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Abstract: Traditional night light images are black and white with a low resolution, which has largely
limited their applications in areas such as high-accuracy urban electricity consumption estimation.
For this reason, this study proposes a fusion algorithm based on a dual-transformation (wavelet
transform and IHS (Intensity Hue Saturation) color space transform), is proposed to generate color
night light remote sensing images (color-NLRSIs). In the dual-transformation, the red and green
bands of Landsat multi-spectral images and “NPP-VIIRS-like” night light remote sensing images are
merged. The three bands of the multi-band image are converted into independent components by the
IHS modulated wavelet transformed algorithm, which represents the main effective information of the
original image. With the color space transformation of the original image to the IHS color space, the
components I, H, and S of Landsat multi-spectral images are obtained, and the histogram is optimally
matched, and then it is combined with a two-dimensional discrete wavelet transform. Finally, it
is inverted into RGB (red, green, and blue) color images. The experimental results demonstrate
the following: (1) Compared with the traditional single-fusion algorithm, the dual-transformation
has the best comprehensive performance effect on the spatial resolution, detail contrast, and color
information before and after fusion, so the fusion image quality is the best; (2) The fused color-NLRSIs
can visualize the information of the features covered by lights at night, and the resolution of the image
has been improved from 500 m to 40 m, which can more accurately analyze the light of small-scale
area and the ground features covered; (3) The fused color-NLRSIs are improved in terms of their
MEAN (mean value), STD (standard deviation), EN (entropy), and AG (average gradient) so that the
images have better advantages in terms of detail texture, spectral characteristics, and clarity of the
images. In summary, the dual-transformation algorithm has the best overall performance and the
highest quality of fused color-NLRSIs.

Keywords: multi-source remote sensing; IHS color space transform; wavelet transform; image fusion;
color night light remote sensing images

1. Introduction

Compared with traditional remote sensing images acquired during the daytime, night
light remote sensing images (NLRSIs) record the surface light intensity at night, which
can reveal the potential pattern of human activities that cannot be observed in daytime
images and has thus been widely applied in the estimation of socio-economic parameters
such as GDP, electricity consumption, light pollution, poverty index, and Gini coefficient,
etc. [1–5]. Current research on night light image processing focuses on the integration of
Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) and
National Polar-orbiting Partnership/Visible Infrared Imaging Radiometer (NPP/VIIRS)
night light images to obtain high temporal resolution night images [6]. LuoJia1-01, the
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first visible hyper-spectral and nocturnal multi-spectral multi-mode programmable micro-
nanosatellite in orbit in China [7], has overcome the limitations of traditional nocturnal
remote sensing images (i.e., black and white images with low resolution) and provides
a new perspective and data source for small-scale urban development research [8]. The
NPP-VIIRS-like night light remote sensing images datasets are a cross-sensor correction
scheme based on the auto-encoder (AE) model proposed by Yu’s team and can be directly
used simultaneously with NPP-VIIRS night light images [9]. Most of the existing studies
focus on using single NLRSIs, and the current NLRSIs have a long time span; problems such
as relatively low resolution and wide research scope hinder the accurate representation of
the distribution characteristics of human activities in small-scale areas. Thus, it is necessary
to fuse multi-source images to generate color-NLRSIs with more accuracy and detail.

In the processing of NLRSI, researchers have proposed various cross-sensor calibration
models to resolve the inconsistency between DMSP/OLS and NPP/VIIRS data. Li (2017)
and Wu et al. (2019) fit DMSP/OLS and NPP/VIIRS data with a power function and
Gaussian low-pass filtering to DMSP/OLS data [10,11]. Tu et al. (2020) proposed a novel
cross-sensor calibration framework for DMSP/OLS and NPP/VIIRS data to effectively
overcome the shortcomings of DMSP/OLS data and generate night light images with a
long time series [12]. Chen and Yu et al. (2020) proposed a cross-sensor correction scheme
based on the AE model to develop a new long time-series (2000–2020) night light image
with high accuracy [9]. Notably, multi-band fusion for night light remote sensing images is
still experimental, whereas multi-source remote sensing image fusion involves many fields.
Multi-source remote sensing image fusion is an algorithm designed based on practical
problem requirements and applications. With improvements in computer performance,
hardware technology, and wavelet transforms in recent years, image fusion by wavelet
transformation has become a popular research topic [13]. Ranchin et al. (1993) were the first
to apply wavelet transform to the field of remote sensing image fusion [14]. Do et al. (2003)
proposed image fusion of the wavelet transform of multi-resolution analysis (MRA) and the
contourlet transform of time-frequency localization (TFL) based on the wavelet transform
to overcome the shortcomings of the wavelet transform [15]. Maria et al. (2004) improved
the fast intensity hue saturation (IHS) fusion algorithm to reduce the spectral distortion
produced during fusion [16]. Zhou et al. (2014) introduced a generalized IHS algorithm for
fusing more than two sensor images [17]. Liu et al. (2018) combined multi-scale analysis to
optimize the processing of different wavebands and proposed an improved Gram-Schmidt
(GS) fusion algorithm based on the IHS transform [18]. Wang et al. (2021) combined the
advantages of three algorithms; namely, IHS, Principal Component Analysis (PCA), and
wavelet transform, to minimize the spectral distortion caused by uncorrelated replacement
components and resolve the detailed distortion of wavelet transform [19].

Notably, the fused NLRSIs are generally a fusion of optical images and night light
images, and the intensity and morphological information of night light images are fused by
comprehensively using the texture and spectrum characteristics of optical images to extract
the potential information of human activities. However, owing to numerous complicated
factors in the process of image fusion, fused images generally have many problems, such
as spectral distortion and spatial detail distortion [20,21]. Despite the rapid development
of remote sensing technology, existing research results cannot meet practical requirements,
especially when different sensors are fused [22,23].

Although NLRSIs are receiving increasing attention, the application of research still
has certain limitations. Integrating multi-sensor, multi-scale time-phase remote sensing
images to obtain high-resolution color-NLRSIs to alleviate “spatial-temporal conflict” is
imminent. To address the above problems, in this study, we expand the research space
of the multi-source remote sensing image fusion, completely use the complementary
information between night light remote sensing and other remote sensing images, and
further improve the spatial-temporal and spectral resolutions of images through fusion
algorithms. The image information of the Terra, OLS, and VIIRS sensors is fully fused, and
the dual-transformation algorithm is used to conduct multi-band synthesis of night light



Sensors 2024, 24, 294 3 of 21

remote sensing images to generate color-NLRSIs, aimed at improving the resolution of
night light remote sensing images to widen the application potential.

2. Methods
2.1. Dual-Transformation for Fused Images

The IHS transform fusion algorithm is a transform based on the IHS color space.
When processing an image, the RGB channel of the source image is separated into IHS
channels (three elements of intensity I, hue H, and saturation S). This integrates the RGB
image information by transforming components I, H, and S to fuse images with different
spectral ranges. In the IHS transform process, we retain the detail of the original image,
H and S represent the color information of the original image. The multi-spectral image
is IHS transform to separate the RGB channel from the IHS channel, as Equations (1)–(3)
show [24]:

H = arctan
(

S1

S2

)
(1)

where H denotes the hue feature components in IHS transformation, S1 and S2 denote the
intermediate variables of RGB conversion to the IHS color space.
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√(
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1 + S2

2
)

(2)

where S denotes the saturation feature components in IHS transformation, S1 and S2 denote
the intermediate variables of RGB conversion to the IHS color space.
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where I denotes the intensity feature components in IHS transformation; S1 and S2 denote
the intermediate variables of RGB conversion to the IHS color space; R, G, and B denote
the red, green, and blue bands of the multi-spectral image, respectively.

As both the component I and the panchromatic image can reflect the gray change
in ground objects, the component I is expressed in the panchromatic image to obtain the
component Inew with more detailed features. Finally, the new RGB image is obtained using
the IHS inverse transformation, as shown in Equation (4) follows [25]:
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where Rnew, Gnew and Bnew denote the red, green, and blue new bands of the multi-spectral
image; S1 and S2 denote the intermediate variables of RGB conversion to the IHS color
space; Inew denotes the new value of I after the IHS transformation.

The process of image fusion based on IHS transform involves the component replace-
ment in the IHS color space, decomposition of the multi-spectral image, and obtaining
the component I of NLRSI. Both component I and panchromatic images can reflect the
grayscale variation of features and have similar spatial texture features. Therefore, the
panchromatic image is used to substitute the component I to obtain the component Inew
with more geometric structures. Finally, the IHS inverse transform is performed to obtain a
new RGB fused image, as shown in Figure 1.
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An MS image contains multi-spectral bands, and detailed information on surface
features can be obtained from an MS image by analyzing the spectral information of the
different bands. IHS transform can separate the brightness, hue, and saturation of the image,
thus effectively retaining the color information and color distribution without causing color
distortion and retaining the spatial structure information of the image to a greater extent.
IHS transform has the advantages of easy operation and fast performance compared with
other fusion methods. Meanwhile, it can effectively inject the detailed information of the
PAN image into the MS image so that the spatial structure information can also be retained
to a larger extent.

However, IHS transform only processes multi-spectral images within three bands. If
the IHS transform is still used in multi-band images, spectral degradation occurs. This is
mainly due to the loss and fuzzy spectral information in the process of IHS transformation,
which affects the accuracy of analysis of remote sensing data and cannot meet the processing
of variable remote sensing data. In concrete terms, the spectral degradation is mainly due
to the linear transformation of the light components during the IHS transform. In IHS
transform, the light information of the MS image is acquired by linear transformation fused
with the light information of PAN images. This linear transformation leads to compression
or loss of spectra in the original MS image, thus causing spectral degradation. Therefore, the
IHS transform must integrate other algorithms to conduct multi-band image fusion better.

Wavelet transform is a multi-scale signal analysis and reconstruction method that
can decompose the image into sub-band channels of different frequencies [26,27]. It can
also extract detailed information about the image in the sub-bands of different frequencies,
especially the high-frequency sub-bands, to make up for the detailed information that may
be lost during the IHS transform. It can be seen that the dual-transformation algorithm,
which integrates the wavelet and IHS transform, can better solve the problem of spectral
degradation of the IHS transform. In addition, the spectral information of the original
image can also be better preserved in the fusion process, making the fused image closer to
the spectral characteristics of the original image.

The specific process is described as follows:
(1) The wavelet coefficient matrices in different directions can be obtained by separately

performing wavelet decomposition on the low-resolution MS images and high-resolution
PAN images to be merged. They contain the feature information of the images at dif-
ferent scales and frequencies. One-dimensional wavelet decomposition is obtained for
high-frequency component W and low-frequency component L in the horizontal direc-
tion. Two-dimensional wavelet decomposition is obtained for low-frequency and high-
frequency components in the horizontal and vertical directions [28,29], as expressed in
Equations (5) and (6). Equation (5) denotes the coefficient matrix of wavelet decomposi-
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tion, and the values reflect the weight distribution of the different frequency components.
The center of value is the highest and decreases in all directions, which is used to extract
information at different scales from the original image, as follows:

1
256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 (5)

Equation (6) denotes the low-pass decomposition operator as follows:

WP = PL − PLL, WT = TL − TLL (6)

where PL and TL denote the low-frequency components of PAN images (P) and MS images
(L); PLL denotes the low-frequency components of the PL; WP denotes the high-frequency
components of the PL; TLL denotes the low-frequency components of the TL; WT denotes
the high-frequency components of the TL.

(2) The wavelet coefficients from each layer decomposition are fused using different
fusion rules according to the characteristics of different frequency components. For high-
frequency wavelet coefficients, fusion is achieved by fusing with the absolute maximum;
for low-frequency wavelet coefficients, fusion is achieved by fusing with the average
value or variance. Using this method, the feature information of the MS image and PAN
image can be fully utilized so that the fused image has not only the rich information and
spatial distribution characteristics of the MS image but also the high spatial resolution
and detailed information of the PAN image. Wavelet transform has an excellent ability to
reconstruct images by decomposing them into detailed and averaged components of the
source image. Methods such as the absolute maximum of coefficients, weighted average,
and local variance criterion are commonly used to determine the fusion coefficients. The
method of maximum absolute coefficient is used to determine the fusion coefficient by
finding the pixel value that has the maximum influence which can achieve better fusion;
the method of weighted average is used to calculate the fusion coefficients by providing
weights for different images; the weights can be adjusted according to the characteristics
and application requirements of images; the method of local variance criterion determines
the importance of image details in the fusion process by calculating the friction prevention
within a local window. Thus, the methods of fusion coefficient have their own advantages,
and the best method should be selected according to the actual situation.

In this study, the method of the maximum absolute coefficient and weighted average
was used to generate the fusion coefficients. Weighted analysis of low-frequency compo-
nents was based on different fusion coefficients so that low-frequency components of MS
images could be reconstructed. This is expressed in Equation (7):

T′LL = KT × TLL + KP × PLL (7)

where KT and KP denote the weighting coefficients and T′LL denotes the low-frequency
component of the reconstruction when KT> KP; TLL denotes the low-frequency components
of the TL; and PLL denotes the low-frequency components of the PL. The variation in
weighting coefficients affects the contribution of the images in the fusion result; therefore,
the fusion result can be adjusted by revising the weighting relationship between different
images; the weights of different images at each pixel can be determined by transforming
the fusion coefficients, thus affecting the changes in the spectral or spatial features of the
fused image.

(3) The high-frequency detail components of the MS and PAN images were replaced.
(4) All fused wavelet coefficient matrices are inverted using wavelet inversion to

obtain the fused image, and the results of steps (2) and (3) were used for inverse wavelet
transform, as shown in Figure 2.
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2.2. Color-NLRSIs Generation

Although the conventional IHS color transform preserves as much information as
possible, such as the hue and saturation of multi-spectral images and spatial detail features
of panchromatic images, the fusion process generally suffers from spectral and spatial
information distortions [30,31]. Traditional wavelet transform decomposes the image
into different frequencies for selective fusion, which greatly maintains the information
of spectral and spatial structure features of the image [32,33]; however, certain problems
inherent in the high complexity of algorithms still exist, such as the number of wavelet
decomposition layers and wavelet basis selection. Therefore, the use of the IHS color space
modulation wavelet transform for the multi-band fusion of night light remote sensing
images can overcome the problems of single band and low resolution of traditional night
light remote sensing images. It can also enhance the advantages of both algorithms while
improving the spatial resolution of the fused images. Multi-spectral (MS) images with
different spatial resolutions are fused with PAN images, and detailed information on basis
functions is selected from the simplest Haar wavelet function in the two-dimensional
discrete wavelet transform. The specific steps are as follows.

(1) Image pro-processing. Landsat MS images (30 m) and PAN images (15 m) are
aligned and resampled. Alignment is the process of selecting control points on the MS
image and aligning them to the PAN image for reference; thus, they correspond to the
same spatial position in the harmonized coordinate reference and ensure that they match
each other in size, orientation, and position. Compared with NLRSI, the MS image (30 m)
and the PAN image (15 m) in Landsat have a better spatial resolution. As the difference
between Landsat and NLRSI resolutions is large, it is necessary to up-sample the Landsat
and down-sample the NLRSI. It is calculated that a 40 m resolution is the smallest integer
multiple of a 500 m resolution (NLRSI), so the experiment used 40 m as the standard for
image resampling. This enables simultaneous up-sampling of Landsat and down-sampling
of NLRSI. Therefore, the MS and PAN images were resampled to 40 m× 40 m to harmonize
their size and dimensions.

(2) IHS positive transformation. Image processing is usually displayed in RGB, and
the R, G, and B channels of MS images are positively transformed in the IHS color space to
extract the components I, H, and S of MS images. According to the conversion relation-
ship between the IHS and RGB models, the MS image is IHS transformed; the image is
transformed to the IHS color space; the original image is decomposed into three channels,
namely, R, G, and B; and the component I containing the detail information and compo-
nents H and S containing the spectral information are extracted in the IHS color space.
Components H and S of the MS image contain spectral information, such as color and
saturation, and component I contains detailed information, such as the spatial structure
and features [34], as shown in Figure 3.
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(3) Image histogram matching. After IHS color space transformation, components H
and S of the MS image remain unchanged, and component I of the MS image with spatial
details is used for histogram matching with the PAN image containing richer spatial details;
the grayscale value of the PAN image is then calculated, and the histogram is equalized
with the component I of the MS image, as expressed in Equation (8). According to the
correspondence between ZK and PZ, the gray level of the PAN image is adjusted to obtain
Inew with a higher degree of matching with the original image and Inew is matched with the
PAN image histogram to obtain PANnew [35,36].

Sr(Zk) = ∑k
j=0 Pz

(
Zj
)
(k = 0, 1, . . . , L− 1) (8)

where ZK denotes the PAN image grayscale value, P(ZK) denotes the probability estimate,
and Sr(ZK) denotes the sum of P(ZK).

(4) Two-dimensional wavelet decomposition. The component I of the MS image and
PAN image are wavelet transforms. The wavelet transform (row and column) of the two im-
ages is a one-dimensional wavelet decomposition, and the low-frequency component L and
the high-frequency (detail) component H of the image are obtained by row decomposition.
The low-frequency coefficient and detail coefficient of the image are obtained by column
decomposition based on row decomposition. In particular, the image is decomposed into
four sub-components containing the effective information regarding the I and P of the
original MS image, namely, the low-frequency sub-component LL of the original image,
the horizontal detail feature LH, the vertical detail feature HL, and the diagonal feature
HH [37]. The low-frequency sub-component LL is decomposed by the two-dimensional
wavelet; namely, the image information is analyzed by multi-resolution transformation, and
the high- and low-frequency coefficients of the image are separated, which is convenient
for extracting image features, as shown in Figure 4.

(5) Selection of fusion coefficients and wavelet reconstruction. Components Inew
and PANnew are decomposed into four low-frequency and detail components in different
directions (horizontal and vertical) by a two-dimensional discrete wavelet transform, which
contains the effective information of the image [38]. We adopted the coefficient absolute
value larger method and selected the appropriate fusion coefficient weights according to
different fusion rules. We used the absolute value strategy for the detail component and the
mean strategy for the low-frequency component, as expressed in Equations (9) and (10).

C(F, p) =
{

WmaxC(A, p) + WminC(B, p), G(A, p) ≥ G(B, p)
WminC(A, p) + WmaxC(B, p), G(A, p) < G(B, p),

(9)
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C(F, p) =
{

C(A, p), |C(A, p)| ≥ |C(B, p)|
C(B, p), |C(A, p)| < |C(B, p)| (10)

where Equations (9) and (10) denote the low- and high-frequency fusion rules, respectively;
C(F, p) denotes the spatial coefficient matrix of image F in the p domain; Wmax and Wmin
denote the maximum and minimum weights, respectively; and p = (m, n) denotes the
spatial location of the coefficient matrix. Therefore, different fusion coefficients are assigned
according to the high- and low-frequency components of wavelet decomposition, and the
high- and low-frequency coefficients obtained in step (4) are wavelet-inverted to complete
the reconstruction of component I of the MS and PAN images to obtain Inew.

(6) IHS inverter. The extracted high- and low-frequency detail components were
fused by wavelet reconstruction and the inverse wavelet transform to obtain the wavelet
transformed Inew. The obtained Inew is inverted with H and S obtained in step (2) via IHS
inverse transform to obtain the fused image, as shown in Figure 5.Sensors 2024, 24, x FOR PEER REVIEW 8 of 22 
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From this, the MS (R, G, B) images were obtained by multi-band fusion of Landsat_MS
and NLRSI red-green bands. Then, they were converted from MS (R, G, B) to MS (I, H, S)
by IHS positive transform and component Inew was obtained by image histogram matching,
wavelet decomposition, and reconstruction between Landsat_PAN and component I. The
Inew and MS (H, S) were fused, and then IHS inverse transformation was performed to
fuse the image (R, G, B), that is, color-NLRSI (R, G, B). The entire process of the dual-
transformation method for generating color-NLRSI is shown in Figure 6.
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3. Experiments and Analysis
3.1. Study Area and Data Pro-Processing
3.1.1. Study Area

The study area is located in the city of Shanghai, China. Shanghai is located in the
southeastern coastal region of China, on the southern flank of the Yangtze River, adjacent
to the provinces of Jiangsu and Zhejiang, at 120◦52′ E–122◦12′ E, 30◦40′ N–31◦53′ N, with
a land area of about 6300 km2. Shanghai is a socio-economically well-developed central
city in the country. In recent years, the rapid urban development in Shanghai and the fast
expansion of the city center have been conducive to studying night light remote sensing.

3.1.2. Datasets and Pro-Processing

This study mainly used NPP-VIIRS-like night light remote sensing images, Landsat
MS images, and PAN images. These images were fused to generate high-quality color night
light remote sensing images by complementing each other’s advantages. Traditional night
light remote sensing image is a black and white image with low resolution and a single
band, which means that the change in night light remote sensing data between months is
not obvious enough. Therefore, to make the changes in night light in Shanghai over 9 years
more visible, this study selected study data spanning across years. The specific datasets
used are as follows:
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(1) The NPP-VIIRS-like night light remote sensing datasets spanning from 2000 to
2020, which were derived from the new long time-series (2000–2020) night light datasets
proposed and established by Yu’s team with a spatial resolution of 500 m [9,19]; and the
NPP-VIIRS-like data were extracted for the Shanghai study area.

(2) The Landsat MS and PAN datasets, which had spatial resolutions of 30 and 15 m
for Shuttle Radar Topography Mission (SRTM) V3 data. Landsat-7 ETM+ and Landsat-8
OLI_TIRS were primarily used to obtain remote sensing images of Shanghai from 2000 to
2020, and these data were obtained from the Geospatial Data Cloud Platform (http://
www.gscloud.cn. Accessed on 20 May 2021.). Considering the strip-missing failure and
continuous cloud contamination of Landsat 7, 22 scenes of Landsat data with cloud volume
below 10% were chosen as valid data. Thus, we selected Landsat-7ETM SLC-on data
for 2000 and 2002 with strip numbers 118-038 and 118-039, respectively; Landsat-7 ETM
SLC-off data for 2004, 2006, 2008, and 2010, Landsat-7ETM SLC-off data for 2012; and the
Landsat 8 OLI_TIRS images for 2014, 2016, 2018, and 2020, respectively. Landsat-7 ETM+
and Landsat-8 OLI_TIRS were used to acquire remote sensing images of Shanghai from
2000 to 2020. The study area is shown in Figure 7.
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Because of the difference between the datum, spatial resolution, atmospheric condi-
tions, etc., the datasets were all resampled to the same spatial resolution using a triple
convolutional interpolation method; the atmospheric correction method was used for the
Landsat_MS datasets (see Figure 8), and the radiometric calibration method was used for
the Landsat_PAN datasets (see Figure 9). The processing results are shown in Figures 8–10.
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3.2. Color-NLRSIs Generations in Shanghai from 2000 to 2020

Considering that multi-source image fusion is a pixel-wise fusion, the source im-
ages need to be aligned and sampled to maintain consistent pixel widths, including the
alignment and resample of Landsat images of the Shanghai study area. We conducted an
IHS color space transformation to obtain the component I containing the detail informa-
tion and the components H and S containing spectral information in the IHS color space.
Then, we matched Inew with the PAN image histogram to obtain PANnew. We conducted
two-dimensional wavelet decomposition to separate the high- and low-frequency coef-
ficients of the image to facilitate the extraction of image features; the fusion coefficients
and wavelet reconstruction were selected to reconstruct the component I of MS and PAN
images. The fusion of the multi-source images is shown in Figure 11.
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Based on the spectral differences between daytime optical images and black-and-white
night light images, the night light remote sensing images were single-band images, whereas
the daytime optical images included multi-spectral bands. The red and green bands of
Landsat multi-spectral images were fused with night light remote sensing images using
dual-transformation to generate color night light remote sensing images. As the NLRSIs
are single-band images, the night light images of Shanghai can be fused with Landsat
multi-spectral data for band fusion to generate the color-NLRSIs. The results are shown in
Figure 12.
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3.3. Comparisons Analysis

To examine the effectiveness of the proposed method, the PCA, IHS, Wavelet, Brovey,
and dual-transformation (IHS + WT) were used for comparison analysis. The results were
analyzed by comparing their processing results in different images using the subjective
evaluation indexes. Figure 13 shows the comparison of different fusion algorithms for
Landsat images in the study area, and Figure 14 shows the comparison of different algo-
rithms for color-NLRSIs. The dual-transformation algorithm in this study is defined as
IHS + WT (see Figures 13 and 14). The image fusion of Landsat and night light remote
sensing using the IHS-modulated wavelet transform algorithm produces a color-NLRSI
whose spatial resolution is improved to 40 m compared with that of the original night light
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remote sensing (500 m). This image has the best overall performance in terms of detail
contrast and color information before and after fusion and the best color-NLRSI quality.
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The comparison of spatial details using different algorithms for fusion in Landsat_MS,
is shown in Figure 15, shows great improvement compared with the original multi-spectral
image. Notably, the algorithm of IHS adjusted wavelet transform is clearer in the red
rectangular frame area. In Figure 15f, the buildings on both sides of the road near the
Bird’s Nest are slightly blurred visually, and mosaics are present near the Bird’s Nest. The
visual clarity of Figure 15c–e are consistent, but the color information of Figure 15d is not
consistent with that of the original multi-spectral image. The overall color tone shown in
Figure 15e is dark. In summary, the dual-transformation algorithm used in Figure 15h has
the best effect on the details.
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The comparison of spatial details using different algorithms for fusion in Landsat_PAN
is shown in Figure 16. The red rectangular box area shows that the fusion results of all five
algorithms are visually clearer; however, the overall tone of Figure 16e is dark, and the
color information in Figure 16d,f,g is not consistent with that of the original multi-spectral
image. In summary, the dual-transformation algorithm used in Figure 16h has the best
effect on detail, with clearer texture information and richer color information, which is
more consistent with the visual system of the human eye.
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The comparison of spatial details using different algorithms for fusion in color-NLRSIs
is shown in Figure 17. Only Figure 17f is visually blurred, and the fusion results of the
remaining five algorithms are visually clearer. However, the overall tone of Figure 17e
is darker, the color information in Figure 17d,g is not consistent with that of the original
multi-spectral image, and the intensity of Figure 17c is slightly greater. In summary, the
dual-transformation algorithm used in Figure 17h had the best effect on detail, and the
image was clearer visually.
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3.4. Evaluation of Image Quality Metrics

The following indicators are used for objective evaluation of fusion image quality.
(1) Information entropy (EN) indicates the richness of the image information and indi-

cates the average amount of information in the image. It can be expressed as follows [39]:

EN(F) = ∑m
i=1 ZilbZi (11)

where Zi = {Z1, Z2, · · · , Zm} denotes the gray distribution, Zi denotes the first-level gray
probability density, i denotes the degree, and m denotes the gray level.

(2) The average gradient (AG). It can be used to evaluate the clarity of the image while
reflecting the small detail contrast and texture transformation characteristics in the image,
indicating the image’s sharpness [40]. It can be expressed as follows:

AG =
1

(M− 1)(N − 1)
×∑M−1

i=1 ∑N−1
j=1

√
(F(i + 1, j)− F(i, j))2 + (F(i, j + 1)− F(i, j))2

2
(12)

where M and N denote the width and height of image F, respectively, and F(i, j) denotes
the grayscale value of image F at (i, j).

(3) The mean value (MEAN) indicates the average intensity information of the im-
age [41] and reflects the average intensity of the image; the more moderate the value, the
better the fusion effect. It can be expressed as follows:

F =
1

MN ∑M
i=1 ∑N

j=1 F(i, j) (13)
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(4) The standard deviation (STD) indicates the degree of image contrast [42] and
reflects the dispersion of the image grayscale relative to the MEAN. It can be expressed
as follows:

STD =

√
1

MN ∑M
i=1 ∑N

j=1

[
F(i, j)− F

]2 (14)

where F denotes the grayscale average of the image.
(5) The root-mean-square error (RMSE) indicates the amount of spatial detail feature

information, and the smaller the value, the better the fusion effect [43]. It can be expressed
as follows:

RMSE(IF, IW) =

√
1

MN ∑M
i=1 ∑N

j=1(IF(i, j)− IW(i, j))2 (15)

where IF denotes the fused image and IW denotes the source image.
(6) The correlation coefficient (CC) indicates the correlation between the fused and

source images [43]; the closer the value of the correlation coefficient to 1, the greater the
correlation. It can be expressed as follows:

CC(IF, IW) =
∑M

i=1 ∑N
j=1
(

IF(i, j)− IF
)(

IW(i, j)− IW
)√

∑M
i=1 ∑N

j=1
(

IF(i, j)− IF
)2 ×∑M

i=1 ∑N
j=1
(

IW(i, j)− IW
)2

(16)

Among them, the dual-transformation has the largest EN value, indicating that the
color-NLRSIs contain richer information, with a CC value of 0.867, which is the closest to
1 among the above five algorithms.

Thus, the results of the dual-transformation algorithm are shown as the maximum
AG value, indicating that it has high image clarity and facilitates the visual interpretation of
the images. The RMSE value was relatively minimal, and the spatially detailed information
was stable. The STD was the largest, and the contrast of the image results before and after
fusion was high. The MEAN was moderate, and the mean value of the fused image was
stable. The results are shown in Figure 18.
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With regard to the three types of images (Landsat_MS/PAN and color-NLRSIs),
Figure 19a (comparison of the results of different algorithms for Landsat_MS images)
shows that the MEAN, representing the average intensity information of the image and
its value is between 80 and 100; a more moderate value implies a better fusion effect. The
RMSE in the IHS algorithm is slightly lower than that of the PCA algorithm, and the smaller
the value of the RMSE, the better the fusion effect. The values of MEAN, STD, CC, and EN
are better than those of the PCA algorithm, and the larger their values, the better the fusion
effect. This indicates that the IHS algorithm images are of better quality regarding their
clarity and information-carrying capacity. The MEAN of the Brovey algorithm is 28.483,
which is too low, and the AG and CC values are smaller than those of other algorithms,
indicating that the Brovey algorithm has the worst fusion effect. The EN of the wavelet
algorithm is 0.025, which is a small decrease compared with the other algorithms, but the
remaining descriptive index values were improved; thus, the wavelet algorithm is better
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than the above three algorithms. The AG value of the dual-transformation algorithm is
14.956, and the EN is 0.069; both are larger than those of the wavelet algorithm. Thus, the
image detail contrast description and correlation degree are better than those of the wavelet
algorithm, and the image fusion quality is the best.
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Figure 19b (a comparison of the results of different algorithms for Landsat_PAN
images) shows that the MEAN of all algorithms is moderate, between 110 and 130; the more
moderate the mean value, the better the value of the fusion effect. The IHS algorithm is
better than the PCA algorithm in terms of the STD, CC, and EN. The PCA algorithm is better
than the IHS algorithm in terms of reflecting the image detail features and sharpness, but
the RMSE is 24.093, which is greater than that of the IHS algorithm; the smaller the RMSE
value, the better the fusion effect. The PCA algorithm shows severe spectral distortion, and
the image color information changes before and after fusion; thus, the IHS algorithm is
better than the PCA algorithm. The IHS algorithm is better than the Brovey algorithm in
terms of the MEAN, STD, AG, and CC. The STD indicates the degree of image contrast, and
the AG indicates the image sharpness; the larger their values are, the better the fusion effect.
The MEAN value of the Brovey algorithm shows a serious decreasing tendency and is only
42.585; thus, the IHS algorithm is better than the Brovey algorithm. The wavelet algorithm
outperforms the IHS algorithm regarding both objective quality-evaluation metrics. In the
dual-transformation algorithm, the MEAN and RMSE are 116.945 and 19.111, respectively;
both index values are slightly inferior to those of the wavelet algorithm, and the remaining
indexes are better than those of the wavelet algorithm; thus, the dual-transformation
algorithm has the best image fusion quality.

Figure 19c (a comparison of the analysis results of different algorithms for color-
NLRSIs) shows that the MEAN values of the five algorithms are basically between 40 and
50; the MEAN of the IHS algorithm is 43.452, and the STD is 67.658. Both these values are
greater than those of the PCA algorithm, indicating that the mean value of the IHS algorithm
is moderate and its degree of distortion is better than that of the PCA algorithm. However,
other indicators describing the image resolution, detail contrast, and texture transformation
features are better than those of the IHS algorithm, but there are inconsistencies in the color
information before and after fusion by the PCA algorithm. Overall, the PCA algorithm is
better than the IHS algorithm. The MEAN of the Brovey algorithm is too low, only 13.690,
which is not suitable, but its RMSE value is better than that of the PCA algorithm, and the
remaining indicators have decreased to a certain extent. Similarly, the MEAN, STD, AG,
and EN of the wavelet algorithm are better than those of the PCA algorithm. The larger
their values, the better the fusion effect, and the color information before and after the
fusion remains consistent; thus, the wavelet algorithm is better than the PCA algorithm.
The MEAN, STD, and EN of the dual-transformation algorithm are 40.737, 65.525, and 0.979,
respectively, and are slightly inferior to those of the wavelet algorithm; however, the image
resolution, detail contrast, and texture transformation features are better than those of the
wavelet algorithm. In summary, the dual-transformation algorithm has the best overall
performance. The details of these results are shown in Figure 19.

Notably, the best quality of the multi-band fusion algorithm evaluation metrics is ob-
served for color-NLRSIs from the dual-transformation algorithm. The relatively low values
of CC and EN in the IHS, PCA, and Brovey algorithms indicate a serious spectral distortion
problem in the images. The dual-transformation algorithm for image fusion outperforms
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other algorithms in terms of the information carrying capacity, detail characteristics, overall
image clarity, and maintenance of color spectral information, indicating the best fusion
quality. In summary, when comparing and analyzing three groups of images and five
algorithms, the image fusion quality effect is in the following order: dual-transformation
(IHS + Wavelet) > wavelet > IHS > PCA > Brovey. In summary, the IHS transform is sim-
ple and intuitive, but it may lead to spectral degradation and is not good for retaining
spectral information. Wavelet transform can better capture the local features and detailed
information of the image through wavelet decomposition and reconstruction. Meanwhile,
the Brovey transform is a pixel-level fusion method, which is matched with the PAN light
by weighting the wavebands. PCA transform is more efficient in fusion processing, but
more sensitive to noise. In this study, we propose the dual-transformation method, which
combines the advantages of the IHS and wavelet transforms; IHS transform provides pro-
cessing of the spectral information, and wavelet transform extracts the detail and texture
information of the image at different scales and also can better suppress the noise so that
the result of fusion can be better retains the spectral information and spatial resolution. In
addition, the methods of transforming IHS and wavelet can achieve adaptation to differ-
ent image features by complementing each other’s advantages, which has enhanced the
robustness of the dual-transformation algorithm to changes in image scales.

4. Conclusions and Discussion

In this study, a dual-transformation algorithm was proposed to generate high-quality
color NLRSIs by fusing Landsat_MS, Landsat_PAN, and NPP-VIIRS-like datasets. The
study area was Shanghai, China. Comparison and analysis with other single fusion al-
gorithms was carried out to demonstrate the effectiveness of the dual-transformation
algorithm. The dual-transformation achieved the best comprehensive performance effect
in terms of spatial resolution, detail contrast, and color information after fusion, and the
fused image was of the best quality. The accuracy of the color-NLRSI was improved greatly
over the original NLRSI.

The experiment demonstrated the following: (1) The dual-transformation algorithm
in this study had the best comprehensive performance in terms of spatial resolution,
detail contrast, and color information before and after fusion. It also had the best fusion
image quality, generating better color-NLRSIs; such images can be improved by 40 m in
terms of their spatial resolution, compared with the original night light remote sensing
images resolution of 500 m, and can distinguish the main distribution areas of different
brightness. (2) Obtaining color-NLRSIs using the dual-transformation algorithm also solves
the problems of low resolution and the small amount of feature information inherent in
black and white night light images and visualizes the high radiation quality and true color
of traditional black and white NLRSIs. These improvements have important research
value for scientific research and data application of night light remote sensing images and
can provide more accurate and detailed image information better to serve the needs of
the development of human society. (3) Especially in the assessment of natural disasters,
color-NLRSIs can not only obtain the regional human activity range but also observe the
spatial information of features in the night light-covered area, which can be better used to
analyze the regional spatial category information other than human activity information.

Therefore, the color-NLRSIs in this study can be used to comprehensively study small-
scale regional carbon emissions and social-economic indicators, such as light pollution,
through spatial-temporal analysis, which can help relevant departments formulate emission
reduction policies and disaster prevention strategies according to local conditions.
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