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Abstract: Machine learning (ML) has found widespread application in various domains. Additionally,
ML-based techniques have been employed to address security issues in technology, with numerous
studies showcasing their potential and effectiveness in tackling security problems. Over the years,
ML methods for identifying malicious software have been developed across various security domains.
However, recent research has highlighted the susceptibility of ML models to small input perturba-
tions, known as adversarial examples, which can significantly alter model predictions. While prior
studies on adversarial examples primarily focused on ML models for image processing, they have
progressively extended to other applications, including security. Interestingly, adversarial attacks
have proven to be particularly effective in the realm of malware classification. This study aims to
explore the transparency of malware classification and develop an explanation method for malware
classifiers. The challenge at hand is more complex than those associated with explainable AI for
homogeneous data due to the intricate data structure of malware compared to traditional image
datasets. The research revealed that existing explanations fall short in interpreting heterogeneous
data. Our employed methods demonstrated that current malware detectors, despite high classifica-
tion accuracy, may provide a misleading sense of security and measuring classification accuracy is
insufficient for validating detectors.

Keywords: adversarial learning; IoT; deep learning; interpretability; XAI for CTI applications; XAI
for cybersecurity data

1. Introduction

Numerous empirical studies have demonstrated the significant potential and effec-
tiveness of machine learning (ML) in addressing specific security issues (i.e., malware
detection [1,2]). ML techniques for detecting malware have been developed over the
years and applied in a variety of security domains, including the clustering of malware
families [3,4], the identification of malicious downloads [5,6], the detection of account
misuse networks [7,8], and the recognition of commonly exploited file formats such as
Java archives [9], documents [10,11], and PDF malware [12–15]. Among these file types,
PDF and portable executable (PE) files have gained considerable popularity in both cyber
attacks and defense strategies. SonicWall [16] has reported a significant rise in new attacks
related to PDF and PE files, with over 268,362 new attacks discovered in 2020, reflecting a
substantial 74% year-over-year increase.

The inaugural PDF classification model, PDFrate-v1 [13], addressed the challenge
of PDF document classification using ML techniques, leveraging both metadata and the
content of PDF documents. This approach involved manually crafting 202 features to
train a random forest (RF) model for detection. Subsequently, PDFrate-v2 [14] enhanced
the performance by employing an ensemble training technique. Hidost [12,15] took a
different approach involving the extraction of files into a structural map and utilizing
it as a feature set for a training model. Support vector machines (SVMs) and RF have
been employed as classification models with impressive detection performance. A recent
study [17] introduced a verifiable robust classifier with subtree deletion and insertion
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properties, which enable the classifier to withstand attacks involving a bounded number of
subtrees under the root node. To mitigate such attacks, Ref. [17] advocated for verifiably
trained models that exhibit robustness against all possible bounded attacks.

Since the inception of research on adversarial examples (AEs) in machine learning
(ML) [18–21], it has been known that slight perturbations to the input can substantially alter
the prediction outcomes. Subsequently, the range of attacks has expanded to encompass
the field of malware. This development poses challenges for ML model developers focused
on malware [22], making it imperative to construct robust malware detectors or classifiers
that can withstand AE attacks. A strategy commonly employed by many researchers and
developers involves fortifying a model by training it against all conceivable AEs, leading
to considerable efforts in developing malware detection systems that identify AEs that
target existing ML models. From recent AE attacks [23–25], it can be seen that AE attacks
have a stronger effect on poisonous malware-based detectors, with the accuracy of most
high-performing models converging to zero with a false positive rate of under 0.1%.

In assessing ML classifiers for security applications, it is inadequate to rely solely on
accuracy and false positive rates. Although a wide variety of metrics have been developed
in ML theory, none comprehensively measure the robustness of classifiers against AEs.
For a malware classifier to be practically effective, it must demonstrate security against
various security measures. For example, a robustness property might require the classifier
to correctly identify modified malware as malicious, even if benign features have been
inserted into a PDF malware or vice versa. This emphasizes the importance of evaluating
classifier security using alternative metrics to avoid a false sense of confidence in their
performance. Our goal in this study was to understand the rationale for the effectiveness of
the AEs on malware classifiers. We suspected that the performance of the existing classifiers
is determined simply by the prediction accuracy, which typically provides a false sense
of the model. To resolve this problem, it was necessary to view it from the perspective of
model interpretation rather than relying on simple results.

Explainable AI (XAI) is an approach to solving the above-mentioned problem of
false security based on prediction accuracy. XAI methods can be categorized as either
interpretable models [26,27] or post hoc explanations [28–30]. The former utilize built-in
architectures for interpretability to expose the components of input data that the model
focuses on when making a decision. Several studies have proposed methods for interpreting
a face recognition model by using interpretable models [31,32]. Later post hoc explanations
have interpreted a trained deep neural network (DNN) by fitting explanations of how the
model performs the classification.

Several XAI methods based on the post hoc approach have been proposed [26–30] on
the basis of the post hoc approach. To interpret image models, such XAI models assign an
importance score to each pixel of the input data utilizing built-in architectures to expose
the parts of the input data that the model focuses on when making a decision. Later studies
of XAI have interpreted trained DNNs by fitting explanations of how the models perform
classification. However, several problems have made it difficult to explain the models
using previous XAI methods as a result of (a) the complexity of deep learning models,
(b) the existence of near-zero gradients for saturated predictions, and (c) the dependence
of the sensitivity on the values of the inputs. Although several studies have attempted
to tackle such problems [30,33], these methods cannot be applied to heterogeneous data
because they are dependent on the homogeneous nature of the target input data such as
image pixels.

For heterogeneous data, we use black-box explanation methods, which are able to
explain any model [28,34–36], used to evaluate classifiers. The most commonly used post
approach is the locally interpretable model-agnostic description (LIME), which operates
the opaque models that are trained using text, tabular, and image datasets as a black-box.

The framework [37] accounts for the predictions of datasets by capturing the local
opaque model using the regional data distribution. In this process, a surrogate classifier is
stuck to the opaque model in the surrounding small neighborhood and an interpretable
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classifier is developed based on a linear model trained with a given dataset to obtain high
fidelity to the original model. XAI methods for the interpretation of the classification task
generally use the logit gradient of the ground-truth label with respect to the input. If the
original model function behaves linearly in the space of neighboring samples around the
input datasets, the distribution of the input data can vary depending on the problem being
solved, which might not be accounted for by a fixed sampling method. To obtain a global
model explanation, LIME employs a submodular pick that uses the non-redundant cover-
age explanations of all features. However, current LIME approaches cannot distinguish
importance features by the type of data, as shown in Figure 1a. In addition, Ref. [38]
showed that the importance scores generated by LIME are not robust to changes in the
input values, which means that the importance scores of an individual feature can be
dependent on the sensitivity of the feature.

 features

(a)

 features

(b)

Figure 1. The sum of the importance scores of the 295 features in the PDF dataset using LIME [28].
We set the number of representative instances as eight, four instances from each class. (a) The sum of
importance scores by using LIME. (b) Ground truth test attack distribution.

In this paper, we demonstrate that the current LIME approach, specifically the sub-
modular pick, is not capable of interpreting heterogeneous data, as mentioned in [38]; thus,
we propose a method to select the top-k importance features to robustly utilize methods
for the explanation of heterogeneous data. We used Bayesian optimization to identify an
optimal solution for gradient-based optimizers to carry out an ensemble approach to the
voting importance measurement of each feature. Figure 1a,b show concrete examples of
misleading explanations presented by the current LIME. Figure 1a shows a distribution
that is completely unrelated to the original test distribution in Figure 1b. We validated our
approach using representative PDF and PE classifiers and demonstrate that the current ex-
planation approaches can provide false explanations and unreliable results in representing
their models. The analysis conducted via our interpretation model revealed that the latest
AE attacks are effective against current malware classifiers because the classifiers rely on
specific features that are targeted by AE attackers to diminish their effectiveness.

2. Background
2.1. Types of Model Verification

Attack scenarios can be classified into two categories based on the varying levels of
knowledge possessed by the attacker: white-box attacks and black-box attacks. The degree
of information available to an attacker determines the classification of the attack scenario,
with a higher level of obscurity indicating a black-box attack. Three types of information
can be disclosed to an attacker: (1) the training dataset along with its labels; (2) the feature
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set and the feature extraction algorithm of the classifier, including the types of features
extracted; (3) the knowledge of the classification function and its hyperparameters.

Verification types follow the same principle as attack scenarios. In the white-box
approach, the verifier has full knowledge of the classifier. However, this assumption is not
realistic in practice because the provers are required to open their model to the verifier. For
this reason, a black-box approach such as LIME [28] (described in Section 2.3) is preferred
to the white-box approach. A black-box approach only allows for an attacker with minimal
knowledge of all three types of information. The attacker is only given certain details
of the feature representation (e.g., the feature types), providing only a vague idea of the
modification strategy.

2.2. Types of Malware Classifiers

ML techniques for malware detection have undergone extensive development over
the years and have been extended to various security domains. In particular, classifiers
for PDF and PE files are widely employed owing to their ability to facilitate large-scale
infections and broaden the scope of targeted attacks. The predominant approach for
malware classifiers involves static and dynamic analysis. Static analysis involves scanning
binary byte streams, printable strings, n-grams, instructions, etc., whereas dynamic analysis
executes individual software components in an isolated environment (virtual box) to collect
runtime behavior logs. Notably, our interpretation approach is designed to function in both
static and dynamic analysis settings. For static analysis, we utilized three representative
PDF classifiers, covering diverse types of PDF attacks such as JavaScript- and ActionScript-
based attacks and file-embedding attacks. To carry out dynamic analysis, we employed a
state-of-the-art method that incorporates code obfuscation and addresses zero-day malware.
This comprehensive approach allows for a robust interpretation of malware characteristics
across both the static and dynamic analysis methodologies.

Many PDF classifiers make use of the Poppler PDF parser [39] in the initial stage of
structure extraction. Poppler is employed to break PDF files down into structural multi-
maps. In this structural extraction stage, the paths of objects within a PDF are extracted and
utilized as features during the classification process. To address the presence of numerous
semantically equivalent, yet syntactically different structures, a process called structural
path consolidation (SPC) is performed. SPC involves the application of manually created
rules to consolidate and standardize structural paths for more-effective and consistent
classification. Hidost, one of the first representative PDF classifier models, is provided
as open-source. Hidost is utilized in SVM [12] and RF [15]. SVM, a supervised learning
model approach, establishes an optimal hyperplane for distinguishing between two labels;
RF, a meta-estimator, integrates multiple decision trees to enhance classification accuracy.
In the initial phase, Hidost employs the Poppler PDF parser to deconstruct files into struc-
tural multimaps during the structure-extraction process. The features for classification are
derived from the structural paths of objects in the PDF. To address semantically equiva-
lent, but syntactically different structures, Hidost consolidates structural paths based on
predefined rules. For feature selection, a rule similar to the SL2013 method is applied,
including the use of only those paths that occur in more than a specified number of files.
As an open-source tool, Hidost trained its model using a randomly selected set of 10,000
files with a 1:1 ratio of malicious to benign samples. The PDF dataset comprises 407,037
benign and 32,567 malicious files.

PDFrate classifier is utilized in RF and ensemble models to improve prediction accu-
racy [14] by employing both metadata and PDF file content, including the author name, file
size, and specific keywords as features. Its feature set, manually defined by the authors,
comprises 202 features, with 135 publicly available in the Mimicus implementation of
PDFrate, which are claimed to closely match the full feature set’s performance. PDFrate-v1
and -v2 differ from the original version primarily in adopting the deep learning (DL) model.
PDFrate-v2 uses an ensemble method, introducing “Uncertain” in the classifier votes,
with 25–50 considered uncertain (benign) and 50–75 uncertain (malicious). PDFrate-v2
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effectively counters evasive attacks such as mimicry and reverse mimicry, demonstrating
impressive performance against these challenges.

The verifiably robust PDF classifier [17] measures the distance between pairs of PDFs
in terms of the number of subtrees and the depths of the respective PDF trees. Most
attacks operate using the PDF object insertion and deletion mutation operations and
optimize the search space based on the feedback from the classifiers. Ref. [17] attempted
to make the search space less vulnerable to (insertion/deletion) operations and tested the
effectiveness of their approach against all recent attacks, including mimicry [25], reverse
mimicry [40], EvadeML [41], EvadeHC [42], and AE attacks [22]. Most early studies
on dynamic analysis [43–46] considered only statistical information and ignored API
arguments, preventing them from fully exploiting heterogeneous information. For instance,
statistical information captures only spatial features such as the mean, variance, and entropy.
To capture information on API arguments, Ref. [47] proposed a feature representation
associating API calls with their corresponding arguments, using hashing-based approaches
to extract the heterogeneous information and claimed that their method outperformed
all baselines.

2.3. Overview of LIME

In the field of XAI, model explanation refers to the compilation of features that allocate
importance scores to the contributions made by the provided input data. The goal of this
process is to provide a transparent and interpretable explanation of how the model arrives
at its predictions by highlighting the significance of different input features. Although the
explanation of a model can be produced using the inherent interpretability of the built-
in architecture [26,27], such built-in components can change the behavior of the model.
By contrast, post hoc explanations can be flexibly applied to conventional DNN models
by XAI methods. This approach generally produces explanations by taking the gradient
of the prediction function [48]. However, there are several problems that make it difficult
to explain models using these methods, namely the complexity of deep learning models,
the presence of near- zero gradients for saturated predictions, and the dependence of
the sensitivity on the values of the input data. Although approaches to addressing the
problems have been proposed [30,33], because these methods utilize the homogeneous
nature of target input data such as image pixels, it is hard to apply them to models with
heterogeneous data. To explain models with heterogeneous data, there should be no
constraints on either the model or the input data. Furthermore, as discussed in Section 2.1,
white-box scenarios are not realistic settings. Therefore, black-box explanation methods,
which are able to explain any model [28,34–36], must be used. Among these, LIME [28] is a
model-agnostic method that addresses the problem of model complexity and can explain
any data format. Thus, we used LIME as a baseline explanation method.

LIME generates a local explanation model by training a simple model, such as a linear
classifier, with neighboring samples close to the input data:

Φ(x) =g∈G L( f , g, πx) +O(g), (1)

where f is the prediction function, g is the approximation function, πx denotes neighboring
samples around x, L( f , g, πx) measures the difference between f and g in the space of πx,
and O measures the complexity of the function. The learned parameters of g are used to
explain the decision of the model function f for the input x because g is the simplified
function of f in the space of πx. To obtain a global explanation, LIME uses a submodular
pick algorithm that selects a local explanation set without redundant explanations. This
algorithm finds the set that achieves the highest coverage of the importance of the features.

3. Methods
3.1. Malware Classifier Explanations

Dynamic malware analysis involves running a program in a controlled environment
and identifying malware by observing its behavior, including system API calls. This
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technique has demonstrated effectiveness in countering different code obfuscation methods
and detecting newly released malware. Past research primarily focused on the API names
and neglected the arguments owing to the intricacies associated with the data features.
However, Ref. [47] proposed a feature-extraction approach that exploited the hash function
and demonstrated outstanding performance relative to the baseline of existing malware
classifiers. They further proposed an adaptation of the hash method [49] to encode objects
such as arguments.

The feature-selection process in malware classifiers plays a crucial role in determining
the effectiveness of machine learning (ML). Given the impracticality of using all features
extracted from an entire sample set, many approaches opt to select a reasonable number of
features that adequately represent the entire feature set. In prior studies, most classifiers
simplified the feature set size by including only those features that appeared in more than
a certain number of files. Typically, this threshold is set to 1% of the training set size,
and the selection is carried out once retrospectively for the entire dataset. Such mechanisms
have specific drawbacks, however; following the same principle, our approach solves the
dependency problem by assigning the importance scores of each feature of the instance
from the test data distribution. We selected the top-k features of each test dataset and used
them as votes for the importance measurement of each feature. Hyperparameter k can be
chosen depending on the size of the features of the data, with the features that receive the
most votes compared to the other features considered to be important features.

We used LIME as an explanation method to assign the importance score. However,
as previously mentioned, the importance scores assigned by LIME can be dependent on
feature sensitivity or scale. Because each feature in heterogeneous data can vary in scale,
the importance scores can also be inaccurate. Therefore, instead of directly using the
importance scores generated by LIME, we applied the following importance scores to
create robust explanations. First, we produced the importance score of each feature using
LIME. Second, we selected the top-k important features of each test dataset and used them
as votes for the important measurement of each feature. Hyperparameter k can be chosen
depending on the size of the features of the data. The features that receive more votes than
others are considered to be important ones.

To enable LIME to interpret heterogeneous data, we exploited the Hamming distance
instead of the Euclidean distance to measure the differences between the input data and
neighboring samples:

L( f , g, πx, k) =
1
n

n

∑
i=0

∑
z,ẑ

πx(z)(ψ( f (z)) · ψ(g(ẑ)))i, (2)

where g(ẑ) = wg · ẑ is the class of the linear model, πx(z) = exp(−D(x, z)2/σ2) is the
exponential kernel distribution function with width σ, and ψ is the binary Hamming
distance between f (z) and g(ẑ).

Assuming that original model function f behaves linearly in the space of πx, the input
data distribution can vary depending on the problem being solved, which might not be
accounted for by a fixed sampling method. For a global explanation, LIME utilizes the
submodular pick, which selects a set of representative instances and only uses them to
extract the feature importance, limiting the coverage of all features. The importance scores
used from each feature can depend on the features’ sensitivity, which makes it hard to find
a global explanation using a black-box function set.

3.2. Mitigating the Influence of Adversarial Examples Using Vadam

The explanation results used to reveal the current malware classifiers rely on specific
features that can become targets of AE attackers to reduce their performance. To resolve
this problem, we exploited Bayesian optimization to identify an optimal solution for
gradient-based optimizers that are not amendable. Because models trained with Bayesian
optimization use weight distribution instead of a fixed decision boundary, they robustly
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apply a wide variety of directions in the feature space [50]. Bayes’ rule can be applied to
induce the posterior distribution of the model parameters p(w|D) from the data D and
prior distribution p(w):

p(w|D) =
p(D|w)p(w)

p(D)
=

p(D|w)p(w)∫
p(D|w)p(w)dw

(3)

However, computing the normalizing term p(D) is intractable, and it is difficult to extend
the Bayesian method to large data and large parameters. MCMC methods, Laplace’s
method, and variational inference have been proposed to approximate the posterior distri-
bution.

Variational inference (VI) approximates a posterior distribution p(w|D) using a distri-
bution q(w) that can be easily normalized like a Gaussian distribution.

L(µ, σ2) :=
N

∑
i=1

Eq[logp(Di|w)] +Eq[log
p(w)

q(w)
], (4)

where µ and σ2 are optimized by maximizing the variational objective. Recent approaches
have made it possible to apply VI to DL by using gradient-based methods. However,
the expressiveness of these models is limited.

Natural gradient variational inference (NGVI) improves the complexity of model
expressiveness. To obtain natural gradients in the natural parameter space, the Fisher
information matrix (FIM) must be calculated.

ηt+1 = ηt + βtF(ηt)
−1▽η L(ηt) (5)

Methods for approximating the FIM have been proposed. The approach in [51] avoids
the direct computation of the FIM by introducing minimal representation and expectation
parameters. The update rule for the Gaussian mean-field VI is given by:

µt+1 = µt + βtσ
2
t+1 ◦ [▽̂µLt] (6)

σ−2
t+1 = σ−2

t − 2βt[▽̂σ2 Lt] (7)

Bayesian optimization is used to obtain the output distribution of the new test point
marginalized over the posterior distribution of:

p(y|x, D) =
∫

p(y|x, w)p(w|D)dw. (8)

This Bayesian prediction is then applied to g by updating ψx(z) with Equation (2) as
follows:

πx(z) = exp(−p(y|x, D)(x, z)2/σ2). (9)

Example 1: Malware Classification with Neural Networks

For the classification of portable executable (PE) files, the data comprising 18 features
are preprocessed by using the hash function [47]. The preprocessed data comprise 1000
consecutive preprocessed API calls, each of which has 102 values; therefore, the data
contain 102,000 values. Because importance scores are assigned to all values in the input
data, we aggregated the importance scores of 1000 values in each feature and assigned
the aggregated score as the importance score of each feature. In Figure 2b, we explain the
predictions of a neural network on the PE files to differentiate malicious PE files from the
102-dimensional features. The classifier achieved 95% accuracy, and the score is a major
factor of trust in the model. The explanation for this model shows that the prediction of the
model still relies on the API name and categories, although API arguments are added as
new importance feature factors, which means that removing these arguments will have
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no effect on this model. From this, it is clear that classifiers can provide false results and
cannot be trusted. A detailed explanation of the model is provided in Section 4.7.

 features

(a)

 features

(b)

 features

(c)

Figure 2. Visualization of PE models obtained by default LIME and our approach. The ground truth
test attack distribution is represented by the blue color, while the attack distribution from chosen
models is denoted by the pink color. (a) PE model results obtained using feature means (default).
(b) PE model results obtained by Hamming top 10 (ours). (c) PE model results obtained by Hamming
Vadam top 10 (ours).

4. Results
4.1. Settings

We ran our experiments on Ubuntu 16.04 (2.6 GHz Intel Xeon E5-2690 v4 CPU and
GTX TITAN V (12 GB) GPU). We used the Python programming language (version 3.6.9)
and PyTorch library package (version 1.5.1) to implement the DNN, the matplotlib library
package (version 3.0.3) to visualize the images, and the LIME library package (version
0.2.0.1) to implement the XAI methods.
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4.2. Model and Time Complexity

We used a model composed of five convolution layers and one fully connected layer
in which the first convolution layer was a 1D layer. As baseline models (random forest,
SVM, and bagging models), we used the models of the scikit-learn library package. Be-
cause the complexity of the proposed model is higher than that of the linear classifier g,
which is the approximation function of LIME, the local explanation from g can be used to
explain our complex model f . To generate LIME explanations, we used 500 neighboring
samples to explain each point of the input data. The evaluation times of the baseline PE
classifier and Vadam PE classifier models were 2 and 40 min per input, respectively. For the
PDF classifiers, we used 500 neighboring samples to explain each input data point. The
evaluation times of both the baseline PDF classifier and the Vadam PDF classifier models
were less than one second per one input.

4.3. Classifiers

To implement the SVM, the radial basis function (RBF) kernel with Y = 0.0025 and
a cost parameter of C = 12 was chosen. For the random forest, the number of trees was
set to 200, with all other parameters following their default settings in scikit-learn. For the
neural network classifier, a 1D convolution featuring one hidden layer was employed as
the embedding space. Optimization was carried out using the Adam optimizer [52] with a
learning rate of 0.001, a beta rate of 0.5, and a minibatch size of 16.

4.4. Datasets

We used two types of datasets, namely malicious PDF and PE files. The dataset con-
taining PDF files was gathered on 20 December 2017 and on 14 March, 19 June, and 17 July
2018, from VirusTotal. This dataset comprises a total of 10,673 files. Additional datasets
were sourced from the Contagio dataset, consisting of 9109 benign files and 11,105 mali-
cious files. Furthermore, samples related to Common Vulnerabilities and Exposures (CVE)
were obtained from Exploit-db [53], a platform to which proof-of-concept (PoC) codes and
files are uploaded. In the experiment, six specific samples from the CVE dataset were used.
For PE files, 12 commercial anti-virus engines were used to separate positive and negative
samples. Following previous studies [47], we used the same dataset for PE files, in which
the data are archived by the data for two months.

4.5. Model Evaluation

We used a subset of test examples for LIME without a submodular pick, because the
results of a random subset and a subset selected by a submodular pick hardly differ
insignificantly. For the global explanation, we used the mean value of importance scores
with respect to the class instead of the mean of the absolute value of the scores to compare
with our method. The number of test examples for LIME was set to 300 (150 and 150 for each
respective class) and 100 (48 and 52 for each class) for the PDF dataset. The neighboring
data of each test example were sampled from the quartile group, in which the group
statistics were based on the training data. We used a Hamming distance considering the
type of dataset as the metric of the distance between neighboring data.

LIME [28] extracts the importance of each feature in each test example. The importance
scores are represented as a floating number. In a binary classification task, the sign of the
importance score indicates the correlated class; for example, if the importance score of
a feature is a negative value, it generally implies a positive association with the zero (0)
class. Conversely, if the score is positive, the feature is typically positively correlated with
the one (1) class. The magnitude of the score’s absolute value denotes the significance,
with features having substantial values considered more important than those with smaller
values. The results of the global explanation of LIME are denoted as the feature mean, as
shown in Figures 2a and 3a. The y-axes of the LIME results represent the importance scores
of each feature.
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(c)
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(d)

 features

(e)

 features

(f)

Figure 3. Visualization of representative PDF models: SVM, RF, ensemble, and neural network
models, respectively. The ground truth test attack distribution is represented by the blue color, while
the attack distribution from chosen models is denoted by the pink color. (a) Results for PDF by
mean feature (default). (b) Ground truth test attack distribution. (c) Results for PDF by Hamming
top 10 (SVM). (d) Results for PDF by Hamming top 10 (RF). (e) Result for PDF by Hamming top 10
(ensemble). (f) Result for PDF by Hamming Vadam top 10 (neural nets).



Sensors 2024, 24, 288 11 of 16

As mentioned in Section 3, our method uses the top-k features of each test dataset and
uses them as votes for importance scores. We set k to 10 in both the PE and PDF datasets
and selected the top-k features for each dataset according to their absolute importance score
values and aggregated votes for all test examples of each class. Therefore, the values of
each feature represented the number of votes, with the features with large values being
more important than those with small values. The results of the global explanation of
our method are denoted as top 10 in Figure 2b. The y-axis of the results of our method
represents the aggregation of votes for the top-k importance features in each test dataset.

4.6. Results for Dynamic Analyzer

PE files adhere to the most-widely used malware file format in Windows systems,
as recognized by AV-TEST in 2017. SecureAge Technology was implemented as the storage
to collect the PE files and label them using 12 anti-virus engines. The execution logs
were then used to extract features for the PE files. The features encompassed the name,
category, and arguments of individual API calls, including elements such file paths or DLLs.
Unfortunately, prior studies overlooked the arguments of API calls, leading to the omission
of crucial information. However, Ref. [47] extended the Weiger–Berger encoding scheme
by adopting the hash method and concatenated features to form a 102-dimensional feature
vector, resulting in outstanding performance relative to previous approaches. Table 1 lists
the features extracted in this study. The proposed model achieved the best AUC score
(98.71%), accuracy (95.33%), and recall (71.48%) on the test datasets. We validated our
interpretation model with the dynamic analysis model following the approach of [47], who
executed individual test sets in an isolated environment and validated them by collecting
runtime behavior. As such results are based on behavioral information, they are known to
be much more robust and have a higher detection rate than static analysis [54].

Table 1. PE feature representations.

Feature Name Types Dimension

API name Strings 8
API category Strings 4

API arguments
Integer Integers 16
Paths Strings 16
DLLs Strings 8

RegistryKeys Strings 12
URLs Strings 16

IPs Strings 12
String stats Strings 10

Figure 2a represents the mean feature importance for the 18 features (102 dimensions)
obtained by the approximated model via the default LIME, as described in Section 2.3. The
x-axis represents the features described in Table 1; specifically, feature 0 indicates API name,
1 indicates API category, 2 indicates Integer, 3 indicates paths, 4 indicates DLLs, 5 indicates
RegistryKeys, 6 indicates URLs, 7 indicates IPs, 8 indicates numStrings, 9 indicates avLength,
10 indicates numChars, 11 indicates entropy, 12 indicates numPaths, 13 indicates numDlls,
14 indicates numUrls, 15 indicates numIPs, 16 indicates numRegistryKeys, and 17 indicates
numMZ. Features from 2 to 7 are API arguments, and 8 to 17 are string statistics.

Features 8–17 encompass statistical information derived from all the printable strings,
which are composed of characters within the range of 0x20 to 0x7f. Of this information,
previous studies [43,55] have mainly focused on features 12 to 17. Ref. [47] also focused
on statistical information (features from 12 to 17). The approach of Ref. [47] captures
the hierarchical information and enabled them to parse numPath (i.e., “C:/a/b/c”), the
DLLs registry keys (i.e., “HJEY_”) and IPs (range from 0 to 255 including dots), and
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numUrls (including substrings to capture domain and organization information separately
to contribute more to the feature).

Furthermore, feature 17, composed of strings starting with “MZ”, represents a buffer
containing an entire PE file. This aspect is noteworthy as it often introduces vulnerabil-
ities [56]. From the information above, we can expect that a good interpretation model
should strongly emphasize features between 12 and 17.

According to the default LIME interpretation (Figure 2a), the model only uses a
positive class to classify its maliciousness. Unfortunately, the interpretation is inconsistent
with interpretations based on previous studies for the models with malicious PE features.
Previously developed malware classifiers were trained without API arguments, which
indicates that feature dimensions between 0 and 12 only classify their maliciousness.
For example, features between 0 and 12 contain information such as:

basename : lsasrv.dll

imgsize : 45056

baseaddr : 0x7fefcc70000

If API arguments are used for the trained model, the model should highlight the features
between 8 and 13 (dimensions between 85 and 102) because most exploits are detected by
filtering the URLs, IPs, and statistics of API arguments. Figure 2b represents the feature
importance score calculated by the top-10 features described in Section 3. Our approach
of measuring feature importance clearly highlights the features between 8 and 13, which
all malware models consider as importance features for the classification. Figure 2c shows
the interpretation results obtained by the model (Section 3.2), which adopts Vadam to
perform variational inference for the PE classifier. From Figure 2c, we can observe that
the importance features between 12 and 17 have stronger highlights and less-important
features such as API names and categories than those shown in Figure 2b. The results
indicate that the posterior distribution obtained from Bayes’ rule helps to estimate the
uncertainty of the models. We validated our interpretation model using the dynamic-based
model and were able to interpret a trained model based on heterogeneous datasets.

4.7. Results for Static Analyzer

Table 2 lists the performance results obtained by the representative PDF classifiers
described in Section 2.2. To validate the visualization performance, we deliberately removed
the subtree of PDF structures, which suggests that deliberately removed subtrees should be
ignored when they are visualized using a model that is approximated by LIME. Seventy-
five percent of the subtrees were randomly removed (replaced by the value −1) to validate
our assumptions such as:

/Root/Pages/Kids/Annots/Rect

/Root/AcroForm/Fields/Kids/Kids/Rec

/Root/Pages/Kids/Contents/Filter

Figure 3a illustrates the mean feature importance for the 295 PDF features in the model
approximated by the default LIME, as described in Section 2.3. According to the default
LIME interpretation, the model cannot interpret deliberately removed subtrees. From the
experimental results, all features were highlighted with forcibly limited subtrees, which
indicates that the default LIME is not useful for interpreting PDF datasets.



Sensors 2024, 24, 288 13 of 16

Table 2. Performance results of representative DL-based PDF malware classifiers.

Classifiers Accuracy AUC

SVM (Hidost 13’) 96.46% 0.9886
RF (Hidost 16’) 96.45% 0.9880
Ensemble (PDFrate-v2) 99.37% 0.9932
Neural nets (PE-based) 99.93% 0.9999

Figure 3a shows a comparison of the ground truth test attack distribution results
obtained by the proposed model and the representative PDF classifiers listed in Table 2.
In previous studies, machine-learning-based PDF classifiers were often easily evaded by
the AE through the manipulation of node structures. The most-common attack simply
repeats feature manipulation based on genetic programming until an evasion succeeds.

Our interpretation model revealed that none of the ML-based models followed the
ground truth test attack distribution. Although less-important features with lower impor-
tance mean scores were highlighted, none of the ML models failed to take into account
removed subtrees. However, it is seen from Figure 3f, which shows the performance of the
NN-based variational model (Section 3.2) for the PDF classifier, that the visualization from
our interpretation approach clearly ignores the deliberately removed features. Among the
256 PDF features, only partial features (25%) were seen to have meaningful feature values,
and most of the feature values are marked as −1 to represent the sparse information of
the tree structure. Inspecting the x-axis, the result clearly shows that more than 50% of the
features are not represented, and the mean score of the data value is clearly different from
those of other ML-based classifiers.

5. Discussion

Deep learning (DL) has proven effective in representing various types of high-
dimensional data in a low-dimensional Euclidean space. In the context of high-dimensional
data, there is a common challenge in which information can be lost during the feature-
extraction process. For instance, in many modern malware detectors, only a subset of
features is chosen from a larger pool for training, and the feature-selection process sig-
nificantly influences the detection performance. The feature-selection process is pivotal
in determining the effectiveness of ML. The use of all features from an entire dataset is
impractical because this will create high sparsity and high dimensionality. To address
this, various studies have proposed unique approaches to enhancing feature selection.
For example, a feature can be scored in terms of frequency or based on divergence, and a
threshold or desired number of features in the set can be set for filtering. However, these
approaches encounter challenges in achieving a balanced inclusion of extracted features
from both sides (benign vs. malicious), as malicious files often contain distinctive features.
When assessing machine learning classifiers for security applications, relying solely on
accuracy and false positive rates is inadequate. Existing metrics used in machine learning
theory do not sufficiently measure the robustness of classifiers against AEs.

From our proposed explanations, we noticed that some of the features not covered
during the training phase provide a space for AEs. This occurs if the feature distribution
is not well designed, so that all features are not covered during the feature-extraction
phase. Hence, mitigating the impact of manual processing can enhance the performance of
detectors trained on high-dimensional data. We propose that successful representation and
abstraction of all information without the need for manual processing during the training of
DL models could lead to a substantial enhancement in the evasion performance of malware
classifiers. The introduction of Bayesian optimization allows models to utilize robust feature
spaces via an unbiased manifold representation. In conjunction with conventional security
measures such as accuracy, our post hoc explanation methods will help to verify malware
classifiers. Our methods expand the application of XAI methods to robust explanations
of models for heterogeneous data. The best-performing models often increase defense
accuracy using gradient masking, which provides a false model gradient [57]. Whether
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intentional or inadvertent, gradient masking can occur when loss functions distort the loss
surface in the data space. A malware classifier must demonstrate practical effectiveness by
proving its security usefulness using various metrics. In this respect, we believe that our
work will provide guidance on the transferability of malware classifiers and contribute to
the prevention of a false sense of security in malware classifiers.

6. Conclusions

We analyzed the transparency of existing explanation methods in the context of
malware classification, finding that the individual representative explanation models often
struggle to discern crucial features within heterogeneous data. This limitation arises from
the inability of the submodular pick in LIME to effectively interpret such diverse data.
To address this issue, we introduced an approach that selects the top-k importance features,
enabling a more-robust application of the explanation method to heterogeneous data.
Consequently, our approach yielded improved interpretation results closely aligned with
the ground truth labels. Additionally, we observed that most deep-learning-based malware
classification models such as AEs exhibit vulnerability to bounded attacks. By replacing
the optimizer with Bayesian optimization, we obtained an enhancement in robustness
against AEs.
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