of this paper is as follows. Section 2 provides an introduction to the
relevant concepts of bearing faults and the theoretical background of the TS, LP, and
FLP. Section 3 presents the specific methodology of using the FLP method for bearing
fault diagnosis and selects the optimal FLP model for subsequent experimental validation.
Section 4 describes the experimental setup, parameter configuration, and corresponding
analysis of simulation results. Section 5 concludes this paper.

2. Preliminaries

In this section, the relevant theories of bearing faults are introduced. Subsequently, the
implementation of the TS and the LP algorithms for bearing fault diagnosis and analysis
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are discussed. Finally, the theoretical knowledge of the FLP theory, which is the primary
focus of this study, is presented.

2.1. Bearing Fault

Bearings are one of the fundamental mechanical components in motors, and their
failures can result in the majority of machine failures and increase costs for troubleshooting
and maintenance [34]. According to the stages in the fault development process, bearing
faults can be classified into two types: generalized roughness and single-point bearing
faults. The single-point bearing failure includes an inner ring failure, outer ring failure,
ball failure, and cage failure [5]. This paper focuses on the outer ring fault in single-point
faults. The corresponding theoretical characteristic frequencies of these bearing faults are
as follows:

fi = 0.5 · NB · fr ·
(

1 +
Db · cos θ

Dc

)
(1)

fo = 0.5 · NB · fr ·
(

1 − Db · cos θ

Dc

)
(2)

fb = 0.5 · fr ·
(

Dc

Db

)
·
[

1 −
(

Db · cos θ

Dc

)2
]

(3)

fc = 0.5 · fr ·
(

1 − Db · cos θ

Dc

)
(4)

where fi, fo, fb, and fc are the characteristic frequencies of the inner-race bearing fault,
outer-race bearing fault, bearing ball fault, and bearing cage fault, respectively, fr is the
rotating frequency of the bearing, and NB is the number of balls in the bearing. Db is the
ball diameter, Dc is the pitch diameter, and θ is the ball contact angle, which is normally
zero [35,36].

The frequency of the sideband fault characteristic is typically considered when per-
forming spectrum analysis on current signals:∣∣∣ f1 ± f f

∣∣∣ (5)

where f 1 represents the fundamental frequency of the power source, and ff represents one
of the four-fault frequencies mentioned above.

In the simulation verification of the following three main methods, the frequency
of the sideband fault characteristic is an important basis for detecting whether bearings
have faults.

2.2. Time-Shifting

In the time-shifting method, the primary components of the stator current are divided
into two parts: one part consists of the fundamental harmonic and odd multiple harmonics
from the power source, while the other part includes the remaining current components.
The core of this method is to generate delayed current signals by adding a delay and
then subtracting them from the original current signals to obtain residual current signals,
which are subsequently subjected to frequency spectrum analysis for fault diagnosis. The
fault information in the residual current signals is easier to identify because the non-fault
components and the noise have been eliminated through the subtraction process [10].

The time-shifting method is used to represent the supply fundamental and its odd
multiple harmonics as an amount of N, resulting in the delayed current signals idelayed.
Here, N is a numerical representation devised for convenience in development. In practice,
the time-shifting method introduces a delay of a specific time interval, which is t and
is equal to t = π

ω . The delayed current is then added to the current component iF and
finally the residual current signal, which is further subjected to spectral analysis and fault
characteristic diagnosis analysis; this approach is illustrated in Figure 1.
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iF represents the stator current, and ω represents the power source angular frequency.
The formula corresponding to N is as follows:

N =
FS
2 f1

(6)

where Fs is the sampling frequency of the current signal, and f 1 is the frequency of the
power supply.

However, this method only eliminates the fundamental and odd harmonics of the
power supply and cannot eliminate eccentricity and other harmonic components. It can
only be applied to single-point bearing faults and cannot diagnose generalized-roughness
bearing faults [22].

2.3. Linear Prediction

To address the drawbacks of the TS method, the LP linear prediction theory was
proposed, which is not only applied in the field of digital signal processing but also
serves as a noise elimination method in bearing fault diagnosis. The model used for LP is
autoregressive and can be described by the following equation [22]:

y[n] =
P

∑
k=1

αkx[n − k] (7)

where y[n] represents the current predicted signal, αk represents the prediction coefficient,
and P represents the prediction order. The variable x represents the measured signal, and
the entire equation represents how the current predicted value y is obtained by taking a
weighted sum of P’s previously measured signal values.

In the stator current signal, the current fundamental frequency and its various har-
monic components are defined as the predictable components, while the bearing fault
signal and the background Gaussian noise are defined as the unpredictable components.
The basis of applying the LP method is to eliminate the predictable components and define
them as the noise components [22].

The LP method is used to predict the predictable signals ipredicted. Then, the predictable
components ipredictable and the unpredictable components iunpredictable of the original current
signals iF are subtracted from the predicted signals ipredicted obtained through the use of the
LP linear prediction method. The prediction order P represents the number of samples used
for prediction. Determining an optimal prediction order can result in better cancellation
of predictable components and a better effect of noise elimination. The resulting residual
signal is then subjected to frequency spectrum analysis to reveal the fault characteristic
frequencies, which are used for the bearing fault diagnosis analysis, as illustrated in
Figure 2.
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In the subsequent experimental analysis, the calculation formula for the prediction
order P in the LP method is the same as the calculation method for the N in Equation (6) [22].

The LP method is an improved method of the TS method, which can better eliminate
noise components in signals. This algorithm has good predictive performance, but its
computational complexity and parameter optimization are relatively complex. Therefore,
the FLP method mainly studied in this article is used to solve this problem, and the
following section also first introduces the theory of the FLP method.

2.4. Fractional Linear Prediction

The FLP is a modern method for LP that has been adopted in various fields for
prediction purposes [33,37]. It can be expressed as a linear combination of q “fractional
terms” and written as follows:

.
x[n] =

q

∑
i=1

aDαx[n] (8)

where
.
x[n] is the predicted signal, a is the FLP coefficient, α is the order of the fractional

derivative, and Dα is the fractional derivative that can be interpreted using the Grünwald–
Letnikov(GL) definition, which is widely used for the numerical solution of the fractional
derivative of a function x(t) at time instant t:

aDα
t x(t) = lim

h→0

1
hα

k=| t−a
h |

∑
j=0

(−1)j
(

α
j

)
x(t − jh) (9)

where K is the integer part of the fraction (t − a)/h, a and t are lower and upper terminals
of differentiation, respectively, and α is the arbitrary real order of the fractional derivative.
So, first of all, we put t = nh into (9) and then denote the n-th sample of the signal x(nh) as
x[n], i.e., x[n] = x(nh), and (10) can be rewritten as follows:

aDα
t x(t) = lim

h→0

1
hα

k=| t−a
h |

∑
j=0

(−1)j
(

α
j

)
x(t − jh) (10)

The FLP model used in this article is a restricted memory optimal FLP model. Only
the first term in Equation (8) is utilized in this model, where Dαx[n − 1] is shifted back in
time by one sample, and this can be written as follows:

.
x[n] = aDαx[n − 1] (11)
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Then, assuming an effective positive integer value “m” as the upper limit for the
summation in Equation (10), Equation (12) can be obtained [33]:

Dαx[n − 1] =
1
hα

m

∑
j=0

(−1)j
(

α
j

)
x[n − 1 − j] (12)

By combining Equations (11) and (12), the current signal
.
x[n] from the prediction can

be obtained, which can be written as follows:

.
x[n] =

a
hα

m

∑
j=0

(−1)j
(

α
j

)
x[n − 1 − j] (13)

From Equation (13), it can be seen that when the number of memories m of the FLP
model with limited memory samples is determined, the model only has one coefficient to
be optimized, which is the parameter a. This coefficient can also be represented by the order
of the fractional derivative α [33,38]. Therefore, in the experiment, only the optimal order
of the fractional derivative needs to be set, and in the FLP model with limited memory
samples, there are only three cases where the number of samples is limited. As mentioned
in reference [33], the optimal order is the reciprocal of the number of samples, which
results in the best prediction performance, greatly reducing the difficulty of parameter
optimization. Although the LP method only needs to calculate the optimal prediction order
in bearing fault diagnosis, according to Equation (7), the predicted signal is a weighted sum
of P coefficients containing prediction coefficient a. According to Equation (6), assuming
a sampling rate of 51.2 KHz and a power supply fundamental frequency of 50 Hz, the
predicted order P is calculated as 512. However, optimizing 512 prediction coefficients
significantly increases the difficulty of the optimization process. This significantly reduces
the computational complexity and is one of the advantages of the FLP method.

From the analysis of the relevant literature and the previous paragraph, it has been
demonstrated that the computational complexity of the LP method is higher than that of
the FLP method. Moreover, the predictive performance of the FLP method is comparable
to that of the LP method, thus showing that FLP, as a predictive algorithm, has certain
advantages. Furthermore, a fully stored FLP model has been proposed, which can be used
for complete signal history [38]. In the next section, the method FLP for noise elimination
and the bearing fault diagnosis are described. Then, a comparison is made between the two
different FLP models to select the optimal one for subsequent experimental verification
and comparison.

3. Current Noise Elimination in Bearing Fault Detection Based on FLP
3.1. Bearing Fault Detection Based on FLP

Based on the previous analysis, the FLP algorithm is applied to diagnose the bearing
fault and eliminate the noise components in the current signal. This approach is employed
to effectively extract characteristic components related to bearing faults and facilitate the
analysis of bearing fault diagnosis. The framework of this method mainly consists of data
acquisition, algorithm processing, and spectral analysis.

First, the stator current of a single phase in a three-phase motor is acquired through
a data acquisition system to obtain the required current signal data. Similar to the LP
method, the current component is divided into predictable and unpredictable components.
The predictable components represent the noise that needs to be eliminated. However,
in the FLP method, linear prediction involves utilizing the number of memory storage
units denoted by m used as the count of predictor terms. Similar to P in the LP method,
the introduction of the number of memory units, denoted as m, is used to predict the
noise signal. For FLP models with restricted memory samples, only three values of m are
utilized: 1, 2, and 3. Therefore, the corresponding count of memory samples is defined
as the parameter M, which are 2, 3, and 4, respectively. On the other hand, for the FLP
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model with full memory, there is no restriction on the value of m. The predicted results
are then subtracted from the two components of the original signal to obtain the residual
signal. A frequency spectrum analysis of the residual signal is carried out to extract fault
characteristics, as illustrated in Figure 3.
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3.2. Determination of the FLP Model

Before the next section of the experimental comparative analysis, it is necessary to
determine the FLP model, including selecting the optimal value of m if choosing an FLP
model with memory samples. The criterion for selection is the prediction performance of
the FLP model under the corresponding signal. The prediction gain (PG) in dB is used as
the metric. The signal in this case is a standard sinusoidal waveform, which is denoted
as follows:

x(t) = sin(2πt)

First, the prediction performance of the FLP model with restricted memory samples
is compared, where the values of M are set to 2, 3, and 4. The corresponding fractional
derivative order α is set as the reciprocal of the memory samples, which represents the
optimal fractional derivative order [33].

From the simulation results corresponding to the three different memory sample sizes,
it can be observed that evaluating their prediction performance directly from the images
is challenging, as illustrated in Figure 4. However, the calculated results of the prediction
gain still provide a distinguishable comparison.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 4. FLP with restricted memory. 

Table 1 shows that under the corresponding optimal fractional derivative order, 
when the number of memory samples M is 2, the value of prediction gain is the highest, 
indicating the best predictive performance. Further optimization of the value of α resulted 
in the calculation of prediction gain once again. 

Table 1. Predictive performance of sine signals given in units of PG [dB]. 

M α FLP 
2 0.5 41.76 
3 0.33 40.64 
4 0.25 40.67 

Table 2 reveals that by adjusting the order magnitude, the prediction gain results of 
FLP models with three different memory samples have been improved. However, the 
highest numerical value is still observed when the number of memory samples M is 2. 

Table 2. Predictive performance of sine signals with improved order given in units of PG [dB]. 

M α FLP 
2 0.5029–0.5051 42.00–42.02 
3 0.3381–0.3385 41.85 
4 0.2558–0.2564 41.64 

To verify that the prediction performance of the FLP model with limited memory 
samples is optimal when the number of storage units M is 1, the comparison of simulation 
signals is supplemented by analyzing the prediction gain of the current data collected in 
subsequent experiments. 

Tables 3–5, respectively, provide a comparison of predicted gains for three sets of 
current data: light load, medium load, and heavy load. From the three tables, it can be 
seen that when the number of memory samples is 2, the prediction gain is the highest. 
Therefore, when the number of memory samples M is set to 2 and the number of storage 
units m is 1, the predictive performance in FLP models with restricted memory samples 
is optimal. 

  

Figure 4. FLP with restricted memory.



Sensors 2024, 24, 52 9 of 17

Table 1 shows that under the corresponding optimal fractional derivative order, when
the number of memory samples M is 2, the value of prediction gain is the highest, indicating
the best predictive performance. Further optimization of the value of α resulted in the
calculation of prediction gain once again.

Table 1. Predictive performance of sine signals given in units of PG [dB].

M α FLP

2 0.5 41.76
3 0.33 40.64
4 0.25 40.67

Table 2 reveals that by adjusting the order magnitude, the prediction gain results of
FLP models with three different memory samples have been improved. However, the
highest numerical value is still observed when the number of memory samples M is 2.

Table 2. Predictive performance of sine signals with improved order given in units of PG [dB].

M α FLP

2 0.5029–0.5051 42.00–42.02
3 0.3381–0.3385 41.85
4 0.2558–0.2564 41.64

To verify that the prediction performance of the FLP model with limited memory
samples is optimal when the number of storage units M is 1, the comparison of simulation
signals is supplemented by analyzing the prediction gain of the current data collected in
subsequent experiments.

Tables 3–5, respectively, provide a comparison of predicted gains for three sets of
current data: light load, medium load, and heavy load. From the three tables, it can be seen
that when the number of memory samples is 2, the prediction gain is the highest. Therefore,
when the number of memory samples M is set to 2 and the number of storage units m is 1,
the predictive performance in FLP models with restricted memory samples is optimal.

Table 3. Predictive performance of light load experimental data given in units of PG [dB].

M α FLP

2 0.01 23.18
3 0.01 23.16
4 0.01 23.15

Table 4. Predictive performance of medium load experimental data given in units of PG [dB].

M α FLP

2 0.01 26.65
3 0.01 26.64
4 0.01 26.63

Table 5. Predictive performance of heavy load experimental data given in units of PG [dB].

M α FLP

2 0.01 28.94
3 0.01 28.93
4 0.01 28.93
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Next, the same sine wave signal is used for the simulation analysis on the full-memory
FLP model. Unlike the FLP model with restricted memory samples, the full-memory FLP
model is not constrained by a finite number of memory samples and is essentially similar to
the LP model [38]. The results show that although the maximum achievable prediction gain
value is comparable to that of the FLP model with restricted memory samples, optimization
becomes complex when comparing with LP methods that have higher prediction order
settings, as the corresponding order of the full-memory FLP model needs to be set with the
same numerical values.

In conclusion, considering the difficulty in parameter optimization, the FLP model
with restricted memory samples is superior to the FLP model with full memory. For the
upcoming comparative analysis in the next section, the FLP model with restricted memory
samples, specifically with M = 2 memory samples and m = 1 storage units, is chosen. In
the following section, the experimental settings, as well as the fault feature extraction
performance of TS, LP, and FLP, are analyzed and compared.

4. Experimental Design and Result Analysis

In this section, the experimental setup and collected data are introduced. Based on the
collected relevant data, the feasibility of the proposed FLP method in the field of bearing
fault diagnosis as well as its superiority compared with the original current, TS method,
and LP method are simulated and analyzed. The results are to be used to make conclusions.

4.1. Experimental Setup and Preparation before Analysis

The experimental setup utilized in this study consists of three parts: a power system,
a motor driving system, and a data acquisition system. The power system is supplied
with electricity from a 50 Hz AC power source. The motor driving system comprises an
experimental motor and a Z2-42 DC generator, which are used to adjust the experimental
motor speed by varying the excitation voltage of the DC generator. The data acquisition
system consists of a JLB-21 current transformer, a self-made conditioning circuit, and an NI
data acquisition card. The experimental motor used in the study is a Y100L2-4 three-phase
asynchronous motor with a rated power of 3 kW, rated voltage of 380 V, and rated current
of 6.8 A. The degree of failure of the bearing outer ring is severe. The experimental platform
for the collection of motor data and the bearing with outer ring fault used in the experiment
are shown in Figure 5.
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During the experiment, the asynchronous motor is operated at different load condi-
tions by setting different excitation voltages for the DC generator. First, the stator current
data of the motor with an outer ring fault in the bearing are collected and followed by
data collection for the motor without any faults. During the data collection of the motor
with an outer ring fault in the bearing, three different types of data were collected: light
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load, medium load, and heavy load. For each load type, two sets of data are collected,
resulting in a total of six data sets ranging from light load to heavy load. These sets of data
are numbered 1–6 accordingly. All collected data are sampled at a rate of 25 KHz. Finally,
the corresponding spectral analysis is performed on these six sets of data.

To validate the effectiveness of the FLP method, this study analyzes the current data
of a motor with an outer race-bearing fault under six different load conditions. The main
focus is to compare the results of the FFT spectrum analysis between the raw current
and the residual current processed by the TS, LP, and FLP algorithms. Table 6 presents
the theoretically calculated values of the fault characteristic frequencies of the outer race
bearing under six load conditions, as well as the corresponding sideband fault characteristic
frequencies.

Table 6. Theoretical fault sideband components of the healthy and faulty IM.

Load
Fundamental

Frequency Estimation
Value f 1/Hz

Estimated Rotational
Speed Value f r/Hz

Outer Race Fault
Characteristic Frequency

(f of = 3.6 f r)/Hz

Sideband Fault Characteristic
Frequencies |f 1 – f of|/Hz and

f 1 + f of/Hz

1 49.97 24.90 89.67 39.69, 139.64
2 50.02 24.74 89.05 39.03, 139.07
3 49.92 24.38 87.78 37.86, 137.71
4 50.07 24.21 87.15 37.08, 137.21
5 50.07 24.09 86.73 36.67, 136.81
6 50.07 23.86 85.91 35.84, 135.97

Before the commencement of simulation analysis, the three methods in this study are
first configured with appropriate parameters. According to Equation (6), the delay amount
for TS is set to the corresponding calculated value of 250. Based on the previous theoretical
discussion, the prediction order for LP is also set to the same value of 250. Additionally, the
FLP model used is the one validated in the previous section with a limited sample memory
of m = 2. Finally, the order of fractional differentiation α is also similarly adjusted to 0.001.

4.2. FFT Spectrum Analysis of Current Signals
4.2.1. Comparison of Frequency Spectrum Analysis between Healthy Motor and
Faulty Motor

Before comparing the four methods for the faulty motor with an outer ring bearing
fault, it is necessary first to compare the spectrum analysis of a healthy motor and a
faulty motor under a heavy load. Figure 6 presents the FFT frequency spectrum analysis
(0–150 Hz) of a healthy motor under a heavy load. The presence of the inherent eccentric
harmonic component f 1 ± f r, caused by the motor’s internal eccentricity, makes it difficult
to observe the sideband fault frequencies.
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However, when the motor experiences outer-ring bearing faults, as shown in Figure 7,
the characteristic frequencies associated with eccentricity faults become more prominent.
In this case, while the sideband fault frequency |f 1 – fof| may not be visible, f 1 + fof
can still be recognized. Based on the experimental findings, it is evident that the FLP
method has a significant capability to eliminate noise. The interference component at the
observable peaks corresponding to eccentricity harmonics is relatively reduced compared
to the interference observed in the other two methods. In other words, the FLP method
can effectively eliminate noise components and suppress irrelevant components. Only the
fault characteristic frequency or harmonic components to be analyzed will be displayed on
the graph. As a result, the FLP method exhibits a more significant and distinct efficacy in
extracting the fault characteristic frequency and eccentric fault frequency.
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outer-ring bearing faults.

To further validate the effectiveness of the FLP method, a comparative simulation of
FFT frequency spectrum analysis is conducted on the original current and the residual
current of TS, LP, and FLP methods for motors with outer-ring bearing faults under six
different loads. The purpose is to compare the fault characteristic extraction performance
of the four methods and verify whether the FLP method is the best. The frequency range is
set between 130 Hz and 150 Hz.

4.2.2. Comparison and Analysis of Frequency Spectrum Analysis for Outer-Ring Bearing
Faults under Light Load Conditions

The frequency spectrum analysis of a faulty motor with the outer-ring bearing fault
under light load conditions is shown in Figure 8. Under the light load conditions, it is
noticeable that the performance of the frequency spectrum analysis using the raw current
signal is observed, and the extraction of sideband fault characteristic frequencies is not
effective due to the interference of noise. However, when analyzing the residual current us-
ing the TS, LP, and FLP methods, the extraction of sideband fault characteristic frequencies
is improved, and the spectral line f 1 + fof is visible. It can be observed from both Figure 8a,b,
that the FLP method exhibits the most prominent spectral line f 1 + fof, indicating that it is
the most effective in extracting sideband fault characteristic frequencies. Additionally, it
can be observed that the FLP method significantly reduces the overall noise level, with the
lowest amplitude. Normally, under low load conditions, the performance of fault feature
extraction is lower than under heavy load conditions. However, from the experimental
results, it can be observed that the effect of bearing fault feature extraction using the FLP
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method is still very obvious compared to other methods. This also reflects the superiority
of the FLP method.
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4.2.3. Comparative Analysis of Frequency Spectrum Analysis for Outer-Ring Bearing
Faults under Medium and Heavy Load Conditions

The frequency spectrum analysis results for a faulty motor with the outer-ring bearing
fault under medium and heavy load conditions are depicted in Figure 9.

From the experimental results, it can be observed that when performing frequency
spectrum analysis using the raw stator current signal, the spectral line f 1 + fof is distin-
guishable, and its extraction effectiveness improves as the load increases. Similarly, for the
other three methods, the spectral line f 1 + fof remains visible. The FLP method continues to
exhibit the best extraction of corresponding sideband fault characteristic frequencies, and
the overall noise level is also minimized.

In addition, a comparison of predictive performance is made for the current data
under six load groups, using mean square error (MSE) as the evaluation criterion. From
Table 7, it can be seen that the MSE value of FLP is much smaller than LP, which also
confirms that FLP has better predictive performance than LP in this experiment.

Table 7. The performance of the predictions given in MSE.

Load LP FLP

1 6.8368 × 10−5 1.6108 × 10−7

2 5.5831 × 10−5 8.9460 × 10−8

3 6.2421 × 10−5 7.1168 × 10−8

4 6.2150 × 10−5 5.5823 × 10−8

5 6.0166 × 10−5 4.9200 × 10−8

6 6.2059 × 10−5 4.2108 × 10−8

By conducting an FFT spectrum analysis on current signals under three different types
of loads, it can be observed that, compared to the other three methods, the use of the FLP
method for linear prediction of stator current signals, followed by spectrum analysis of the
resulting residual current signals, yields the best results in fault characteristic extraction.
Moreover, as depicted in Figures 7–9, when using the FLP algorithm, there is a significant
reduction in overall noise amplitude, and the sideband fault characteristic frequencies are
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less affected by the noise. Additionally, the extraction of eccentric fault frequencies, apart
from the outer-ring sideband fault characteristic frequencies, becomes clearer. Through the
comparison of experimental data, it is found that FLP has better predictive performance
than LP. These results validate the feasibility of applying the FLP algorithm to bearing fault
diagnosis and demonstrate the superiority and effectiveness of the FLP algorithm in fault
feature extraction and predictive performance compared to other algorithms proposed in
the field of fault diagnosis.
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5. Conclusions

FLP has been applied in previous studies for modeling and compression of speech
signals due to its good predictive performance [33,37]. The LP method [22], which is
used for predicting faults, has also been utilized in the area of bearing fault diagnosis.
This predictability is used as a distinguishing feature, and the predictable components are
modeled as noise to eliminate noise and highlight fault characteristics, achieving the goal
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of fault diagnosis. This paper proposes to apply the FLP method to the field of bearing
fault diagnosis, achieving good bearing fault diagnosis results.

The core of FLP is to use the linear prediction theory to make the noise contained in
the current signal the predictable components and achieve noise elimination by subtracting
the predicted signal from the original current signal. Through spectrum analysis of residual
current signals after noise elimination in the TS method, LP method, and FLP method, it
can be found that the FLP method has the most obvious effect on extracting fault features,
whether it is sideband fault frequency or eccentric fault frequency. Moreover, the noise
elimination effect using the FLP method is particularly notable, resulting in a significant
reduction in the overall amplitude and a clearer representation of fault frequencies. Based
on experimental data, using MSE as the predictive performance evaluation criterion, the
predictive performance of FLP is significantly better than LP, proving that this method
has better predictive performance in bearing fault diagnosis, which means that the noise
elimination effect is also better. FLP solves the problem of difficulty in optimizing LP
parameters. These results also validate the effectiveness of the FLP method in bearing
fault diagnosis and its advantages over other methods. Moreover, compared to deep
learning techniques, the FLP method has a faster diagnostic speed, which can directly detect
whether a fault has occurred from the spectrum graph. The application of predictability
as a distinguishing feature eliminates the need to understand pure noise data under
different conditions during the noise modeling process. Engineers can use the proposed
methods for predictive maintenance, which can prevent missed and false alarms and
prevent catastrophic failures.

Future work should apply this current noise elimination method FLP to other motor
bearings to verify its generalization and whether it can also achieve good bearing fault
diagnosis results and whether the parameters of the FLP model in this article are also used
in different motor bearings. Further research is required for this work.
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