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Abstract: This paper presents a novel approach to risk assessment by incorporating image captioning
as a fundamental component to enhance the effectiveness of surveillance systems. The proposed
surveillance system utilizes image captioning to generate descriptive captions that portray the
relationship between objects, actions, and space elements within the observed scene. Subsequently,
it evaluates the risk level based on the content of these captions. After defining the risk levels
to be detected in the surveillance system, we constructed a dataset consisting of [Image-Caption-
Danger Score]. Our dataset offers caption data presented in a unique sentence format, departing
from conventional caption styles. This unique format enables a comprehensive interpretation of
surveillance scenes by considering various elements, such as objects, actions, and spatial context.
We fine-tuned the BLIP-2 model using our dataset to generate captions, and captions were then
interpreted with BERT to evaluate the risk level of each scene, categorizing them into stages ranging
from 1 to 7. Multiple experiments provided empirical support for the effectiveness of the proposed
system, demonstrating significant accuracy rates of 92.3%, 89.8%, and 94.3% for three distinct risk
levels: safety, hazard, and danger, respectively.
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1. Introduction

In various sectors of contemporary society, a plethora of closed-circuit television
(CCTV) cameras have been strategically deployed to monitor and record various safety
incidents and criminal activities. The growing concern for societal safety has led to an
increasing demand for CCTV and security surveillance. According to The Business Research
Company’s “Global Security Surveillance System Market Report 2023” [1], the global
security surveillance system market is forecasted to expand from USD 130.08 billion in 2022
to USD 148.29 billion in 2023, at an annual growth rate of 14.0%. With the escalating need
for safety in high-risk areas, it is anticipated that the surveillance system market will reach
a substantial USD 230.47 billion by the year 2027.

Surveillance systems are engineered to identify patterns within monitored scenes,
encompassing risky behavior, abnormal actions, and incidents. Extensive research has been
conducted on these systems, primarily focusing on the detection of abnormal behavior
such as ‘fighting’ and ‘fainting’. This involves the utilization of technologies such as object
detection and recognition, tracking, pose estimation, movement detection, and anomaly
detection of objects [2–9]. Jha et al. [8] proposed an N-YOLO model designed for the
detection of abnormal behaviors, such as fighting. This model tracks the interrelationship
of detection results in subimages, integrating them with the inference outcomes through a
modified YOLO [10]. In a related study, Kim et al. [9] introduced the AT-Net model, specifi-
cally designed for abnormal situation detection. The model aims to mitigate classification
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ambiguities and minimize information loss by integrating object detection and human
skeletal information.

These various studies [2–9] have improved performance by incorporating diverse
feature information related to abnormal behavior. Nevertheless, conventional methods
exhibit certain limitations. Firstly, these methods do not comprehensively consider the
spatial context associated with abnormal situations. It is crucial to recognize that, even
with identical objects and behavior, interpretations may vary significantly based on the
spatial context, resulting in different responses to specific risk scenarios. For instance, the
action of sitting on a bench, compared to sitting on a railing or cliff—both categorized
as sitting actions—results in distinct risk levels. Sitting on a bench is considered safe,
whereas sitting on a cliff represents an extremely dangerous situation. Secondly, within
the framework of current surveillance systems designed to detect potentially hazardous
scenarios, the outcomes are typically displayed as alerts on the monitoring screen or de-
livered as recorded footage featuring the identified risk elements. However, in numerous
instances, actions exhibiting a higher degree of movement compared to the surrounding
behavior might attract attention but may not necessarily be indicative of an actual accident.
For instance, conventional surveillance systems may flag regular running in a park as
abnormal since it involves more movement than walking or sitting. Consequently, further
scrutiny becomes imperative for the observer to re-evaluate the scene and interpret the
situation accurately in order to discern the precise nature of the detected abnormal behavior.
Ultimately, for a more accurate and prompt interpretation of risk situations, surveillance
systems must not only consider the actions of the detected objects but also take into account
the surrounding environment and situation, assess the overall risk level, and provide the
observer with specifically interpreted information. Thirdly, surveillance systems should
have the capability to detect and interpret a broad range of risk elements and accidents,
without being limited to specific locations or behaviors. For example, a system designed
to detect instances of drowning in specific locations, such as swimming pools, may effi-
ciently identify dangerous situations by employing technologies like object detection and
movement-based anomaly detection, incorporating learned behavior patterns associated
with drowning. However, in the case of CCTV systems installed in public spaces or on the
streets, which necessitate versatile detection capabilities, the spatial context required for
detection differs from that in the pool example mentioned above. Numerous categories of
risks manifest in a variety of environments, involving hazardous elements such as fires and
safety-related incidents like traffic accidents or altercations. Relying solely on specific tech-
nologies presents a considerable challenge in detecting a wide array of situations and types,
consequently limiting the applicability of conventional methods in surveillance systems.
In summary, surveillance systems must have the capability to comprehensively leverage
spatial information, convey data in a format that can be rapidly and accurately grasped by
the observer, and represent learnable data for potential risk factors in diverse situations. To
address this challenge, this paper introduces a novel approach for a surveillance system.

Humans utilize a structured and high-level expressive tool, namely, language. Apply-
ing human-friendly natural language to the surveillance system can effectively address the
aforementioned challenges. A situation to be detected by the surveillance system can be
articulated in sentence form using natural language. Natural language can be employed to
express a scene’s danger, explain an accident in sentence form, and elucidate an accident in
sentence form, encompassing various information such as the characteristics of the object,
the presence or absence of a person, the distinction between adults and children, the type
of accident, the place of occurrence, and nearby risk factors. When the scene is conveyed
through such sentences, the observer can promptly comprehend the situation.

The rapid advancement of natural language processing (NLP) technology has paved
the way for the utilization of words and sentences as data for learning, leading to the
development of various models. Large language models (LLMs), in particular, which have
been trained on extensive language datasets, exhibit remarkable performance in a multitude
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of natural language processing tasks. These large language models are proficient in diverse
tasks such as sentence generation, translation, text summarization, and question answering.

Image captioning is a subfield of NLP that involves generating text describing the
content of an image in natural language. By incorporating image captioning technology,
enhanced with large language models boasting high generalization performance, into
surveillance systems, it is possible to represent images through information-rich sentences.
Notably, image captioning technology proves to be exceptionally well suited for the de-
tection of hazardous behavior and the analysis of accident scenarios. This is attributed
to its capacity to offer a detailed representation of the scene, encompassing information
about individual characteristics, actions, and the spatial context. Furthermore, by enabling
the system to autonomously assess risk levels for captions (sentences) generated through
image captioning technology, proactive mitigation of safety incidents becomes feasible,
allowing for prompt and accurate responses to any accidents that may occur.

In this paper, we introduce a novel surveillance system designed to surpass the lim-
itations of traditional surveillance systems, which are frequently restricted to a primary
emphasis on object-centric behavior analysis. Our system generates descriptive captions
that encompass details regarding objects, actions, and spatial context extracted from surveil-
lance target footage. These captions are subsequently utilized to assess the risk level of the
observed scene. To generate captions for surveillance scenes, it is necessary to construct a
dataset comprised of [Image-Caption-Danger Score]. The dataset should feature caption
data presented in a novel sentence format, deviating from conventional caption structures,
and should encompass a myriad of information encompassing objects, actions, and spatial
context, facilitating comprehensive interpretation. To facilitate the interpretation of scenes
by the image captioning model, we utilized BLIP-2 [11], a large language model well
regarded for its efficiency in handling multimodal tasks while minimizing parameters
and training costs, all while delivering state-of-the-art performance. We fine-tuned the
BLIP-2 [11] model with the newly-constructed dataset to guide it in generating captions
that adhere to the newly-defined sentence structure. Subsequently, we utilized BERT (bidi-
rectional encoder representations from transformers) [12] to interpret the semantic content
of the generated sentences and assess the risk level associated with each scene.

The overall structure of this paper is as follows. In Section 2, we delve into gen-
eral research related to image captioning, existing studies on surveillance systems that
incorporate image captioning, and the exploration of LLMs. Section 3 provides a detailed
description of our newly constructed dataset and the overarching system structure. Sec-
tion 4 presents a comprehensive evaluation of the proposed system’s performance, utilizing
both quantitative and qualitative analyses. Additionally, we delve into potential avenues
for system enhancement through result analysis. Finally, in Section 5, we conclude the
paper by summarizing the proposed system, discussing future development directions,
and outlining potential areas for further research.

2. Related Work

Image captioning is a technology that generates descriptive captions for an input image.
Notable studies in this domain are referenced as [13–16]. Vinyals, O. et al. [13] proposed a
method that connects an encoder constructed with convolutional neural networks (CNN)
for extracting image information with a long short-term memory (LSTM) [17] decoder for
caption generation. Xu, K. et al. [14] introduced an approach that enhances the relationship
between images and captions by incorporating an attention mechanism. Liu, W. et al. [15]
suggested an image captioning technique that sequences images to serve as inputs for the
transformer [18] model. Wang, P. et al. [16] proposed an integrated system that utilizes
multimodal pre-training to represent data in a unified space. This approach allows for the
expression of both image and language information in patches, facilitating simultaneous
processing of image and language information within the transformer.

In the domain of surveillance systems incorporating image captioning, Dilawari
et al. [19] introduced a system utilizing the VGG-16 [20] to extract specific situational
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information from videos and generate captions through a bidirectional-LSTM [21], with
a primary focus on object-related attributes. W. Chen et al. [22] proposed a system that
computes anomaly scores by combining captions generated using SwinBERT [23] and video
features extracted via the ResNet-50 architecture [24]. These studies often rely on datasets
like UCF Crime [25], NTU CCTV-Fights [26], ShanghaiTech [27], and XD-Violence [28], en-
compassing diverse types of behavior, including fighting, fainting, loitering, and abandon-
ment. However, a noteworthy limitation arises from the prevalent lack of comprehensive
captions within these datasets, which typically offer basic object descriptions but fail to
capture nuanced object behavior or contextual space information. Consequently, despite
the application of image captioning to enhance surveillance systems, the resulting captions
primarily center on objects, neglecting the vital space context crucial for a comprehen-
sive scene risk assessment. This limitation underscores the need for further research in
integrating space information to enhance the efficacy of surveillance systems.

The advent of LLMs has brought about substantial advancements in NLP, enhancing
the capacity to understand and generate human language by discerning word similari-
ties and contextual relationships, and effectively handling sentence structure, grammar,
and meaning.

Prominent models in the domain of LLMs include BERT [12], GPT [29], T5 [30],
and LaMDA [31]. BERT [12] is a deep learning-based model in NLP distinguished by
its capability to extract bidirectional contextual information from extensive volumes of
raw text, capturing sequential relationships between sentences and representing words
and their context in vectors. This comprehensive approach empowers BERT to consider
both preceding and subsequent text, granting it an extensive understanding of language.
Originally designed for language comprehension, BERT has significantly advanced the
field of NLP. Furthermore, the LLM landscape boasts a multitude of models, such as
GPT [29] and T5 [30], which have demonstrated remarkable performance in tasks such
as sentence translation and summarization. Additionally, LaMDA [31], developed for
interactive applications, represents another notable addition to the suite of LLMs. These
models collectively signify the diverse and expanding capabilities of LLMs in the field
of NLP.

In the domain of LLMs, a notable constraint is their inherent inability to comprehend
image features due to the absence of image data during their training process. To overcome
this limitation, extensive research is being conducted on large multimodal models (LMMs)
that enrich LLMs with image information to establish a connection between images and text.
These LMMs are pre-trained on a massive scale of diverse data types, including text, images,
audio, and video, thereby equipping them with the capacity to perform a multitude of tasks,
ranging from image captioning to vision question answering (VQA). Prominent systems,
such as BLIP-2 [11], OpenAI’s GPT-4 [32], Google’s Gemini [33], and LAVA 1.5 [34], are all
founded upon these large multimodal models, demonstrating the growing significance
of this approach. Furthermore, a prevailing trend in the field involves the utilization of
large web datasets for multimodal training, resulting in the development of a multitude of
models. For instance, BLIP-2 [11] is trained on an extensive dataset comprising image–text
pairs gathered from the web. This model incorporates frozen pre-trained models in both its
encoder and decoder and effectively addresses the modality gap between the encoder and
LLMs through the query transformer (Q-Former), achieving remarkable state-of–the-art
(SOTA) performance in various vision–language tasks while demonstrating significant
zero-shot capabilities.

In this paper, we present a surveillance system tailored to address the inherent con-
straints of prevailing surveillance systems. Our approach involves the creation of a novel
dataset specifically tailored for surveillance applications, encompassing comprehensive
captions that incorporate object information, action details, and space context. To further
enhance the interpretative capacity of this surveillance system, we fine-tune BLIP-2 [11], a
model trained on extensive web data, utilizing our newly curated dataset. Additionally,
we leverage BERT [12] to comprehend the semantic nuances of the generated captions,
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enabling us to quantify the risk level based on this refined interpretation. This combina-
tion of novel dataset construction, fine-tuning, and semantic understanding represents a
significant step toward a more effective and context-aware surveillance system.

3. Methodology

Figure 1 depicts a schematic representation of the proposed system’s comprehensive
workflow. The system initially takes video input from CCTV sources. Subsequently,
this video data undergo processing through an image captioning network, generating
interpretative captions to elucidate the content of the scenes. These captions encompass a
wealth of details, encompassing object attributes, behaviors, and spatial context. Following
caption generation, a specialized risk assessment module conducts an in-depth analysis
of these generated captions. This module analyzes the information embedded within the
captions, enabling a thorough evaluation of the scene’s risk level.
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Figure 1. The comprehensive workflow of the proposed system illustrates the entire process flow,
encompassing scene interpretation and danger score measurement, while showcasing the results
generated at each stage.

In Figure 1, a pair of surveillance images depicting different levels of risk is presented
as the input: the first depicts people running in the park, and the second depicts a car
accident scenario. The deployed image captioning network effectively formulates precise
captions corresponding to the content of each video, which are subsequently evaluated
by the risk assessment module to determine the pertinent risk levels. In this evaluation,
the first image, portraying a safe situation, is assigned a danger score of ‘1’, while the
second image, depicting an actual accident, is associated with a danger score of ‘6’. The
danger scores defined within our proposed system are categorized into seven distinct
stages, with ‘1’ indicating a safe situation, and higher scores indicating escalating levels
of risk. For an in-depth elucidation of the danger score methodology, please refer to
Section 3.1. This systematic approach enables the precise evaluation of risk levels in
different surveillance scenarios.

3.1. The Construction of the Dataset

The proposed system utilizes the large multimodal model BLIP-2 [11]. While BLIP-
2 [11] has undergone pre-training on a diverse dataset encompassing various natural
language processing tasks, its inherent design lacks task-specific optimization. Therefore,
to achieve appropriate results when applying the large multimodal model to the proposed
surveillance system, fine-tuning is imperative.

Conventional training datasets for surveillance systems often lack interpretive cap-
tions, and when available, the captions typically offer only rudimentary object descriptions,
lacking comprehensive information about object actions or the surrounding space context,
essential for practical surveillance applications. Therefore, we have constructed a dataset
incorporating detailed information regarding objects, behavior, and spatial context. Addi-
tionally, our dataset encompasses diverse environmental conditions, including overcast
days, nighttime shooting, and low-light environments, ensuring robustness in the face of
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changes due to various shooting conditions. Furthermore, a dataset is specifically created
to detect and interpret individuals even when they are at a distance from other objects,
focusing on people who are the subjects of the monitored safety incidents. This ensures
the delivery of sufficient information for an accurate understanding and analysis of the
monitored situation, surpassing the mere listing of visual elements. Additionally, this
approach significantly aids in identifying and analyzing essential elements, individuals, for
risk assessment within the visual field. As a result, a total of 2741 comprehensive datasets
were built to enable BLIP-2 [11] to generate relevant captions for the surveillance system.
Additionally, these datasets facilitate risk assessment following the processing of captions
through BERT [12]. The danger score here represents a numerical value corresponding to
the risk level, with specific classification criteria provided in Table 1, thereby facilitating the
quantification of risk levels in the surveillance context. The construction of this comprehen-
sive dataset is instrumental in enhancing the suitability and effectiveness of the proposed
system for real-world surveillance applications.

Table 1. Risk level and danger score classification criteria.

Risk Level Danger Score Classification Criteria Object Behavior Space

Safe
1 In situations where objects within the

image are located in a secure
environment.

adult

walking, sitting,
running, or riding

pathway, park, or
indoors2 child

Hazard
3 In situations where objects within the

image are located in a hazard
environment.

adult railing, cliff, road,
or

a construction site4 child

Danger

5 In situations where objects in the image
engage in perilous activities.

adult,
vehicle, or

fire

collapse, fight,
a fire breaks out,

or
traffic accident

pathway, park, or
indoors

6

In situations where objects within the
image engage in perilous activities

while located in a hazardous
environment.

railing, cliff, road,
or

a construction site

7

In situations where the subjects within
the image are minors and are involved
in perilous activities while situated in a

hazardous environment.

child,
vehicle, or

fire

3.2. Definition of Risk Level and Danger Score

The classification of risk levels for input images involves three fundamental categories:
safe situations, hazardous situations, and accident occurrences, each being assigned distinct
danger scores. Table 1 illustrates that the risk levels representing safety and hazards are
divided into two stages each, whereas the danger level is further segmented into three
stages, contingent upon the varying levels of risk. This methodical classification system
serves to delineate the entire range of risk across diverse surveillance scenarios.

The ‘Safety’ risk level typically involves routine activities such as walking, sitting, or
running in secure areas like pathways, parks, or indoors. However, it is essential to note
that even within the same risk level, situations involving children may inherently pose a
relatively higher level of risk compared to those involving adults. Consequently, when
adults are engaged in these activities, a danger score of ‘1’ is assigned, while the presence of
children is associated with a higher danger score of ‘2’, signifying the increased potential for
elevated risk in such scenarios. This nuanced approach enables a more accurate evaluation
of potential danger in the presence of children during actions categorized as ‘safe’.

The ‘Hazard’ risk level encompasses routine activities that typically occur in safety
situations but are contingent upon the context of the surrounding space. For instance, the
act of sitting is considered safe when performed on a bench, meriting a danger score of
‘1’; however, if the same action takes place on a railing, bridge, or roof, which inherently
pose higher risks, it is reclassified as hazardous and is assigned a danger score of ‘3’. This



Sensors 2024, 24, 292 7 of 17

systematic approach ensures that the level of risk is appropriately assessed in various space
contexts, thereby enhancing the precision of the surveillance system.

The ‘Danger’ risk level is designated for detected actions categorized as accidents,
encompassing scenarios where individuals have collapsed or incidents involving activities
such as fights, fires, or traffic accidents. The degree of danger, as quantified by the danger
score, escalates when these actions occur in hazardous environments like railings, cliffs,
roads, or construction sites. Furthermore, a higher danger score is allocated when such
actions involve children. This systematic risk assessment approach enables a more nuanced
and accurate evaluation of the risk level within situations classified as dangerous, account-
ing for the influence of environmental factors and the age of the individuals involved.

Table 2 provides a comprehensive overview of the dataset distribution, systematically
organized according to distinct risk levels. A total of 2741 images were collected, each
necessitating a thorough analysis of object attributes, behavior, and spatial context. These
images were meticulously selected in accordance with the classification criteria outlined
in Table 1. The captions accompanying these collected images were meticulously crafted
to delineate the distinctive characteristics of the object type, elucidate the actions of the
object, and describe the space context in which the object is situated. Subsequently, datasets
were systematically constructed by assigning an appropriate danger score to each situa-
tional scenario, ensuring the comprehensive representation of various risk levels in the
surveillance system.

Table 2. The quantity of datasets by each risk level and danger score.

Risk Level Safe Hazard Danger

Danger Score 1 2 3 4 5 6 7
Number of Images 343 215 291 259 752 613 268

Total 558 550 1633 2741

3.3. The Sentence Structure Format of Captions

During the dataset construction phase, careful consideration was given to the design
of caption structures. These structures were intentionally designed to include essential
components, specifically, the object type, object attributes, object behavior, and the spatial
context. To offer further clarity and insight into the employed caption structure within the
dataset, Table 3 presents illustrative examples.

Table 3. The sentence structure format employed in the captions of our dataset.

Image Caption Risk Level
(Danger Score)

Sensors 2024, 24, x FOR PEER REVIEW 8 of 18 
 

 

examples within Table 3 both depict an adult male engaged in walking. However, the 
contextual differences between these examples are significant. The first example takes 
place in a park, characterized as a safe environment. In contrast, the second example in-
volves walking on a road, an action considered perilous due to jaywalking. Additionally, 
the third and fourth examples depict a fainting incident, classified as an emergent situa-
tion within the danger (accident occurrence) category. The third example takes place 
within a room, devoid of additional environmental hazards, resulting in an assigned dan-
ger score of ‘5’. In contrast, the fourth example occurs on a road frequented by cars, posing 
a higher risk due to the increased likelihood of subsequent accidents and is thus assigned 
a danger score of ‘6’. This meticulous approach to caption structuring ensures the effective 
capture and conveyance of comprehensive information regarding the objects, their ac-
tions, and the relevant spatial context. Consequently, it enhances the dataset’s applicabil-
ity in the surveillance system. 

Table 3. The sentence structure format employed in the captions of our dataset. 

Image Caption Risk Level  
(Danger Score) 

 

A man wearing a hat is walking in the park. Safe (1) 

 

A man in a white shirt and cap is walking  
on the road. Hazard (3) 

 

A man wearing a blue shirt is fainting in the room. Danger (5) 

 

A woman wearing a black dress is lying down on the road. Danger (6) 

3.4. Scene Descriptive Caption Generation and Risk Assessment 
The architectural framework of the proposed system is illustrated in Figure 2. The 

system follows a two-step process: Firstly, it fine-tunes BLIP-2 [11] using the dataset spe-
cifically tailored to generate descriptive captions that interpret scenes. BLIP-2, an ad-
vanced model in image captioning, combines visual and textual data, making it adept at 
understanding and describing complex scenes in surveillance footage. This model’s 
strength lies in its ability to contextualize visual elements within the framework of natural 
language, offering a more nuanced interpretation than traditional image recognition mod-
els. Subsequently, BERT [12] is employed to perform a semantic analysis of these captions. 
BERT’s key feature is its bidirectional training, allowing it to understand the context of a 
word based on all of its surroundings in a sentence. This is a significant departure from 
previous models that processed text in one direction, either left-to-right or right-to-left, 
which could overlook the broader context of certain words or phrases. BERT’s deep un-
derstanding of language nuances makes it particularly effective in assessing the risk levels 
in the captions generated by BLIP-2. Following the analysis, the system conducts a com-
prehensive assessment of the risk level associated with each scene. The risk levels are cat-
egorized and quantified on a scale ranging from 1 to 7, reflecting the severity of the risk. 
This multistage approach is a crucial component of the system’s capacity to deliver a nu-
anced evaluation of scene risk levels, significantly enhancing the efficacy of the surveil-
lance system. 

A man wearing a hat is
walking in the park. Safe (1)

Sensors 2024, 24, x FOR PEER REVIEW 8 of 18 
 

 

examples within Table 3 both depict an adult male engaged in walking. However, the 
contextual differences between these examples are significant. The first example takes 
place in a park, characterized as a safe environment. In contrast, the second example in-
volves walking on a road, an action considered perilous due to jaywalking. Additionally, 
the third and fourth examples depict a fainting incident, classified as an emergent situa-
tion within the danger (accident occurrence) category. The third example takes place 
within a room, devoid of additional environmental hazards, resulting in an assigned dan-
ger score of ‘5’. In contrast, the fourth example occurs on a road frequented by cars, posing 
a higher risk due to the increased likelihood of subsequent accidents and is thus assigned 
a danger score of ‘6’. This meticulous approach to caption structuring ensures the effective 
capture and conveyance of comprehensive information regarding the objects, their ac-
tions, and the relevant spatial context. Consequently, it enhances the dataset’s applicabil-
ity in the surveillance system. 

Table 3. The sentence structure format employed in the captions of our dataset. 

Image Caption Risk Level  
(Danger Score) 

 

A man wearing a hat is walking in the park. Safe (1) 

 

A man in a white shirt and cap is walking  
on the road. Hazard (3) 

 

A man wearing a blue shirt is fainting in the room. Danger (5) 

 

A woman wearing a black dress is lying down on the road. Danger (6) 

3.4. Scene Descriptive Caption Generation and Risk Assessment 
The architectural framework of the proposed system is illustrated in Figure 2. The 

system follows a two-step process: Firstly, it fine-tunes BLIP-2 [11] using the dataset spe-
cifically tailored to generate descriptive captions that interpret scenes. BLIP-2, an ad-
vanced model in image captioning, combines visual and textual data, making it adept at 
understanding and describing complex scenes in surveillance footage. This model’s 
strength lies in its ability to contextualize visual elements within the framework of natural 
language, offering a more nuanced interpretation than traditional image recognition mod-
els. Subsequently, BERT [12] is employed to perform a semantic analysis of these captions. 
BERT’s key feature is its bidirectional training, allowing it to understand the context of a 
word based on all of its surroundings in a sentence. This is a significant departure from 
previous models that processed text in one direction, either left-to-right or right-to-left, 
which could overlook the broader context of certain words or phrases. BERT’s deep un-
derstanding of language nuances makes it particularly effective in assessing the risk levels 
in the captions generated by BLIP-2. Following the analysis, the system conducts a com-
prehensive assessment of the risk level associated with each scene. The risk levels are cat-
egorized and quantified on a scale ranging from 1 to 7, reflecting the severity of the risk. 
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A man in a white shirt and
cap is walking

on the road.
Hazard (3)
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The captions presented in Table 3 meticulously delineate the specifics of objects within
surveillance footage. Objects are discerned by red highlights, with each highlighted section
indicating the object’s category and pertinent details. This information encompasses the
identification of whether the subject is a person, a vehicle, or a fire, and further specifies
whether the person is an adult or a child, along with details about their attire. Green
highlights are employed to depict the behavior of the object, while blue highlights convey
information pertaining to the spatial context. For instance, the first and second examples
within Table 3 both depict an adult male engaged in walking. However, the contextual
differences between these examples are significant. The first example takes place in a park,
characterized as a safe environment. In contrast, the second example involves walking on a
road, an action considered perilous due to jaywalking. Additionally, the third and fourth
examples depict a fainting incident, classified as an emergent situation within the danger
(accident occurrence) category. The third example takes place within a room, devoid of
additional environmental hazards, resulting in an assigned danger score of ‘5’. In contrast,
the fourth example occurs on a road frequented by cars, posing a higher risk due to the
increased likelihood of subsequent accidents and is thus assigned a danger score of ‘6’. This
meticulous approach to caption structuring ensures the effective capture and conveyance
of comprehensive information regarding the objects, their actions, and the relevant spatial
context. Consequently, it enhances the dataset’s applicability in the surveillance system.

3.4. Scene Descriptive Caption Generation and Risk Assessment

The architectural framework of the proposed system is illustrated in Figure 2. The
system follows a two-step process: Firstly, it fine-tunes BLIP-2 [11] using the dataset
specifically tailored to generate descriptive captions that interpret scenes. BLIP-2, an
advanced model in image captioning, combines visual and textual data, making it adept
at understanding and describing complex scenes in surveillance footage. This model’s
strength lies in its ability to contextualize visual elements within the framework of natural
language, offering a more nuanced interpretation than traditional image recognition models.
Subsequently, BERT [12] is employed to perform a semantic analysis of these captions.
BERT’s key feature is its bidirectional training, allowing it to understand the context of
a word based on all of its surroundings in a sentence. This is a significant departure
from previous models that processed text in one direction, either left-to-right or right-to-
left, which could overlook the broader context of certain words or phrases. BERT’s deep
understanding of language nuances makes it particularly effective in assessing the risk
levels in the captions generated by BLIP-2. Following the analysis, the system conducts
a comprehensive assessment of the risk level associated with each scene. The risk levels
are categorized and quantified on a scale ranging from 1 to 7, reflecting the severity of
the risk. This multistage approach is a crucial component of the system’s capacity to
deliver a nuanced evaluation of scene risk levels, significantly enhancing the efficacy of the
surveillance system.

In the second image of Figure 2, the BLIP-2 framework is depicted, featuring three
fundamental components: the image encoder, the query transformer (Q-Former), and the
large language model (LLM). The query transformer is a trainable module designed to
bridge the gap between the fixed-weight image encoder and the large language model.
It utilizes ViT-G [35] for the image encoder and OPT 2.7B [36] for the large language
model. BLIP-2 [11] undergoes fine-tuning using the constructed dataset, a process known
to be computationally intensive. To mitigate the associated costs, the LoRA (low-rank
adaptation) [37] technique, as proposed by Hu, is implemented in this system.

The analysis of the semantic content within the generated captions is facilitated by the
utilization of BERT [12]. As illustrated on the right side of Figure 2, the scene’s risk level is
subsequently measured through a classifier. BERT represents a significant milestone in the
domain of natural language processing, distinguished by its exemplary performance across
a spectrum of language-related tasks. Diverging from its predecessors, BERT employs a
bidirectional language model that comprehensively evaluates each word within a sentence,
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resulting in a more profound understanding of context. The special CLS token, situated
in the upper right portion of Figure 2, consistently appears at the start of BERT sequences.
This token serves to encapsulate the overarching context of the input sequence and is
particularly well suited for classification tasks. The proposed system is crafted to have
captions generated by BLIP-2 to produce a CLS token through BERT. The vector derived
from this CLS token then undergoes further processing via a linear layer, culminating in
classification that determines the scene’s risk level and associated danger score using a
softmax function. The combination of BLIP-2 and BERT in the proposed system leverages
the strengths of advanced image processing and deep language understanding. This
synergy results in a sophisticated risk assessment tool capable of interpreting complex
surveillance scenarios with a high degree of accuracy.
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4. Experiments and Results
4.1. Experimental Setup

The experimental setup for evaluating the proposed system is outlined as follows.
BLIP-2 [11] is configured with an input image size of 224 × 224, utilizing a fixed batch
size of 16. The optimization process is executed using the Adam [38] optimizer, and fine-
tuning takes place over a span of 50 epochs. The learning rate is set at 10−5. To facilitate
the generation of content-rich sentences, the model’s maximum output length is set to
30 characters. For BERT [12], the learning rate is established at 10−5, and a batch size of
32 is employed. BERT undergoes fine-tuning over 100 epochs. The experimental dataset
comprises a total of 2741 images, distributed into training, validation, and test subsets at an
8:1:1 ratio. All experiments are conducted on a single A100 GPU.

4.2. Experimental Results and Analysis
4.2.1. BLEU Score for Generated Captions

BLIP-2 [11] underwent fine-tuning to generate sentences containing object attributes,
actions, and space context, as exemplified in Table 3. To assess the system’s capability
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to produce captions adhering to the prescribed structural format, encompassing object
characteristics, actions, and space information, we computed the BLEU (bilingual evalua-
tion understudy) score [39]. The BLEU score is the most widely used metric in the field
of machine translation evaluation, serving as a quantitative index to measure translation
quality. It gauges the degree to which the terms within machine-generated candidate sen-
tences align with those in reference sentences, with penalties applied to lengthier candidate
sentences. The resultant BLEU score is presented as a numerical value within the range of 0
to 1, with higher scores signifying improved sentence generation quality. This multifaceted
BLEU scoring approach ensures a nuanced evaluation of sentence generation performance.

The evaluation of caption quality generated by BLIP-2 was carried out using the
BLEU score, with the frequency of generated captions as the underlying criterion for
evaluation. The results of the BLEU scores for our dataset are outlined in Table 4. Notably,
our newly constructed dataset, despite incorporating less common terminology related to
risk scenarios, accidents, and space contexts, boasts an impressive BLEU-4 score of 0.4096.
This accomplishment serves as a testament to the effectiveness of our dataset’s captions
in fulfilling their designated role. Furthermore, it reaffirms the successful fine-tuning of
BLIP-2 using our dataset, ensuring the generation of pertinent captions suitable for the
surveillance system.

Table 4. The results of the BLEU scores for our dataset.

BLEU-1 BLEU-2 BLEU-3 BLEU-4

0.7062 0.5827 0.4873 0.4096

4.2.2. Qualitative Evaluation of Generated Captions

Table 5 presents a comprehensive comparative analysis of caption generated results
between the proposed system and existing image captioning models. The comparative mod-
els encompass state-of-the-art models developed following the emergence of transformer-
based approaches, including CPTR by Xu, K [15], OFA by Liu, W [16], and BLIP-2 by Li,
J. [11] (before fine-tuning). Each of these models [11,15,16] has undergone pre-training on
distinct datasets. Specifically, CPTR [15] in Table 5a was pre-trained utilizing the COCO
dataset [40]. OFA [16] in Table 5b was pre-trained using a diverse range of datasets, in-
cluding CC12M [41], CC3M [41], SBU [42], COCO [40], and VG-Cap [43]. Additionally,
BLIP-2 [11] in Table 5c was pre-trained on the LAION dataset [44]. Table 5d signifies the
BLIP-2 [11] model fine-tuned using the self-constructed dataset proposed within this paper.

Table 5a illustrates a scene featuring a pedestrian jaywalking on a roadway, including
the potential accident hazard. Upon examining the generated captions, it is evident that
CPTR and BLIP-2(base) produce an incorrect caption, failing to accurately detect the object.
Meanwhile, OFA produces a caption lacking essential human-centric information. The
results obtained from our model, showcase success in generating a caption that compre-
hensively incorporates essential details regarding the individual, the walking action, and
the spatial context of the road.

Table 5b,c illustrates a scene featuring a person who has fallen due to an accident.
Upon examining the results for the image in Table 5b, all models produced captions that
showed a person lying down. However, it is noteworthy that only our model was able
to produce captions offering detailed information about the object and its surrounding
environment. Other models misrepresented space information or failed to adequately
represent the object. CPTR and OFA generate interpretations centered around a person
standing nearby, deviating from a primary focus on the fallen individual. BLIP-2(base)
focuses on the fallen person but is observed to lack information related to space and objects.
In contrast, presenting results from our model, it accurately formulates a sentence that
encompasses contextual spatial details, including the fallen person, car, and road. Notably,
it surpasses anticipated outcomes by also providing a descriptive account of the person
standing nearby.
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Table 5. The comparison results of caption generation between our system and other models.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 18 
 

 

Table 5a illustrates a scene featuring a pedestrian jaywalking on a roadway, including 
the potential accident hazard. Upon examining the generated captions, it is evident that 
CPTR and BLIP-2(base) produce an incorrect caption, failing to accurately detect the ob-
ject. Meanwhile, OFA produces a caption lacking essential human-centric information. 
The results obtained from our model, showcase success in generating a caption that com-
prehensively incorporates essential details regarding the individual, the walking action, 
and the spatial context of the road. 

Tables 5b,c illustrates a scene featuring a person who has fallen due to an accident. 
Upon examining the results for the image in Table 5b, all models produced captions that 
showed a person lying down. However, it is noteworthy that only our model was able to 
produce captions offering detailed information about the object and its surrounding envi-
ronment. Other models misrepresented space information or failed to adequately repre-
sent the object. CPTR and OFA generate interpretations centered around a person stand-
ing nearby, deviating from a primary focus on the fallen individual. BLIP-2(base) focuses 
on the fallen person but is observed to lack information related to space and objects. In 
contrast, presenting results from our model, it accurately formulates a sentence that en-
compasses contextual spatial details, including the fallen person, car, and road. Notably, 
it surpasses anticipated outcomes by also providing a descriptive account of the person 
standing nearby.  

Table 5d illustrates a scene featuring two men engaged in a physical altercation. 
However, CPTR and OFA inaccurately capture the action-related information. BLIP-
2(base) generates the correct caption, yet it is perceived as lacking in expressiveness. In 
contrast, presenting results from our model, generates a caption that accurately describes 
both the specific object information of the two men and the actions “fighting” and “in the 
room”. These experiments have demonstrated that a model fine-tuned with a dataset spe-
cialized for surveillance systems can indeed generate captions effectively, aiding in the 
interpretation and judgment of scenes. Furthermore, the results underscore that existing 
benchmark datasets may not be well suited for specific tasks, highlighting the importance 
of developing task-specific datasets. 

Table 5. The comparison results of caption generation between our system and other models. 

 

 
(a) 

 
(b) 

CPTR [15] A man walking down a street with a skate-
board. 

A man lying on a park bench with his legs 
crossed. 

OFA [16] A man is crossing the street in a city. A man lying on the ground next to a tree. 
BLIP-2 [11] 

(Base) 
A man walking down the street with an um-

brella. A man lying on the ground in front of a house. 

Ours A man in black pants is walking on the road. A man wearing a tan T-shirt fell on the side-
walk. 

(a)

Sensors 2024, 24, x FOR PEER REVIEW 11 of 18 
 

 

Table 5a illustrates a scene featuring a pedestrian jaywalking on a roadway, including 
the potential accident hazard. Upon examining the generated captions, it is evident that 
CPTR and BLIP-2(base) produce an incorrect caption, failing to accurately detect the ob-
ject. Meanwhile, OFA produces a caption lacking essential human-centric information. 
The results obtained from our model, showcase success in generating a caption that com-
prehensively incorporates essential details regarding the individual, the walking action, 
and the spatial context of the road. 

Tables 5b,c illustrates a scene featuring a person who has fallen due to an accident. 
Upon examining the results for the image in Table 5b, all models produced captions that 
showed a person lying down. However, it is noteworthy that only our model was able to 
produce captions offering detailed information about the object and its surrounding envi-
ronment. Other models misrepresented space information or failed to adequately repre-
sent the object. CPTR and OFA generate interpretations centered around a person stand-
ing nearby, deviating from a primary focus on the fallen individual. BLIP-2(base) focuses 
on the fallen person but is observed to lack information related to space and objects. In 
contrast, presenting results from our model, it accurately formulates a sentence that en-
compasses contextual spatial details, including the fallen person, car, and road. Notably, 
it surpasses anticipated outcomes by also providing a descriptive account of the person 
standing nearby.  

Table 5d illustrates a scene featuring two men engaged in a physical altercation. 
However, CPTR and OFA inaccurately capture the action-related information. BLIP-
2(base) generates the correct caption, yet it is perceived as lacking in expressiveness. In 
contrast, presenting results from our model, generates a caption that accurately describes 
both the specific object information of the two men and the actions “fighting” and “in the 
room”. These experiments have demonstrated that a model fine-tuned with a dataset spe-
cialized for surveillance systems can indeed generate captions effectively, aiding in the 
interpretation and judgment of scenes. Furthermore, the results underscore that existing 
benchmark datasets may not be well suited for specific tasks, highlighting the importance 
of developing task-specific datasets. 

Table 5. The comparison results of caption generation between our system and other models. 

 

 
(a) 

 
(b) 

CPTR [15] A man walking down a street with a skate-
board. 

A man lying on a park bench with his legs 
crossed. 

OFA [16] A man is crossing the street in a city. A man lying on the ground next to a tree. 
BLIP-2 [11] 

(Base) 
A man walking down the street with an um-

brella. A man lying on the ground in front of a house. 

Ours A man in black pants is walking on the road. A man wearing a tan T-shirt fell on the side-
walk. 

(b)

CPTR [15] A man walking down a street with a skateboard. A man lying on a park bench with his legs crossed.
OFA [16] A man is crossing the street in a city. A man lying on the ground next to a tree.

BLIP-2 [11]
(Base) A man walking down the street with an umbrella. A man lying on the ground in front of a house.

Ours A man in black pants is walking on the road. A man wearing a tan T-shirt fell on the sidewalk.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 18 
 

 

 

 
(c) 

 
(d) 

CPTR [15] A man is standing next to a parked car. A man and woman are standing in a room. 

OFA [16] 
A group of people standing around a man on 

the street. Two men are dancing in a room. 

BLIP-2 [11]  
(Base) A man lying on the ground next to a red car. Two young men are fighting in a bedroom. 

Ours 
A man wearing a jacket is lying  

next to a red car on the road, 
and a man in black is standing. 

A man wearing a black top is fighting with a 
man wearing a gray shirt in the room. 

4.2.3. Risk Assessment Results 
Table 6 presents the results of risk assessments conducted by our system. Specifically, 

Table 6a,b pertain to safe situations, exemplified by individuals walking on a path. Our 
proposed system has assessed both scenarios as ‘safe,’ but it distinguished between them 
by assigning a danger score of ‘1′ to Table 6a and ‘2′ to Table 6b. It is noteworthy that Table 
6b receives a danger score of ‘2′ primarily due to the presence of a child in the scene. The 
inclusion of a child is considered to increase the assessed danger score compared to Table 
6a, where no child is present.  

Table 6c,d showcase images portraying individuals engaged in potentially hazardous 
behavior, specifically sitting on railings. While the action of sitting can be detected in sit-
uations classified as safe, the change in space context contributes to the classification of 
danger level risk. Table 6c generates a successful caption, offering a descriptive account of 
two women seated on a railing. As a result, the system accurately assessed the danger 
score as ‘3′. Similarly, Table 6d generates a precise caption, featuring the object ‘girl’ and 
spatial context of ‘railing’. Given that a child, rather than an adult, is detected in the scene, 
the system assigned a danger score of ‘4′. This exemplifies the system’s proficiency in dis-
tinguishing between actions that may appear similar but carry varying levels of risk, un-
derlining its capacity to conduct precise risk assessments in diverse situations.  

Table 6e,f,g feature images with people who have collapsed. The action of collapsing 
is inherently associated with the classification of danger (=accident occurrence), which, in 
turn, triggers a danger score of ‘5′ or higher. The precise danger score is contingent upon 
several factors, notably the space context and whether the affected individual is an adult 
or a child. Table 6e portrays a woman collapsing on the indoor floor. Since the indoor floor 
space does not add additional accident risk, the system assigned a danger score of ‘5′. 
Conversely, Table 6f also depicts a collapsing action similar to that in Table 6e, but it takes 
place on outdoor stairs rather than indoors. The system intelligently infers that the ‘stair’ 
area poses a higher level of risk compared to the ‘indoor floor,’ assigning a danger score 
of ‘6′. In Table 6g, a child is observed collapsing outdoors. The subject is identified as a 
child, and the incident occurred in an outdoor setting where there may be additional risk. 
This crucial distinction prompts the system to assign a danger score of ‘7′, emphasizing 
our system’s capacity to recognize differences in risk based on the age of the individual 
involved and the specific spatial context. 

  

(c)

Sensors 2024, 24, x FOR PEER REVIEW 12 of 18 
 

 

 

 
(c) 

 
(d) 

CPTR [15] A man is standing next to a parked car. A man and woman are standing in a room. 

OFA [16] 
A group of people standing around a man on 

the street. Two men are dancing in a room. 

BLIP-2 [11]  
(Base) A man lying on the ground next to a red car. Two young men are fighting in a bedroom. 

Ours 
A man wearing a jacket is lying  

next to a red car on the road, 
and a man in black is standing. 

A man wearing a black top is fighting with a 
man wearing a gray shirt in the room. 

4.2.3. Risk Assessment Results 
Table 6 presents the results of risk assessments conducted by our system. Specifically, 

Table 6a,b pertain to safe situations, exemplified by individuals walking on a path. Our 
proposed system has assessed both scenarios as ‘safe,’ but it distinguished between them 
by assigning a danger score of ‘1′ to Table 6a and ‘2′ to Table 6b. It is noteworthy that Table 
6b receives a danger score of ‘2′ primarily due to the presence of a child in the scene. The 
inclusion of a child is considered to increase the assessed danger score compared to Table 
6a, where no child is present.  

Table 6c,d showcase images portraying individuals engaged in potentially hazardous 
behavior, specifically sitting on railings. While the action of sitting can be detected in sit-
uations classified as safe, the change in space context contributes to the classification of 
danger level risk. Table 6c generates a successful caption, offering a descriptive account of 
two women seated on a railing. As a result, the system accurately assessed the danger 
score as ‘3′. Similarly, Table 6d generates a precise caption, featuring the object ‘girl’ and 
spatial context of ‘railing’. Given that a child, rather than an adult, is detected in the scene, 
the system assigned a danger score of ‘4′. This exemplifies the system’s proficiency in dis-
tinguishing between actions that may appear similar but carry varying levels of risk, un-
derlining its capacity to conduct precise risk assessments in diverse situations.  

Table 6e,f,g feature images with people who have collapsed. The action of collapsing 
is inherently associated with the classification of danger (=accident occurrence), which, in 
turn, triggers a danger score of ‘5′ or higher. The precise danger score is contingent upon 
several factors, notably the space context and whether the affected individual is an adult 
or a child. Table 6e portrays a woman collapsing on the indoor floor. Since the indoor floor 
space does not add additional accident risk, the system assigned a danger score of ‘5′. 
Conversely, Table 6f also depicts a collapsing action similar to that in Table 6e, but it takes 
place on outdoor stairs rather than indoors. The system intelligently infers that the ‘stair’ 
area poses a higher level of risk compared to the ‘indoor floor,’ assigning a danger score 
of ‘6′. In Table 6g, a child is observed collapsing outdoors. The subject is identified as a 
child, and the incident occurred in an outdoor setting where there may be additional risk. 
This crucial distinction prompts the system to assign a danger score of ‘7′, emphasizing 
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(d)

CPTR [15] A man is standing next to a parked car. A man and woman are standing in a room.

OFA [16] A group of people standing around a man on
the street. Two men are dancing in a room.

BLIP-2 [11] (Base) A man lying on the ground next to a red car. Two young men are fighting in a bedroom.

Ours
A man wearing a jacket is lying

next to a red car on the road,
and a man in black is standing.

A man wearing a black top is fighting with a man
wearing a gray shirt in the room.

Table 5d illustrates a scene featuring two men engaged in a physical altercation.
However, CPTR and OFA inaccurately capture the action-related information. BLIP-2(base)
generates the correct caption, yet it is perceived as lacking in expressiveness. In contrast,
presenting results from our model, generates a caption that accurately describes both
the specific object information of the two men and the actions “fighting” and “in the
room”. These experiments have demonstrated that a model fine-tuned with a dataset
specialized for surveillance systems can indeed generate captions effectively, aiding in the
interpretation and judgment of scenes. Furthermore, the results underscore that existing
benchmark datasets may not be well suited for specific tasks, highlighting the importance
of developing task-specific datasets.

4.2.3. Risk Assessment Results

Table 6 presents the results of risk assessments conducted by our system. Specifically,
Table 6a,b pertain to safe situations, exemplified by individuals walking on a path. Our
proposed system has assessed both scenarios as ‘safe,’ but it distinguished between them
by assigning a danger score of ‘1’ to Table 6a and ‘2’ to Table 6b. It is noteworthy that
Table 6b receives a danger score of ‘2’ primarily due to the presence of a child in the scene.
The inclusion of a child is considered to increase the assessed danger score compared to
Table 6a, where no child is present.
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Table 6. The results of risk assessment for each individual case.
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A girl in a green jacket fell next to a
bicycle and a woman is helping her. 7

Table 6c,d showcase images portraying individuals engaged in potentially hazardous
behavior, specifically sitting on railings. While the action of sitting can be detected in
situations classified as safe, the change in space context contributes to the classification of
danger level risk. Table 6c generates a successful caption, offering a descriptive account
of two women seated on a railing. As a result, the system accurately assessed the danger
score as ‘3’. Similarly, Table 6d generates a precise caption, featuring the object ‘girl’ and
spatial context of ‘railing’. Given that a child, rather than an adult, is detected in the scene,
the system assigned a danger score of ‘4’. This exemplifies the system’s proficiency in
distinguishing between actions that may appear similar but carry varying levels of risk,
underlining its capacity to conduct precise risk assessments in diverse situations.
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Table 6e,f,g feature images with people who have collapsed. The action of collapsing
is inherently associated with the classification of danger (=accident occurrence), which, in
turn, triggers a danger score of ‘5’ or higher. The precise danger score is contingent upon
several factors, notably the space context and whether the affected individual is an adult
or a child. Table 6e portrays a woman collapsing on the indoor floor. Since the indoor
floor space does not add additional accident risk, the system assigned a danger score of ‘5’.
Conversely, Table 6f also depicts a collapsing action similar to that in Table 6e, but it takes
place on outdoor stairs rather than indoors. The system intelligently infers that the ‘stair’
area poses a higher level of risk compared to the ‘indoor floor,’ assigning a danger score
of ‘6’. In Table 6g, a child is observed collapsing outdoors. The subject is identified as a
child, and the incident occurred in an outdoor setting where there may be additional risk.
This crucial distinction prompts the system to assign a danger score of ‘7’, emphasizing
our system’s capacity to recognize differences in risk based on the age of the individual
involved and the specific spatial context.

As shown in Table 7, the proposed system exhibited remarkable accuracies of 92.9%,
89.5%, and 94.3% for the three distinct risk levels: safety, hazard, and danger (=accident
occurrence), respectively, during the evaluation involving 301 test data samples. These
results affirm the valuable nature of the proposed dataset, providing easily accessible
information essential for the precise evaluation of risk levels.

Table 7. Accuracy for three distinct risk levels on the test datasets.

Ground Output
Support

Safety Hazard Danger Number of Images Accuracy

Safety 53 3 1 57 92.9%
Hazard 3 60 4 67 89.5%
Danger 1 7 169 177 94.3%

Total 301 93.0%

Moreover, the consistent achievement of high accuracies across all risk categories un-
derscores the robustness of the system. Additionally, the model trained with the proposed
dataset demonstrates the system’s ability to adequately interpret the relationships between
types of objects and behaviors in various locations, further confirming its effectiveness and
reliability in real-world applications.

To integrate the proposed scene interpretation and danger score measurement sys-
tem into actual surveillance systems, it is necessary to conduct experiments to verify its
proper functioning under adverse conditions, including various lighting scenarios, noise,
and weather. Table 8 presents experimental results demonstrating the robustness of the
proposed surveillance system in challenging shooting environments influenced by factors
such as lighting, shadows, and weather. Table 8a–c utilizes an image of the same accident
pattern captured under different environmental factors, including low resolution, nighttime
darkness, and obscured objects due to shadows. In Table 8a, a man has collapsed on the
road, captured using a low-resolution camera. Despite the small size of the individual and
the low resolution of the image, the proposed system accurately interpreted the fallen man
and predicted the correct level of risk. Table 8b depicts a nighttime traffic accident scene
where a man is hit by a car in dark conditions. The system successfully detected and inter-
preted the incident involving the man and the car. Table 8c includes a scene where a man
has collapsed under a tree’s shadow, obscuring the view. Even in this scenario, the system
effectively detected both the car and the fallen man, correctly interpreting the accident
scene centered around the fallen individual. These results highlight the system’s capability
to operate robustly using datasets collected from various environments and emphasize its
applicability as a reliable surveillance tool, even in changing shooting environments and
amidst obstructive factors.
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Table 8. Some experimental results that demonstrate the robustness of proposed surveillance system
in unstable recording environments influenced by variations in lighting, shadows, and shooting
resolution.
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with a red car. 

Danger Score 6 6 6 

Table 9 presents instances of distinct types of limitations and areas for improvement 
encountered by our proposed system. The cases in Table 9 are examples classified under 
the “Danger” category. 

Table 9a,b were misclassified as hazard and safety, respectively. In Table 9a, the scene 
depicts a man who has fallen off his bicycle. The generated caption by our system primar-
ily emphasized a safety officer standing in proximity to the fallen individual rather than 
the person in distress. Given the safety officer’s placement on the road, the system classi-
fied the area as hazardous, assigning a danger score of ‘3′. The system’s misinterpretation 
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Table 9 presents instances of distinct types of limitations and areas for improvement 
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Table 9a,b were misclassified as hazard and safety, respectively. In Table 9a, the scene 
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Influenced
Factor Low resolution Low light condition Overshadow

Caption A man wearing a black top is
lying on the road.

A man wearing a white top was
hit by a car on the road.

A man falls down in a collision
with a red car.

Danger Score 6 6 6

Table 9 presents instances of distinct types of limitations and areas for improvement
encountered by our proposed system. The cases in Table 9 are examples classified under
the “Danger” category.

Table 9. Examples of distinct types of limitations and areas for improvement encountered by our
system in the domains of image captioning and risk assessment.
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Caption 
A man wearing a yellow safety 
vest is standing next to a bicy-

cle on the road. 

A boy wearing a helmet is sit-
ting on the ground. 

Three boys are burning a stick 
on the sidewalk. 

Danger Score 3 2 7 
Ground 
Truth 6 6 7 

5. Conclusions and Future Work 
As the field of artificial intelligence advances and hardware capabilities improve, sur-

veillance systems have evolved to handle a broad range of tasks. Our proposed surveil-
lance system introduces a novel approach that empowers the system to autonomously 
interpret a wide spectrum of information, facilitating comprehensive situation analysis. 
This system leverages large multimodal models to generate descriptive captions for haz-
ardous situations and employs semantic analysis to assess the associated risk levels effec-
tively. 
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veillance systems have evolved to handle a broad range of tasks. Our proposed surveil-
lance system introduces a novel approach that empowers the system to autonomously 
interpret a wide spectrum of information, facilitating comprehensive situation analysis. 
This system leverages large multimodal models to generate descriptive captions for haz-
ardous situations and employs semantic analysis to assess the associated risk levels effec-
tively. 

(c)

Caption
A man wearing a yellow safety

vest is standing next to a bicycle
on the road.

A boy wearing a helmet is sitting
on the ground.

Three boys are burning a stick on
the sidewalk.

Danger Score 3 2 7
Ground Truth 6 6 7

Table 9a,b were misclassified as hazard and safety, respectively. In Table 9a, the scene
depicts a man who has fallen off his bicycle. The generated caption by our system primarily
emphasized a safety officer standing in proximity to the fallen individual rather than the
person in distress. Given the safety officer’s placement on the road, the system classified
the area as hazardous, assigning a danger score of ‘3’. The system’s misinterpretation in this
instance can be attributed to the camera angle, which caused the primary subject (the fallen
adult male) to appear relatively smaller compared to other objects in the vicinity, notably
the standing safety officer. Table 9b portrays a scene featuring a boy who has collapsed
due to an accident. The system interpreted this scene as a boy sitting on the ground and
accordingly assessed the danger score as ‘2’. It is essential to emphasize that the actual
scenario involves a boy who has fallen subsequent to a bicycle accident. This example
underscores the inherent limitations of image-based systems, as the concept of action
depends on continuous information, which remains beyond the reach of static images.
The errors discerned in Table 9a,b, where the object size was either inadequately small or
entailed unrecognized words, underline the potential for system improvement through the
accrual of more diverse data, encompassing a broad spectrum of object sizes and textual
information. Training the system with this augmented dataset holds promise for addressing
issues related to caption generation across a multitude of scenarios. Nevertheless, it is
imperative to acknowledge the intrinsic limitation associated with the detection of intricate
behavioral patterns at the single-frame level. A solution to this challenge lies in the
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extension of the system’s applicability to video data, permitting a more comprehensive
consideration of situational context.

In the case of Table 9c, our system accurately interpreted the presence of children
lighting a fire and accordingly assessed the danger score as ‘7’. However, our system failed
to detect the child lying on the railing to the right, which should have been identified.
Table 9c exemplifies the limitations associated with situations where multiple scenarios
occur simultaneously within a single scene. This table represents a scenario where distinct
behaviors unfold concurrently, posing a challenge for detection. Describing such an image
with a single caption is challenging. The solution to this challenge lies in integrating
multi-object detection and dense captioning techniques. This integration allows for the
generation of captions and sentences for multiple concurrently detected scenes, rather than
attempting to fit multiple object and action descriptions into a single sentence.

5. Conclusions and Future Work

As the field of artificial intelligence advances and hardware capabilities improve,
surveillance systems have evolved to handle a broad range of tasks. Our proposed surveil-
lance system introduces a novel approach that empowers the system to autonomously in-
terpret a wide spectrum of information, facilitating comprehensive situation analysis. This
system leverages large multimodal models to generate descriptive captions for hazardous
situations and employs semantic analysis to assess the associated risk levels effectively.

To create these captions, we incorporate object information, behavior details, and
space context to monitor various situations, leveraging this information to measure risk.
Our self-constructed dataset was designed to categorize risk levels based on factors such as
the age group of individuals, types of actions, and the nature of locations. Through a series
of experiments using these datasets, we demonstrate that they provide comprehensive
information for risk assessment and exhibit exceptional performance in this regard. Com-
pared to models pre-trained on existing datasets, our generated captions comprehensively
encompass the requisite object attributes, behavior, and spatial context essential for the
surveillance system. Furthermore, they exhibit adaptability to novel sentence structures,
ensuring versatility across diverse contexts. The robustness of the dataset has also been
evidenced by testing with images captured under various conditions, showing its adapt-
ability to both indoor and outdoor environments. Consequently, monitoring personnel
can make more accurate and quicker decisions by receiving combined information of the
video, interpreted captions, and risk level assessment. Expanding our system to create
caption data for additional situations can further enhance surveillance system performance,
potentially culminating in a universally applicable system.

As part of our future research agenda, we plan to explore a system that combines
multi-object detection and dense captioning technology to generate captions and seamlessly
integrate sentences for multiple concurrently detected scenes. Furthermore, recognizing
the constraints associated with detecting abnormal situations at the single-frame level, we
aim to investigate the expansion of existing systems by incorporating video captioning
technology that accounts for the context preceding and following an incident, thus enabling
a more comprehensive and nuanced analysis.
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