
Citation: Kwon, B.; Son, H. Accurate

Path Loss Prediction Using a Neural

Network Ensemble Method. Sensors

2024, 24, 304. https://doi.org/

10.3390/s24010304

Academic Editor: Kit Yan Chan

Received: 20 November 2023

Revised: 2 January 2024

Accepted: 3 January 2024

Published: 4 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Accurate Path Loss Prediction Using a Neural Network
Ensemble Method
Beom Kwon 1 and Hyukmin Son 2,*

1 Division of Interdisciplinary Studies in Cultural Intelligence, Dongduk Women’s University, Seoul 02784,
Republic of Korea; bkwon@dongduk.ac.kr

2 Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
* Correspondence: hson102@gachon.ac.kr

Abstract: Path loss is one of the most important factors affecting base-station positioning in cellular
networks. Traditionally, to determine the optimal installation position of a base station, path-loss
measurements are conducted through numerous field tests. Disadvantageously, these measurements
are time-consuming. To address this problem, in this study, we propose a machine learning (ML)-
based method for path loss prediction. Specifically, a neural network ensemble learning technique
was applied to enhance the accuracy and performance of path loss prediction. To achieve this, an
ensemble of neural networks was constructed by selecting the top-ranked networks based on the
results of hyperparameter optimization. The performance of the proposed method was compared
with that of various ML-based methods on a public dataset. The simulation results showed that the
proposed method had clearly outperformed state-of-the-art methods and that it could accurately
predict path loss.

Keywords: artificial intelligence; ensemble learning; deep learning; machine learning; neural network
ensemble; path loss prediction

1. Introduction

A cellular network typically comprises multiple base stations, with each mobile station
measuring the received signal strength indicator from its neighboring base stations and
transmitting this information to the base stations via radio signals [1–3]. Path loss is a
phenomenon in which the strength of a radio signal between a base station and mobile
station decreases as it propagates through space. Predicting path loss is crucial in base-
station positioning, because mobile stations require a minimum received signal power level
to successfully decode the data received from the base station [4–6].

Recently, several path loss models have been proposed. Generally, these models can
be classified into two groups: empirical and deterministic. Empirical models are based
on the measurements obtained within a given frequency range in a specific propagation
environment. These models offer statistical descriptions of how path loss is related to
propagation parameters, including frequency of transmission, distance between antennas,
and antenna height. For example, the log-distance path loss model employs a path loss ex-
ponent empirically determined from measurements to define the rate at which the received
signal strength diminishes with the distance between a base station and mobile station [7].
Additionally, a Gaussian random variable with a mean of zero is used in the model to
represent the attenuation attributed to shadow fading. This model is commonly used as a
fundamental reference for predicting indoor path loss. Several empirical models, including
the Egli [8], Hata [9], Longley-Rice [10], and Okumura [11] models, have been developed
based on measurements. The 3rd Generation Partnership Project (3GPP) is a collaborative
initiative aimed at developing global standards for mobile communication technologies.
The 3GPP is responsible for specifying technologies such as Long-Term Evolution (LTE)
and New Radio (NR) for mobile broadband communication. The standards set by the 3GPP

Sensors 2024, 24, 304. https://doi.org/10.3390/s24010304 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24010304
https://doi.org/10.3390/s24010304
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8345-2189
https://orcid.org/0000-0002-1677-8111
https://doi.org/10.3390/s24010304
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24010304?type=check_update&version=1

Sensors 2024, 24, 304 2 of 20

are continuously evolving to meet the demands of the industry and users. Organized as
Releases, these standards introduce new features, enhancements, and optimizations, with
each release incorporating hundreds of individual technical specification (TS) and technical
report (TR) documents. Some TR documents focus on empirical models and modeling
methods. For instance, in TR 38.901 [12], 3GPP introduced its three-dimensional (3-D)
stochastic channel model for 5G mmWave massive multiple-input and multiple-output
(MIMO) communications, spanning the range of 0.5-100 GHz. This comprehensive model
includes a detailed procedure for generating link-level channel models, catering to a broad
spectrum of carrier frequencies. The 3GPP employs various scenario settings, including
Indoor Factory (InF), Indoor Hotspot (InH), Rural Macro (RMa), Urban Macro (UMa), and
Urban Micro (UMi). Additionally, each scenario is accompanied by a comprehensive set
of parameters, covering intersite distance, path loss computation, large and small-scale
parameters, etc., [13,14]. Empirical models are simple and tractable and require few pa-
rameters. However, because their parameters fit the measurements obtained in a specific
propagation environment, these models do not always yield high prediction accuracies
when applied to diverse environments.

Regarding deterministic models, they are based on the electromagnetic theory. These
models offer precise path loss values at any given position using ray tracing and finite-
difference time-domain methods [15–17]. However, these models require detailed geometric
data, such as a two-dimensional (2-D) or 3-D map of a specific region and the dielectric
properties of obstacles to predict path loss. Additionally, because such data are generally
large in volume, handling them can potentially result in a degraded computational effi-
ciency and an extended computation time. Furthermore, if the propagation environment
changes, a time-consuming computational procedure needs to be repeated.

Recently, machine learning (ML) has received considerable attention as a powerful
tool in various fields, such as computer vision [18–24], natural language processing [25–27],
and wireless communication [28–32]. Generally, ML approaches can be divided into three
categories: supervised, unsupervised, and reinforcement learning. In supervised learning,
data pairs of (x, y) are given, where x represents the input data of an ML model, and
y represents a label. Supervised learning is performed to enable an ML model to learn
a general rule that maps x to y. On the other hand, in unsupervised learning, only x is
provided to the ML model; y is not provided. Unsupervised learning is performed to enable
the model to discover hidden structures or patterns in x. In reinforcement learning, an
agent learns to make decisions by interacting with an environment. The learning process in
reinforcement learning involves the agent interacting with the environment, observing the
outcomes of its actions, and adjusting its strategy to improve its performance over time.
The agent learns to associate states with actions that lead to higher rewards and, through
exploration, discovers optimal policies for achieving its goals. Reinforcement learning has
been used for power control of base stations, scheduling, load balancing, and many more
applications in wireless networks [33–37].

Recently, numerous supervised-learning algorithms have been introduced. These
algorithms can be categorized into classification and regression algorithms based on the
type of y. When y can take on values in a finite set, classification algorithms whose outputs
are constrained to this finite set are employed. Conversely, if y can take any real value within
a range, regression algorithms whose outputs are not limited to any specific real value are
used. Since the value of path loss can be represented as a real value, path loss prediction can
be regarded as a regression problem. Consequently, some studies on path loss prediction
have proposed applying regression algorithms, such as the support vector machine (SVM),
k-nearest neighbors (k-NN), random forest (RF), and artificial neural network (ANN), to
predict path loss values. For example, the authors of [38,39] experimentally showed that
ML-based models could predict path loss more accurately than empirical models could
and that they were more computationally efficient than deterministic models. Based on
these results, many researchers have focused on ML-based models as potential substitutes
for conventional empirical and deterministic models. Motivated by these findings, we

Sensors 2024, 24, 304 3 of 20

investigated an ML-based method to enhance the accuracy of path loss prediction. The
main contributions of this study are summarized as follows:

• A neural network ensemble model capable of accurately predicting path loss is pro-
posed. In the proposed model, multiple ANNs are trained with different hyperparam-
eters, including the number of hidden layers, number of neurons in each hidden layer,
and type of activation function, thereby enhancing the diversity among the integrated
ANNs. The final prediction results of the model were then obtained by integrating the
prediction results from the ANNs.

• The entire process of predicting path loss using the proposed method is presented.
The dataset splitting, feature scaling, and hyperparameter optimization processes
have been detailed. Based on the results of the hyperparameter optimization process,
the top-ranking ANNs can be determined. These results and the pseudocode for the
proposed method can simplify re-implementation.

• The proposed neural network ensemble model was quantitatively evaluated on a
public dataset. Additionally, for benchmarking, nine ML-based path loss prediction
methods were tested: SVM, k-NN, RF, decision tree, multiple linear regression, Least
Absolute Shrinkage and Selection Operator (LASSO), ridge regression, Elastic Net,
and ANNs.

The remainder of this paper is organized as follows. Section 2 reviews related studies,
and Section 3 describes the proposed method for path loss prediction. Then, Section 4
details the experimental setup, including the evaluation metrics and implementation of the
benchmark methods, and Section 5 presents and discusses the results. Finally, Section 6
provides the concluding remarks.

2. Related Work
2.1. Non-ANN-Based Path Loss Prediction

As previously mentioned, many different regression algorithms can predict path loss.
Based on prior research, these algorithms can be classified into two groups: non-ANN-
based and ANN-based. In a study on path loss prediction using non-ANN-based approach,
a path loss equation consisting of several constants and simple functions was proposed [40].
Additionally, using a genetic algorithm, the authors identified constants and functions that
fit the measurements well.

Instead of using a genetic algorithm, some researchers used an SVM for path loss
prediction [41–47]. The authors of [41] proposed using an SVM with a radial basis function
(RBF) kernel as a tool for predicting path loss. Generally, several types of kernels can
be used in SVMs; the performance and effectiveness of the SVM depend on the kernel
type. In [42], the authors compared the performances of three SVMs with different kernels:
polynomial, Gaussian, and Laplacian. Their results revealed that SVM with a Laplacian
kernel had outperformed the SVM with the other two kernels. Moreover, the authors
compared the three SVMs with two empirical models (the Hata and Ericsson 9999 models);
all three SVMs outperformed the empirical models. Motivated by the results of [41,42], the
authors of [43–47] also used an SVM for path loss prediction.

The authors of [46–48] used k-NN, a well-known regression algorithm, for path loss
prediction. In recent studies on non-ANN-based path loss prediction, ensemble methods
that use multiple ML models to achieve better performances have garnered significant
attention owing to their promising results. Based on empirical evidence, it is generally
observed that ensemble methods achieve better performances when their constituent
models are significantly diverse [49,50]. Consequently, several ensemble methods aim
to enhance the diversity among their constituent models [51,52]. To this end, the authors
of [53] proposed an ensemble method that averaged the results from five different regression
algorithms: k-NN, SVM, RF, AdaBoost, and gradient boosting. Regarding RF, it is a widely
used ensemble method that constructs numerous decision trees during the training phase.
Additionally, during the testing phase, it derives the average prediction of individual trees
as an output [54,55]. This method has been employed for path loss prediction [45–48].

Sensors 2024, 24, 304 4 of 20

2.2. ANN-Based Path Loss Prediction

Instead of using non-ANN-based approaches, several researchers have explored ANN-
based methods for path loss prediction. In these approaches, hyperparameter tuning is
crucial for ANNs because it directly affects their performance and generalization ability.
Hyperparameters are configuration settings that are external to a model and cannot be
learned from data. Unlike the weights and biases of an ANN, which are learned during
the training phase, hyperparameters should be set prior to training. The hyperparameters
of an ANN include the learning rate, batch size, number of hidden layers, the number of
neurons in each layer, activation functions, dropout rates, and regularization strength.

To determine the optimal configuration that maximizes ANN performance, many
researchers have conducted hyperparameter tuning in their studies. For example, the
authors of [38,56,57] explored the relationship between ANN performance and the number
of layers. Their results revealed that adding depth to an ANN by increasing the number of
layers would enable accurate path loss prediction. The authors of [58] experimented with
the performance of an ANN by varying the number of neurons in a hidden layer while
keeping the number of hidden layers constant at one. According to their results, increasing
the number of neurons improved the path loss prediction performance of the ANN. In [59],
the authors proposed a differential evolution algorithm to determine the optimal number
of neurons in each layer of an ANN that would achieve the best performance in path
loss prediction.

Generally, activation functions are used to introduce nonlinearity into ANNs. The
choice of an activation function significantly impacts the performance and generalization
ability of an ANN. Several types of activation functions have been developed and used in
ANNs. The RBF is a widely used activation function in path loss prediction. For example,
the authors of [58,60,61] proposed an RBF neural network (RBF-NN), where the RBF was
used as an activation function. In [62], the authors proposed a wavelet neural network for
field-strength prediction using a wavelet function as an activation function. According to
their results, the prediction performance of the wavelet neural network exceeded that of the
RBF-NN. Other types of activation functions such as the hyperbolic tangent (tanh) [63–70]
and sigmoid functions [71–75] have also been used in ANNs for path loss prediction.

Recently, several ANN variations, including the convolutional neural network (CNN),
have been widely used for path loss prediction. A CNN typically consists of input, hidden,
and output layers, with the hidden layers comprising one or more convolutional layers. In
a convolutional layer, several convolution kernels (filters) can be used, and the dot product
of each convolution kernel with the input matrix of the layer is obtained to generate
feature maps. A rectified linear unit (ReLU) is commonly used as an activation function in
convolutional layers; the activation maps for the feature maps are obtained by applying
the ReLU, and these activation maps become the inputs to the next layer. Generally, the
convolutional layer is followed by a pooling layer, and the pooling layer reduces the
dimensions of data by combining the outputs of neuron clusters at one layer into a single
neuron in the next layer. Through convolutional and pooling layers, CNNs can detect and
extract meaningful features from images. Consequently, CNNs are commonly used to solve
computer vision tasks, such as image classification and image recognition.

Owing to promising results from using CNNs in computer vision tasks, CNN-based
methods have emerged in studies on path loss prediction. For example, the authors of [56]
proposed a CNN-based method to predict the path loss exponent from a 3-D building map;
two 2-D images obtained from a 3-D building map were utilized. One image was created
by mapping the height of each building to an integer value within the range of 0–255, and
the other was generated by mapping the difference between the height of the transmitter
from sea level and the height of the ground from sea level to an integer value within the
range of 0 to 255. The two images were stacked in the form of a 3-D tensor, which was used
as the input for the CNN. The CNN was trained using synthetic data generated using a
ray-tracing tool to predict the path loss exponent.

Sensors 2024, 24, 304 5 of 20

Recently, some popular CNN architectures proposed for computer vision tasks have
been applied to path loss prediction. For example, the authors of [76] utilized AlexNet,
which was proposed in [77], as the base model for path loss prediction. The model input
consisted of a 3-D tensor constructed by stacking three 2-D matrices. These matrices
contained information about the height of structures and buildings, the distance from
the transmitter, and the distance from the receiver. Another study by the same authors
employed AlexNet as the base model [78]. In this study, the 3-D tensor was augmented
with a 2-D matrix containing information about the angle formed by the line between the
transmitter and receiver. The Visual Geometry Group neural network (VGGNet) [79] is
another well-known CNN architecture. It can be categorized into several architectures
according to the number of convolutional layers. Among them, the VGG-16 and VGG-
19 architectures are typically used because their performance is better than that of other
VGGNet architectures. In [80], the authors utilized the VGG-16 architecture to predict the
path loss distribution from 2-D satellite images. Motivated by the idea presented in [80],
the authors of [81] employed the VGG-16 architecture as the backbone to predict the path
loss exponent and shadowing factor from 2-D satellite images. The residual neural network
(ResNet) [82] is also a widely used CNN architecture. The ResNet architecture was used in
a similar study to predict the path loss exponent and shadowing factor from 2-D satellite
images [83] and in another study [84] to predict the path loss from 2-D satellite images.

3. Proposed Method
3.1. Overall Process

This section details the working of the proposed path loss prediction method; Figure 1
shows a schematic overview of its process, which is divided into three phases: (1) dataset
splitting and feature scaling, (2) model building and hyperparameter optimization, and
(3) applying the ensemble model and performing path loss prediction. In the first phase,
dataset splitting is conducted on the prepared dataset, producing training, validation, and
test sets. Subsequently, feature scaling is applied to enhance the performance of the ANNs.
In the second phase, the ANNs are built with different hyperparameter configurations;
the hyperparameters include the number of hidden layers, number of neurons in each
hidden layer, and type of activation function. During the hyperparameter optimization
process, each ANN is trained and evaluated, and the results are recorded. In the final phase,
the top-ranked ANNs are selected based on the evaluation results, and the final model is
constructed using an ensemble of the selected ANNs. A path loss prediction is conducted
on the test set using the final model.

Figure 1. Overall working of the proposed method for path loss prediction.

Sensors 2024, 24, 304 6 of 20

3.2. Dataset Preparation

The dataset proposed by the authors in [85] was used in this study. To collect path loss
data, these authors conducted a drive test measurement campaign at Covenant University,
Ota, Ogun State, Nigeria. During the drive tests, measurements were performed along three
different routes. During each measurement, the mobile station was moved away from each
of the three base stations. These authors recorded terrain profile information, including
longitude (f1), latitude (f2), elevation (f3), altitude (f4), clutter height (f5), and distance
between the transmitter and receiver (f6), along with path loss data. Across the three routes,
937, 1229, and 1450 samples were collected; the dataset contained 3616 samples, comprising
six features and path loss values as labels. In this study, we aimed to obtain a generalized
neural network ensemble model rather than a site-specific model. To reach this goal, all
3616 samples were used without further divisions.

3.3. Dataset Splitting and Feature Scaling

In this study, the dataset was randomly shuffled and then split into training, validation,
and testing sets. A training set was used to train the model. If the model was evaluated on
the same data on which it had been trained, it might have performed well on that specific
dataset but would have failed to generalize to new data (overfitting); the validation set
helped detect and prevent this issue. Moreover, the validation set allowed the tuning of
the hyperparameters without introducing bias from the test set. The test set provided an
unbiased evaluation of the final performance of the model, indicating how well it would
perform on new real-world data. Generally, separating data into training, validation, and
test sets can ensure that ML models are robust, generalize well to new data, and perform
reliably in real-world scenarios. More specifically, in our study, 60% of the 3616 samples
were allocated to the training set, whereas 20% was assigned each to the validation and
test sets.

Table 1 presents the descriptive statistics of the training dataset. As indicated in the
table, the scales of the six features differed. Generally, if the features are on different
scales, ML algorithms may assign greater importance to features with larger magnitudes.
Additionally, these algorithms can be sensitive to the scale of the input features, thereby
affecting their performance. To mitigate these issues, the features were standardized by
removing the mean and scaling to the unit variance. Let xj = [f1,j, f2,j, f3,j, f4,j, f5,j, f6,j] be
the jth sample in the dataset, where f1,j, f2,j, f3,j, f4,j, f5,j, and f6,j are the corresponding
feature values of the jth sample. Then, the standard score of each feature value in xj is
calculated as:

f̃i,j =
(fi,j − f̄i)

σi
, ∀i ∈ {1, 2, 3, 4, 5, 6}, (1)

where f̄i is the mean of fi for the training samples, and σi is the standard deviation of fi for
the training samples.

Table 1. Descriptive statistics of the training dataset.

Longitude Latitude Elevation (m) Altitude
(m)

Clutter
Height (m)

Distance
(m)

Path
Loss (dB)

Count 2169 2169 2169 2169 2169 2169 2169
Mean 3.1638 6.6745 54.39 54.80 5.81 443.83 143.18

Std 0.0038 0.0025 5.89 3.91 2.77 270.23 9.21
Min 3.1559 6.6676 45.00 49.00 4.00 2.00 104.00
25% 3.1606 6.6730 49.00 52.00 4.00 250.00 139.00
50% 3.1634 6.6745 54.00 54.00 6.00 384.00 145.00
75% 3.1670 6.6757 59.00 57.00 6.00 668.00 149.00
Max 3.1706 6.6789 64.00 64.00 16.00 1132.00 162.00

Count: Number of samples; Std: standard deviation; 25, 50, and 75% indicate the 25th, 50th, and 75th percentiles,
respectively.

Sensors 2024, 24, 304 7 of 20

3.4. Hyperparameter Optimization

Our proposed model consists of multiple ANNs, each of which can have multiple
fully connected layers as hidden layers; every input neuron is connected to every output
neuron, which is a configuration commonly used in ANNs. To construct the optimal
ensemble structure, hyperparameter optimization processes were executed. The considered
hyperparameters included the number of hidden layers, number of neurons in each hidden
layer, and type of activation function. Throughout these processes, a training dataset was
used to train each ANN. Early stopping was applied to prevent the training of the ANN for
an excessive number of epochs, which could lead to overfitting; a validation dataset was
used to detect and prevent overfitting. For each hyperparameter configuration, the mean
squared error (MSE) of the ANN was computed for the validation dataset.

For clarity, let M be the number of hidden layers in the ANN and N be the number of
neurons in each hidden layer. Figure 2 shows a heat map of the MSE values based on M and
N. In the experiments shown in Figure 2a, the ReLU was used as the activation function
in each hidden layer, and the ANN with M = 8 and N = 10 achieved the minimum MSE;
in those shown in Figure 2b, a sigmoid function was used as the activation function and
an ANN with M = 3 and N = 12 achieved the minimum MSE; and in those shown in
Figure 2c, a hyperbolic tangent function was used, and the ANN with M = 1 and N = 22
achieved the optimal MSE. The results presented in Figure 2b,c showed that the MSE of the
ANNs had never decreased below 79 for M values ≥ 4.

(a)

(b)

Figure 2. Cont.

Sensors 2024, 24, 304 8 of 20

(c)

Figure 2. Heat map of MSE values based on M and N: (a) ReLU, (b) sigmoid, and (c) tanh.

3.5. Ensemble of Artificial Neural Networks

As illustrated in Figure 1, the proposed method involves a neural network ensemble
model composed of multiple ANNs. To enhance the diversity among the integrated ANNs,
the top T ANNs were selected based on the results of the hyperparameter optimization.
For simplicity, hereafter, the selected top T ANNs shall be referred to as ANN1, ANN2,
ANN3, · · · , ANNT−1, and ANNT. Table 2 lists the hyperparameter configurations and MSE
of the 20 highest-ranking ANNs.

Table 2. Hyperparameter configuration and MSE for the 20 highest-ranked ANNs.

Rank # Hidden Layers
(M)

Neurons in Each
Hidden Layer (N) Activation Function Mean Squared

Error (MSE)

1 3 12 sigmoid 34.33
2 2 10 sigmoid 35.81
3 2 19 sigmoid 36.03
4 2 23 sigmoid 36.10
5 2 17 sigmoid 36.43
6 2 8 sigmoid 36.52
7 2 24 sigmoid 36.59
8 2 7 sigmoid 36.70
9 2 12 sigmoid 36.73
10 1 22 tanh 36.80
11 2 16 sigmoid 36.83
12 2 22 sigmoid 36.94
13 2 13 sigmoid 37.04
14 3 15 sigmoid 37.11
15 2 15 sigmoid 37.13
16 2 11 sigmoid 37.41
17 2 14 sigmoid 37.52
18 2 6 sigmoid 37.56
19 2 25 sigmoid 37.82
20 1 15 tanh 37.83

The pseudocode for the proposed neural network ensemble method is presented in
Algorithm 1. As shown in the pseudocode, the given dataset was split into training, valida-
tion, and test sets. Feature scaling was applied to each set using Equation (1). Subsequently,
various ANNs were constructed with different hyperparameter configurations. Each ANN
was trained using a training dataset and evaluated on the validation dataset, and the MSE

Sensors 2024, 24, 304 9 of 20

results were recorded. The top-ranked ANNs were selected based on their MSE results,
and the final model was constructed using an ensemble of the selected ANNs.

Algorithm 1 Pseudocode for the proposed neural network ensemble method

Input: Dataset D
Output: Final ensemble model E

1: Split D into training, validation, and test sets (Dtraining, Dvalidation, and Dtest, respec-
tively)

2: Determine f̄i and σi
3: Apply feature scaling to Dtraining, Dvalidation, and Dtest using Equation (1)
4: Set T, M, and N
5: Set the maximum epochs (max_epochs)
6: Set the number of training samples in the batch (batch_size)
7: Create an early stopping callback (es_cb)
8: Create an empty list H
9: for m = 0 to M do

10: for n = 1 to N do
11: for activation in {“ReLU”, “sigmoid”, “tanh”} do
12: model = Build_Neural_Network(m, n, activation)
13: model = Training(model, Dtraining, Dvalidation, max_epochs, batch_size, es_cb)
14: val_loss = Evaluation(model, Dvalidation)
15: Append [val_loss, model] to H
16: end for
17: end for
18: end for
19: Sort each model in ascending order based on the val_loss recorded on H
20: Select the top-ranked T models
21: E = Build_Ensemble(selected T models)
22: return E

The key concept behind the proposed neural network ensemble model was training
multiple ANNs with different subsets of hyperparameters and aggregating their predictions.
Through this process, the proposed model became more robust and less prone to overfitting.
The ensemble nature of the model helped improve the generalization and predictive
performance. During the prediction phase, each ANN in the ensemble independently
predicted input data. The predictions from all ANNs were then aggregated to produce the
final prediction. In this study, the final output of the neural network ensemble model was
the average of the predictions made by each ANN. For clarity, let ŷr be the path loss value
predicted by ANNr. Then, the predicted path loss values from T ANNs can be represented
as vector Ŷ as follows:

Ŷ = [ŷ1, ŷ2, · · · , ŷT−1, ŷT]. (2)

To derive the final prediction result from Ŷ in Equation (2), the predictions of T ANNs
were averaged.

4. Experimental Setup
4.1. Evaluation Metrics

Generally, using multiple metrics in the performance evaluation of algorithms pro-
vides a more comprehensive and nuanced understanding of their performance; relying
on a single metric may result in an incomplete or biased assessment. Therefore, for our
performance evaluation, we utilized various metrics, including the MSE, root mean square
error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), mean
squared logarithmic error (MSLE), root mean squared logarithmic error (RMSLE), and
coefficient of determination. For clarity, let yj be the actual path loss value for the jth sample
xj in the dataset, ȳj be the predicted path loss value for xj, and S be the total number of

Sensors 2024, 24, 304 10 of 20

ȳj generated from S samples in the dataset. Subsequently, the MSE, which measures the
average of the squares of the errors, can be computed using the following formula:

MSE =
1
S

S

∑
j=1

(yj − ȳj)
2. (3)

Although the RMSE and MSE are similar in terms of model scoring, they are not always
immediately interchangeable, with MSE tending to be more sensitive to outliers, treating
all errors equally regardless of their magnitude. If outliers are present in the dataset, MSE
may be influenced more by these extreme values. In contrast, the RMSE tends to be less
sensitive to outliers because it involves the square root of the squared errors; the RMSE is
defined as the square root of the MSE, as follows:

RMSE =
√

MSE =

√√√√ 1
S

S

∑
j=1

(yj − ȳj)2. (4)

Compared with the MSE, the MAE is less sensitive to outliers because each error term
contributes equally to the overall error because it is based on absolute differences; the MAE
is defined as the average of the absolute errors:

MAE =
1
S

S

∑
j=1

|yj − ȳj|. (5)

Regarding the MAPE, it is defined as follows:

MAPE =
1
S

S

∑
j=1

∣∣∣∣yj − ȳj

yj

∣∣∣∣. (6)

Then, the MSLE, which measures the mean of the squared logarithmic differences between
yj and ȳj, can be computed as follows:

MSLE =
1
S

S

∑
j=1

{log(yj + 1)− log(ȳj + 1)}2. (7)

Concerning the RMSLE, it is defined as the square root of the MSLE, as follows:

RMSLE =
√

MSLE =

√√√√ 1
S

S

∑
j=1

{log(yj + 1)− log(ȳj + 1)}2. (8)

The coefficient of determination, which is denoted by R2, is defined as follows:

R2 = 1 −
∑S

j=1(yj − ȳj)
2

∑S
j=1(yj − ȳ)2

, (9)

where ȳ is the mean of the actual path loss values in the dataset (i.e., ȳ = 1/S × ∑S
j=1 yj),

and R2 is typically used as a measure of the goodness-of-fit of a model, with an R2 value of
1 indicating that the predictions of the model fit the actual data perfectly.

4.2. Implementation of Benchmark Methods

In our experiments, to compare the performance of the proposed method, we imple-
mented nine path loss prediction methods: (1) SVM-based, (2) k-NN-based, (3) RF-based,
(4) decision tree (DT)-based, (5) multiple linear regression (MLR)-based, (6) LASSO-based,

Sensors 2024, 24, 304 11 of 20

(7) ridge regression-based, (8) Elastic Net-based, and (9) ANN-based methods. To achieve
this, the scikit-learn ML library for Python was utilized. The optimal hyperparameter
configuration for each model was determined using the HalvingGridSearchCV class. The
nine methods are detailed below.

4.2.1. SVM-Based Path Loss Prediction Method

An SVM was employed for path loss prediction in [41–47]. In our study, an SVM was
implemented using an SVR class in the scikit-learn library. The SVR class is an implementa-
tion of epsilon-support vector regression and includes various hyperparameters, such as
the kernel type, kernel coefficient, and regularization parameter. Table 3 presents the opti-
mal hyperparameter combinations for SVM, as determined through the hyperparameter
optimization process.

Table 3. Hyperparameter optimization results for SVM.

Hyperparameter Search Range Determined Value

kernel {“linear”, “poly”, “rbf”, “sigmoid”} “poly”
degree {1, 2, 3, 4, 5} 2
gamma {“scale”, “auto”} “scale”

coef0 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} 0.2
C {0.001, 0.01, 0.1, 1, 10, 100, 1000} 0.1

shrinking {True, False} True

4.2.2. k-NN-Based Path Loss Prediction Method

The k-NN was employed for path loss prediction in [46–48]. It was implemented
using the KNeighborsRegressor class in the scikit-learn library. This class includes vari-
ous hyperparameters such as the number of neighbors, type of weight function used in
the prediction, and type of metric used for distance computation. Table 4 presents the
optimal hyperparameter combination for k-NN, as determined using the hyperparameter
optimization process.

Table 4. Hyperparameter optimization results for k-NN.

Hyperparameter Search Range Determined Value

n_neighbors {2, 3, 4, 5, 6, 7, 8, 9, 10} 5
weights {“uniform”, “distance”} “uniform”
leaf_size {10, 20, 30, 40, 50} 10
metric {“minkowski”, “euclidean”, “cityblock”} “minkowski”

4.2.3. RF-Based Path Loss Prediction Method

The RF technique was employed for path loss prediction in [45–48]. In our study, it
was implemented using the RandomForestRegressor class in the scikit-learn library. This
class includes various hyperparameters, such as the number of decision trees in the model,
the type of function used to measure the quality of a split, and the maximum depth of
the tree. Table 5 presents the optimal hyperparameter combination for RF, as determined
through the hyperparameter optimization process.

Table 5. Hyperparameter optimization results for RF.

Hyperparameter Search Range Determined Value

n_estimators {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} 100

criterion {“squared_error”, “absolute_error”, “friedman_mse”,
“poisson”} “absolute_error”

max_depth {3, 4, 5, 6, 7, 8, 9, 10} 8

Sensors 2024, 24, 304 12 of 20

4.2.4. DT-Based Path Loss Prediction Method

A DT predicts a continuous value by recursively partitioning the data based on the
input features and creating a tree structure in which each leaf node contains the predicted
value for instances that follow the path to that leaf. It can also be employed for path loss
prediction. In our study, DT was implemented using the DecisionTreeRegressor class in
the scikit-learn library. This class includes various hyperparameters, such as the type of
function used to measure the quality of a split, the strategy used to choose the split at each
node, and the maximum depth of the tree. Table 6 presents the optimal hyperparameter
combination for DT, as determined through the hyperparameter optimization process.

Table 6. Hyperparameter optimization results for DT.

Hyperparameter Search Range Determined Value

criterion {“squared_error”, “friedman_mse”, “absolute_error”,
“poisson”} “friedman_mse”

splitter {“best”, “random”} “random”
max_depth {3, 4, 5, 6, 7, 8, 9, 10} 8

4.2.5. MLR-Based Path Loss Prediction Method

Multiple Linear Regression (MLR) is an extension of simple linear regression, which
models the relationship between a dependent variable and multiple independent variables.
In a simple linear regression, there is only one independent variable, whereas in multiple
linear regression, there are two or more independent variables. The coefficients of the
independent variables and the y-intercept are estimated from the training samples using
methods such as the least-squares method, which minimizes the MSE. Regarding MLR, it
is widely used in various fields to predict outcomes, understand the relationships between
variables, and determine the strength and significance of these relationships. In our study,
MLR was implemented using the LinearRegression class in the scikit-learn library and em-
ployed as a benchmark method. Table 7 presents the optimal hyperparameter combination
for MLR, as determined by the hyperparameter optimization process.

Table 7. Hyperparameter optimization results for MLR.

Hyperparameter Search Range Determined Value

fit_intercept {True, False} True
copy_X {True, False} True
positive {True, False} False

4.2.6. LASSO-Based Path Loss Prediction Method

The LASSO regularization technique is used in linear regression to prevent overfitting
and encourage simpler models. Linear regression is performed to determine the coefficients
of the independent variables that best fit the observed data. Regarding LASSO, it introduces
a penalty term for the traditional linear regression objective function. The penalty term,
denoted by L1, is proportional to the absolute values of the coefficients. For brevity, the
linear regression model trained with L1 was named LASSO. LASSO was implemented using
the LASSO class in the scikit-learn library and employed as a benchmark method. Table 8
presents the optimal hyperparameter combination for LASSO, as determined through the
hyperparameter optimization process.

Sensors 2024, 24, 304 13 of 20

Table 8. Hyperparameter optimization results for LASSO.

Hyperparameter Search Range Determined Value

alpha {0.001, 0.01, 0.1, 1, 10, 100} 0.1
fit_intercept {True, False} True

copy_X {True, False} True
warm_start {True, False} True

positive {True, False} False

4.2.7. Ridge-Based Path Loss Prediction Method

Ridge regression, also known as Tikhonov regularization, is a technique used in
linear regression to address multicollinearity and prevent overfitting. Like LASSO, ridge
regression introduces a penalty term to the traditional linear regression objective function.
The penalty term, denoted by L2, is proportional to the square of the coefficient. Unlike
LASSO, ridge regression does not force the coefficients to be zero. Instead, it reduces
the coefficients toward zero, thereby reducing their magnitudes. Advantageously, ridge
regression can handle multicollinearity, which occurs when the independent variables in
a regression model are highly correlated. Multicollinearity can also lead to unstable and
unreliable coefficient estimates. The ridge regression adds a penalty term to the objective
function, which mitigates the impact of multicollinearity by discouraging overly large
coefficients. For brevity, the linear regression model trained with L2 was named Ridge.
It was implemented using the Ridge class in the scikit-learn library and employed as a
benchmark method. Table 9 presents the optimal hyperparameter combination for MLR, as
determined through the hyperparameter optimization process.

Table 9. Hyperparameter optimization results for Ridge.

Hyperparameter Search Range Determined Value

alpha {0.001, 0.01, 0.1, 1, 10, 100} 10
fit_intercept {True, False} True

copy_X {True, False} True
positive {True, False} False

4.2.8. Elastic Net-Based Path Loss Prediction Method

Elastic Net is a regularization technique used in linear regression that combines both
the L1 (LASSO) and L2 (Ridge) regularization penalties. It is designed to find a balance
between LASSO and Ridge regression and thereby overcome some of their limitations.
Elastic Net introduces a new hyperparameter that controls the combination of L1 and
L2 penalties. The regularization term in the Elastic Net is a linear combination of both
penalties. In this study, an Elastic Net was implemented using the ElasticNet class in the
scikit-learn library and used as the benchmark method. Table 10 presents the optimal
hyperparameter combinations for the Elastic Net determined through the hyperparameter
optimization process.

Table 10. Hyperparameter optimization results for Elastic Net.

Hyperparameter Search Range Determined Value

alpha {0.001, 0.01, 0.1, 1, 10, 100} 10
l1_ratio {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 0.1

fit_intercept {True, False} True
copy_X {True, False} False

warm_start {True, False} False
positive {True, False} False

Sensors 2024, 24, 304 14 of 20

4.2.9. ANN-Based Path Loss Prediction Method

As previously noted, ANNs have been employed for path loss prediction [38,56–75].
Based on the details of hyperparameter configurations for ANNs in existing research,
ANNs were implemented in our study using the TensorFlow library and employed as
benchmarks. Table 11 lists the hyperparameter combinations for the ANNs.

Table 11. Hyperparameter configuration for ANNs.

Reference # Neurons in the 1st
Hidden Layer

Neurons in the 2nd
Hidden Layer Activation Function

[38] 7 3 tanh
[63] 10 10 tanh
[65] 80 None tanh
[68] 9 None tanh
[70] 4 None tanh
[71] 10 None sigmoid
[72] 3 None sigmoid

[73,75] 20 None sigmoid
[74] 57 None sigmoid

5. Results and Discussion

Table 12 lists the performance metrics for the ensemble models with different numbers
of ANNs; it shows that the best performance of the proposed ensemble model was when
T = 20. Therefore, in this study, the optimal value of T was set as 20. In other words, the
proposed ensemble model consisted of 20 ANNr models (r ∈ {1, 2, · · · , 19, 20}). Clearly, the
performance of the ensemble model increased as the number of ANNs increased. However,
when the number of ANNs exceeded 20, the performance of the ensemble model did not
improve further. Based on these results, an ensemble model consisting of 20 ANNs was
selected as the final model.

Table 12. Performance comparison between ensemble models with different numbers of ANNs.

ANNs
(T) MSE RMSE MAE MAPE MSLE RMSLE R2

4 25.4125 5.0411 3.1862 0.0229 0.0013 0.0362 0.6918
8 22.6888 4.7633 2.9207 0.0209 0.0012 0.0342 0.7248

12 17.3473 4.1650 2.2916 0.0163 0.0009 0.0298 0.7896
16 13.1180 3.6219 1.7190 0.0123 0.0007 0.0260 0.8409
20 8.6529 2.9416 1.2753 0.0090 0.0004 0.0210 0.8951
24 9.3429 3.0566 1.3956 0.0099 0.0005 0.0219 0.8867
28 9.0502 3.0084 1.3400 0.0095 0.0005 0.0215 0.8902
32 10.0002 3.1623 1.4605 0.0104 0.0005 0.0226 0.8787
36 9.4920 3.0809 1.4201 0.0101 0.0005 0.0221 0.8849
40 9.7920 3.1292 1.4149 0.0101 0.0005 0.0224 0.8812

Table 13 lists the MSE, RMSE, MAE, MAPE, MSLE, RMSLE, and R2 of each path
loss prediction method. Clearly, the proposed ensemble model performed the best across
all evaluation metrics. This was because the ensemble model comprised the top-ranked
ANNs selected based on the MSE results, thereby enhancing the diversity among the
integrated ANNs and enabling the model to achieve a robust and accurate path loss predic-
tion performance. Among the considered benchmark methods, the k-NN-based method
achieved the best performance, whereas the ANN-based method with the hyperparameters
described in [38] achieved the worst performance. The MAE of the proposed method was
approximately 1.2753, whereas that of the k-NN-based method was 2.4983. The MAE of the
proposed method was approximately 1.223 less than that of the k-NN-based method. The
results in Table 13 revealed that the proposed method could predict path loss accurately.

Sensors 2024, 24, 304 15 of 20

Table 13. Performance comparison between the proposed and benchmark methods.

Method MSE RMSE MAE MAPE MSLE RMSLE R2

SVM 59.2186 7.6954 5.3799 0.0397 0.0032 0.0569 0.2818
k-NN 11.7490 3.4277 2.4983 0.0178 0.0006 0.0248 0.8575

RF 20.0194 4.4743 3.1856 0.0228 0.0010 0.0320 0.7572
DT 22.4978 4.7432 3.5409 0.0253 0.0012 0.0340 0.7271

MLR 60.9421 7.8065 5.8778 0.0427 0.0033 0.0571 0.2609
LASSO 62.0635 7.8780 5.9153 0.0430 0.0033 0.0576 0.2473
Ridge 61.0068 7.8107 5.8782 0.0428 0.0033 0.0572 0.2601

ElasticNet 80.6553 8.9808 6.6842 0.0488 0.0043 0.0655 0.0218
[38] 82.7867 9.0987 6.7748 0.0495 0.0044 0.0663 -0.0040
[63] 51.1670 7.1531 5.3816 0.0387 0.0027 0.0516 0.3794
[65] 53.2452 7.2969 5.5224 0.0401 0.0028 0.0532 0.3542
[68] 45.5829 6.7515 5.0839 0.0367 0.0024 0.0487 0.4472
[70] 66.3351 8.1446 5.9073 0.0430 0.0035 0.0591 0.1955
[71] 48.0863 6.9344 5.2745 0.0380 0.0025 0.0501 0.4168
[72] 64.6372 8.0397 5.8128 0.0423 0.0034 0.0583 0.2161

[73,75] 51.1208 7.1499 5.4451 0.0394 0.0027 0.0518 0.3800
[74] 60.2464 7.7619 5.8966 0.0428 0.0032 0.0567 0.2693

Proposed 8.6529 2.9416 1.2753 0.0090 0.0004 0.0210 0.8951

Figure 3 shows the measured and predicted path loss for three survey routes. In the
figure, the values of the measured path loss data were plotted against the corresponding
distance. To achieve this, we sorted the data in the test set by the distance between the
transmitter and receiver after splitting the test set according to the survey route. In all
survey routes, the receiver encountered non-line-of-sight (NLoS) conditions, attributed
to obstructions such as buildings and trees. From the figure, it is seen that the prediction
performance of the proposed method aligns closely with the measured data. This result is
consistent with the performance shown in Table 13.

(a)

Figure 3. Cont.

Sensors 2024, 24, 304 16 of 20

(b)

(c)

Figure 3. Measured and predicted path loss against distance along three survey routes: (a) Survey
Route X, (b) Survey Route Y, and (c) Survey Route Z.

6. Conclusions

In this study, we propose a novel ML-based method for path loss prediction. Our
approach leveraged the power of neural network ensemble learning and provided a robust
and accurate prediction model. By constructing an ensemble of neural networks and
selecting the top-ranked networks based on a hyperparameter optimization process, the
method achieved a state-of-the-art performance in path loss prediction, as evidenced
by the results of rigorous validation on a publicly available dataset. Furthermore, we
comprehensively compared its performance with that of various ML-based methods. The
simulation results demonstrated the superior performance of the proposed method. Future
research directions may explore fine tuning the model, considering additional parameters,
and expanding the dataset to ensure the generalizability of the proposed method across
diverse scenarios.

Author Contributions: Conceptualization, B.K. and H.S.; methodology, B.K.; software, B.K.; vali-
dation, B.K.; formal analysis, B.K.; investigation, B.K.; resources, B.K.; data curation, B.K.; writing—
original draft preparation, B.K.; writing—review and editing, B.K.; visualization, B.K.; supervision,
H.S.; project administration, H.S.; funding acquisition, H.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No.2021R1F1A1051075).

Institutional Review Board Statement: Not applicable.

Sensors 2024, 24, 304 17 of 20

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Son, H.; Lee, S. Bandwidth and region division for broadband multi-cell networks. IEEE Commun. Lett. 2006, 10, 360–362.
2. Kwon, B.; Kim, S.; Lee, H.; Lee, S. A downlink power control algorithm for long-term energy efficiency of small cell network.

Wirel. Netw. 2015, 21, 2223–2236. [CrossRef]
3. Kwon, B.; Kim, S.; Jeon, D.; Lee, S. Iterative interference cancellation and channel estimation in evolved multimedia broadcast

multicast system using filter-bank multicarrier-quadrature amplitude modulation. IEEE Trans. Broadcast. 2016, 62, 864–875.
[CrossRef]

4. Kwon, B.; Kim, S.; Lee, S. Scattered reference symbol-based channel estimation and equalization for FBMC-QAM systems. IEEE
Trans. Commun. 2017, 65, 3522–3537. [CrossRef]

5. Kwon, B.; Lee, S. Cross-antenna interference cancellation and channel estimation for MISO-FBMC/QAM-based eMBMS. Wirel.
Netw. 2018, 24, 3281–3293. [CrossRef]

6. Loh, W.R.; Lim, S.Y.; Rafie, I.F.M.; Ho, J.S.; Tze, K.S. Intelligent base station placement in urban areas with machine learning. IEEE
Antennas Wirel. Propag. Lett. 2023, 22, 2220–2224. [CrossRef]

7. Srinivasa, S.; Haenggi, M. Path loss exponent estimation in large wireless networks. In Proceedings of the IEEE Information
Theory and Applications Workshop, La Jolla, CA, USA, 8–13 February 2009; pp. 124–129.

8. Egli, J.J. Radio propagation above 40 MC over irregular terrain. Proc. IRE 1957, 45, 1383–1391. [CrossRef]
9. Hata, M. Empirical formula for propagation loss in land mobile radio services. IEEE Trans. Veh. Technol. 1980, 29, 317–325.

[CrossRef]
10. Longley, A.G. Prediction of Tropospheric Radio Transmission Loss over Irregular Terrain: A Computer Method-1968; Institute for

Telecommunication Sciences: Boulder, CO, USA, 1968; pp. 1–147
11. Okumura, Y. Field strength and its variability in VHF and UHF land-mobile radio service. Rev. Electr. Commun. Lab. 1968,

16, 825–873.
12. 3GPP. Study on Channel Model for Frequencies from 0.5 to 100 GHz (Release 16) V16.1.0; Technical Report; Rep. TR 38.901; 3GPP:

Sophia Antipolis, France, 2020.
13. Zhu, Q.; Wang, C. X.; Hua, B.; Mao, K.; Jiang, S.; Yao, M. 3GPP TR 38.901 Channel Model. In The Wiley 5G Ref: The Essential 5G

Reference Online; Wiley Press: Hoboken, NJ, USA, 2021; pp. 1–35.
14. Riviello, D.G.; Di Stasio, F.; Tuninato, R. Performance analysis of multi-user MIMO schemes under realistic 3GPP 3-D channel

model for 5G mmwave cellular networks. Electronics 2022, 11, 330. [CrossRef]
15. Green, D.; Yun, Z.; Iskander, M. F. Path loss characteristics in urban environments using ray-tracing methods. IEEE Antennas

Wirel. Propag. Lett. 2017, 16, 3063–3066. [CrossRef]
16. Qian, J.; Wu, Y., Saleem, A.; Zheng, G. Path loss model for 3.5 GHz and 5.6 GHz bands in cascaded tunnel environments. Sensors

2022, 22, 4524. [CrossRef] [PubMed]
17. Timmins, I.J.; O’Young, S. Marine communications channel modeling using the finite-difference time domain method. IEEE Trans.

Veh. Technol. 2008, 58, 2626–2637. [CrossRef]
18. Kwon, B.; Kim, J.; Lee, K.; Lee, Y.K.; Park, S.; Lee, S. Implementation of a virtual training simulator based on 360° multi-view

human action recognition. IEEE Access 2017, 5, 12496–12511. [CrossRef]
19. Kwon, B.; Song, H.; Lee, S. Accurate blind Lempel-Ziv-77 parameter estimation via 1-D to 2-D data conversion over convolutional

neural network. IEEE Access 2020, 8, 43965–43979. [CrossRef]
20. Kwon, B.; Lee, S. Human skeleton data augmentation for person identification over deep neural network. Appl. Sci. 2020, 10, 4849.

[CrossRef]
21. Kwon, B.; Lee, S. Ensemble learning for skeleton-based body mass index classification. Appl. Sci. 2020, 10, 7812. [CrossRef]
22. Kwon, B.; Lee, S. Joint swing energy for skeleton-based gender classification. IEEE Access 2021, 9, 28334–28348. [CrossRef]
23. Kwon, B.; Huh, J.; Lee, K.; Lee, S. Optimal camera point selection toward the most preferable view of 3-d human pose. IEEE Trans.

Syst. Man, Cybern. Syst. 2022, 52, 533–553. [CrossRef]
24. Kwon, B.; Kim, T. Toward an online continual learning architecture for intrusion detection of video surveillance. IEEE Access 2022,

10, 89732–89744. [CrossRef]
25. Cambria, E.; White, B. Jumping NLP curves: A review of natural language processing research. IEEE Comput. Intell. Mag. 2014,

9, 48–57. [CrossRef]
26. Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural

Netw. Learn. Syst. 2020, 32, 604–624. [CrossRef] [PubMed]
27. Deng, J.; Ren, F. A survey of textual emotion recognition and its challenges. IEEE Trans. Affect. Comput. 2023, 14, 49–67. [CrossRef]
28. Liu, Y.; Bi, S.; Shi, Z.; Hanzo, L. When machine learning meets big data: A wireless communication perspective. IEEE Veh. Technol.

Mag. 2019, 15, 63–72. [CrossRef]
29. Sun, Y.; Peng, M.; Zhou, Y.; Huang, Y.; Mao, S. Application of machine learning in wireless networks: Key techniques and open

issues. IEEE Commun. Surv. Tutorials 2019, 21, 3072–3108. [CrossRef]

http://doi.org/10.1007/s11276-015-0907-2
http://dx.doi.org/10.1109/TBC.2016.2617294
http://dx.doi.org/10.1109/TCOMM.2017.2710310
http://dx.doi.org/10.1007/s11276-017-1531-0
http://dx.doi.org/10.1109/LAWP.2023.3281611
http://dx.doi.org/10.1109/JRPROC.1957.278224
http://dx.doi.org/10.1109/T-VT.1980.23859
http://dx.doi.org/10.3390/electronics11030330
http://dx.doi.org/10.1109/LAWP.2017.2761299
http://dx.doi.org/10.3390/s22124524
http://www.ncbi.nlm.nih.gov/pubmed/35746306
http://dx.doi.org/10.1109/TVT.2008.2010326
http://dx.doi.org/10.1109/ACCESS.2017.2723039
http://dx.doi.org/10.1109/ACCESS.2020.2977827
http://dx.doi.org/10.3390/app10144849
http://dx.doi.org/10.3390/app10217812
http://dx.doi.org/10.1109/ACCESS.2021.3058745
http://dx.doi.org/10.1109/TSMC.2020.3004338
http://dx.doi.org/10.1109/ACCESS.2022.3201139
http://dx.doi.org/10.1109/MCI.2014.2307227
http://dx.doi.org/10.1109/TNNLS.2020.2979670
http://www.ncbi.nlm.nih.gov/pubmed/32324570
http://dx.doi.org/10.1109/TAFFC.2021.3053275
http://dx.doi.org/10.1109/MVT.2019.2953857
http://dx.doi.org/10.1109/COMST.2019.2924243

Sensors 2024, 24, 304 18 of 20

30. Yang, H.; Xie, X.; Kadoch, M. Machine learning techniques and a case study for intelligent wireless networks. IEEE Netw. 2020,
34, 208–215. [CrossRef]

31. Zhu, G.; Liu, D.; Du, Y.; You, C.; Zhang, J.; Huang, K. Toward an intelligent edge: Wireless communication meets machine learning.
IEEE Commun. Mag. 2020, 58, 19–25. [CrossRef]

32. Hu, S.; Chen, X.; Ni, W.; Hossain, E.; Wang, X. Distributed machine learning for wireless communication networks: Techniques,
architectures, and applications. IEEE Commun. Surv. Tutorials 2021, 23, 1458–1493. [CrossRef]

33. Li, J.; Zhang, X. Deep reinforcement learning-based joint scheduling of eMBB and URLLC in 5G networks. IEEE Wirel. Commun.
Lett. 2020, 9, 1543–1546. [CrossRef]

34. Xu, Y.; Xu, W.; Wang, Z.; Lin, J.; Cui, S. Load balancing for ultradense networks: A deep reinforcement learning-based approach.
IEEE Internet Things J. 2019, 6, 9399–9412. [CrossRef]

35. Spantideas, S.T.; Giannopoulos, A.E.; Kapsalis, N.C.; Kalafatelis, A.; Capsalis, C.N.; Trakadas, P. Joint energy-efficient and
throughput-sufficient transmissions in 5G cells with deep Q-learning. In Proceedings of the IEEE International Mediterranean
Conference on Communications and Networking (MeditCom), Athens, Greece, 7–10 September 2021; pp. 265–270.

36. Kaloxylos, A.; Gavras, A.; Camps, D.; Ghoraishi, M.; Hrasnica, H. AI and ML–Enablers for beyond 5G Networks. 5G PPP Technol.
Board 2021, 1, 1–145.

37. Li, X.; Fang, J.; Cheng, W.; Duan, H.; Chen, Z.; Li, H. Intelligent power control for spectrum sharing in cognitive radios: A deep
reinforcement learning approach. IEEE Access 2018, 6, 25463–25473. [CrossRef]

38. Ostlin, E.; Zepernick, H.J.; Suzuki, H. Macrocell path-loss prediction using artificial neural networks. IEEE Trans. Veh. Technol.
2010, 59, 2735–2747. [CrossRef]

39. Isabona, J.; Srivastava, V.M. Hybrid neural network approach for predicting signal propagation loss in urban microcells. In
Proceedings of the IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Agra, India, 21–23 December 2016; pp. 1–5.

40. Fernandes, L.C.; Soares, A.J.M. A hybrid model for path loss calculation in urban environment. In Proceedings of the 17th
International Conference on the Computation of Electromagnetic Fields (COMPUMAG), Florianópolis, Brazil, 22–26 November
2009; pp. 460–461.

41. Piacentini, M.; Rinaldi, F. Path loss prediction in urban environment using learning machines and dimensionality reduction
techniques. Comput. Manag. Sci. 2011, 8, 371–385. [CrossRef]

42. Timoteo, R.D.; Cunha, D.C.; Cavalcanti, G.D. A proposal for path loss prediction in urban environments using support vector
regression. In Proceedings of the 10th Advanced International Conference on Telecommunications (AICT), Paris, France, 20–24
July 2014; pp. 1–5.

43. Gideon, K.; Nyirenda, C.; Temaneh-Nyah, C. Echo state network-based radio signal strength prediction for wireless communica-
tion in northern Namibia. IET Commun. 2017, 11, 1920–1926. [CrossRef]

44. Famoriji, O.J.; Shongwe, T. Path Loss Prediction in Tropical Regions using Machine Learning Techniques: A Case Study. Electronics
2022, 11, 2711. [CrossRef]

45. Wen, J.; Zhang, Y.; Yang, G.; He, Z.; Zhang, W. Path loss prediction based on machine learning methods for aircraft cabin
environments. IEEE Access 2019, 7, 159251–159261. [CrossRef]

46. Moreta, C.E.G.; Acosta, M.R.C.; Koo, I. Prediction of digital terrestrial television coverage using machine learning regression.
IEEE Trans. Broadcast. 2019, 65, 702–712. [CrossRef]

47. Elmezughi, M.K.; Salih, O.; Afullo, T.J.; Duffy, K.J. Comparative analysis of major machine-learning-based path loss models for
enclosed indoor channels. Sensors 2022, 22, 4967. [CrossRef]

48. Oroza, C.A.; Zhang, Z.; Watteyne, T.; Glaser, S.D. A machine-learning-based connectivity model for complex terrain large-scale
low-power wireless deployments. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 576–584. [CrossRef]

49. Sollich, P.; Krogh, A. Learning with ensembles: How overfitting can be useful. In Proceedings of the Advances in Neural
Information Processing Systems (NIPS), Denver, CO, USA, 27–30 November 1995; pp. 190–196.

50. Kuncheva, L.I.; Whitaker, C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy.
Mach. Learn. 2003, 51, 181–207. [CrossRef]

51. Brown, G.; Wyatt, J.; Harris, R.; Yao, X. Diversity creation methods: A survey and categorisation. Inf. Fusion 2005, 6, 5–20.
[CrossRef]

52. Adeva, J.J.G.; Beresi, U.C.; Calvo, R.A. Accuracy and diversity in ensembles of text categorisers. CLEI Electron. J. 2005, 8, 1–12.
53. Karra, D.; Goudos, S.K.; Tsoulos, G.V.; Athanasiadou, G. Prediction of received signal power in mobile communications using

different machine learning algorithms: A comparative study. In Proceedings of the IEEE Panhellenic Conference on Electronics &
Telecommunications (PACET), Volos, Greece, 8–9 November 2019; pp. 1–4.

54. Ho, T.K. Random decision forests. In Proceedings of the IEEE International Conference on Document Analysis and Recognition,
Montreal, QC, Canada, 14–16 August 1995; pp. 278–282.

55. Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844.
56. Lee, J.Y.; Kang, M.Y.; Kim, S.C. Path loss exponent prediction for outdoor millimeter wave channels through deep learning. In

Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019;
pp. 1–5.

http://dx.doi.org/10.1109/MNET.001.1900351
http://dx.doi.org/10.1109/MCOM.001.1900103
http://dx.doi.org/10.1109/COMST.2021.3086014
http://dx.doi.org/10.1109/LWC.2020.2997036
http://dx.doi.org/10.1109/JIOT.2019.2935010
http://dx.doi.org/10.1109/ACCESS.2018.2831240
http://dx.doi.org/10.1109/TVT.2010.2050502
http://dx.doi.org/10.1007/s10287-010-0121-8
http://dx.doi.org/10.1049/iet-com.2016.1290
http://dx.doi.org/10.3390/electronics11172711
http://dx.doi.org/10.1109/ACCESS.2019.2950634
http://dx.doi.org/10.1109/TBC.2019.2901409
http://dx.doi.org/10.3390/s22134967
http://dx.doi.org/10.1109/TCCN.2017.2741468
http://dx.doi.org/10.1023/A:1022859003006
http://dx.doi.org/10.1016/j.inffus.2004.04.004

Sensors 2024, 24, 304 19 of 20

57. Wu, L.; He, D.; Guan, K.; Ai, B.; Briso-Rodríguez, C.; Shui, T.; Liu, C.; Zhu, L.; Shen, X. Received power prediction for suburban
environment based on neural network. In Proceedings of the IEEE International Conference on Information Networking (ICOIN),
Barcelona, Spain, 7–10 January 2020; pp. 35–39.

58. Chang, P.R.; Yang, W.H. Environment-adaptation mobile radio propagation prediction using radial basis function neural networks.
IEEE Trans. Veh. Technol. 1997, 46, 155–160. [CrossRef]

59. Sotiroudis, S.P.; Goudos, S.K.; Gotsis, K.A.; Siakavara, K.; Sahalos, J.N. Application of a composite differential evolution algorithm
in optimal neural network design for propagation path-loss prediction in mobile communication systems. IEEE Antennas Wirel.
Propag. Lett. 2013, 12, 364–367. [CrossRef]

60. Popescu, I.; Kanstas, A.; Angelou, E.; Nafornita, L.; Constantinou, P. Applications of generalized RBF-NN for path loss prediction.
In Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Lisbon,
Portugal, 18 September 2002; pp. 484–488.

61. Zaarour, N.; Kandil, N.; Hakem, N.; Despins, C. Comparative experimental study on modeling the path loss of an UWB channel
in a mine environment using MLP and RBF neural networks. In Proceedings of the IEEE International Conference on Wireless
Communications in Underground and Confined Areas, Clermont-Ferrand, France, 28–30 August 2012; pp. 1–6.

62. Cheng, F.; Shen, H. Field strength prediction based on wavelet neural network. In Proceedings of the 2nd IEEE International
Conference on Education Technology and Computer, Shanghai, China, 22–24 June 2010; pp. 255–258.

63. Balandier, T.; Caminada, A.; Lemoine, V.; Alexandre, F. 170 MHz field strength prediction in urban environment using neural nets.
In Proceedings of the 6th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, ON,
Canada, 27–29 September 1995; pp. 120–124.

64. Panda, G.; Mishra, R.K.; Palai, S.S. A novel site adaptive propagation model. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 447–448.
[CrossRef]

65. Kalakh, M.; Kandil, N.; Hakem, N. Neural networks model of an UWB channel path loss in a mine environment. In Proceedings
of the 75th IEEE Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 6–9 May 2012; pp. 1–5.

66. Azpilicueta, L.; Rawat, M.; Rawat, K.; Ghannouchi, F.M.; Falcone, F. A ray launching-neural network approach for radio wave
propagation analysis in complex indoor environments. IEEE Trans. Antennas Propag. 2014, 62, 2777–2786. [CrossRef]

67. Ayadi, M.; Zineb, A.B.; Tabbane, S. A UHF path loss model using learning machine for heterogeneous networks. IEEE Trans.
Antennas Propag. 2017, 65, 3675–3683. [CrossRef]

68. Popoola, S.I.; Jefia, A.; Atayero, A.A.; Kingsley, O.; Faruk, N.; Oseni, O. F.; Abolade, R.O. Determination of neural network
parameters for path loss prediction in very high frequency wireless channel. IEEE Access 2019, 7, 150462–150483. [CrossRef]

69. Ebhota, V.C.; Isabona, J.; Srivastava, V.M. Environment-adaptation based hybrid neural network predictor for signal propagation
loss prediction in cluttered and open urban microcells. Wirel. Pers. Commun. 2019, 104, 935–948. [CrossRef]

70. Zhang, Y.; Wen, J.; Yang, G.; He, Z.; Wang, J. Path loss prediction based on machine learning: Principle, method, and data
expansion. Appl. Sci. 2019, 9, 1908. [CrossRef]

71. Wu, D.; Zhu, G.; Ai, B. Application of artificial neural networks for path loss prediction in railway environments. In Proceedings
of the 5th IEEE International ICST Conference on Communications and Networking in China, Beijing, China, 25–27 August 2010;
pp. 1–5.

72. Zineb, A.B.; Ayadi, M. A multi-wall and multi-frequency indoor path loss prediction model using artificial neural networks. Arab.
J. Sci. Eng. 2016, 41, 987–996. [CrossRef]

73. Liu, J.; Jin, X.; Dong, F.; He, L.; Liu, H. Fading channel modelling using single-hidden layer feedforward neural networks.
Multidimens. Syst. Signal Process. 2017, 28, 885–903. [CrossRef]

74. Gómez-Pérez, P.; Crego-García, M.; Cuiñas, I.; Caldeirinha, R.F. Modeling and inferring the attenuation induced by vegetation
barriers at 2G/3G/4G cellular bands using artificial neural networks. Measurement 2017, 98, 262–275. [CrossRef]

75. Adeogun, R. Calibration of stochastic radio propagation models using machine learning. IEEE Antennas Wirel. Propag. Lett. 2019,
18, 2538–2542. [CrossRef]

76. Kuno, N.; Takatori, Y. Prediction method by deep-learning for path loss characteristics in an open-square environment. In
Proceedings of the IEEE International Symposium on Antennas and Propagation (ISAP), Busan, Republic of Korea, 23–26 October
2018; pp. 1–2.

77. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

78. Kuno, N.; Yamada, W.; Sasaki, M.; Takatori, Y. Convolutional neural network for prediction method of path loss characteristics
considering diffraction and reflection in an open-square environment. In Proceedings of the IEEE URSI Asia-Pacific Radio Science
Conference (AP-RASC), New Delhi, India, 9–15 March 2019; pp. 1–3.

79. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd
International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015; pp. 1–14.

80. Ahmadien, O.; Ates, H.F.; Baykas, T.; Gunturk, B.K. Predicting path loss distribution of an area from satellite images using deep
learning. IEEE Access 2020, 8, 64982–64991. [CrossRef]

81. Bal, M.; Marey, A.; Ates, H.F.; Baykas, T.; Gunturk, B.K. Regression of large-scale path loss parameters using deep neural networks.
IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1562–1566. [CrossRef]

http://dx.doi.org/10.1109/25.554747
http://dx.doi.org/10.1109/LAWP.2013.2251994
http://dx.doi.org/10.1109/LAWP.2005.860213
http://dx.doi.org/10.1109/TAP.2014.2308518
http://dx.doi.org/10.1109/TAP.2017.2705112
http://dx.doi.org/10.1109/ACCESS.2019.2947009
http://dx.doi.org/10.1007/s11277-018-6061-2
http://dx.doi.org/10.3390/app9091908
http://dx.doi.org/10.1007/s13369-015-1949-6
http://dx.doi.org/10.1007/s11045-015-0380-1
http://dx.doi.org/10.1016/j.measurement.2016.12.014
http://dx.doi.org/10.1109/LAWP.2019.2942819
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/ACCESS.2020.2985929
http://dx.doi.org/10.1109/LAWP.2022.3174357

Sensors 2024, 24, 304 20 of 20

82. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

83. Ates, H.F.; Hashir, S.M.; Baykas, T.; Gunturk, B.K. Path loss exponent and shadowing factor prediction from satellite images using
deep learning. IEEE Access 2019, 7, 101366–101375. [CrossRef]

84. Sani, U.S.; Malik, O.A.; Lai, D.T.C. Improving path loss prediction using environmental feature extraction from satellite images:
Hand-crafted vs. convolutional neural network. Appl. Sci. 2022, 12, 7685. [CrossRef]

85. Popoola, S.I.; Atayero, A.A.; Arausi, O.D.; Matthews, V.O. Path loss dataset for modeling radio wave propagation in smart
campus environment. Data Brief 2018, 17, 1062–1073. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2019.2931072
http://dx.doi.org/10.3390/app12157685
http://dx.doi.org/10.1016/j.dib.2018.02.026
http://www.ncbi.nlm.nih.gov/pubmed/29876462

	Introduction
	Related Work
	Non-ANN-Based Path Loss Prediction
	ANN-Based Path Loss Prediction

	Proposed Method
	Overall Process
	Dataset Preparation
	Dataset Splitting and Feature Scaling
	Hyperparameter Optimization
	Ensemble of Artificial Neural Networks

	Experimental Setup
	Evaluation Metrics
	Implementation of Benchmark Methods
	SVM-Based Path Loss Prediction Method
	k-NN-Based Path Loss Prediction Method
	RF-Based Path Loss Prediction Method
	DT-Based Path Loss Prediction Method
	MLR-Based Path Loss Prediction Method
	LASSO-Based Path Loss Prediction Method
	Ridge-Based Path Loss Prediction Method
	Elastic Net-Based Path Loss Prediction Method
	ANN-Based Path Loss Prediction Method

	Results and Discussion
	Conclusions
	References

