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Abstract: The use of advanced modulation and control schemes for power converters, such as a
Feedback Quantizer and Predictive Control, is widely studied in the literature. This work focuses
on improving the closed-loop modulation scheme called Feedback Quantizer, which is applied to a
three-phase voltage source inverter. This scheme has the natural behavior of mitigating harmonics at
low frequencies, which are detrimental to electrical equipment such as transformers. This modulation
scheme also provides good tracking for the voltage reference at the fundamental frequency. On the
other hand, the disadvantage of this scheme is that it has a variable switching frequency, creating a
harmonic spectrum in frequency dispersion, and it also needs a small sampling time to obtain good
results. The proposed scheme to improve the modulation scheme is based on a Discrete Space Vector
with virtual vectors to obtain a better approximation of the optimal vectors for use in the algorithm.
The proposal improves the conventional scheme at a high sampling time (200 µs), obtaining a
THD less than 2% in the load current, decreases the noise created by the conventional scheme, and
provides a fixed switching frequency. Experimental tests demonstrate the correct operation of the
proposed scheme.

Keywords: Feedback Quantizer; Discrete Space Vector modulation; total harmonic distortion;
weighted total harmonic distortion; voltage source converter; modulation scheme

1. Introduction

AC/DC or DC/AC power conversion is now essential because of the new changes in
the energy matrix and the global context of generating clean energy. Thanks to technological
advances, researchers have created various converter topologies and control schemes to
meet the needs of each application [1–5]. These applications include AC motor drives [6],
renewable energies [7], HVDC systems [8], electromobility [9], and microgrids [10].

The power converters work through a modulation scheme for the activation of semi-
conductors. For this, there are different techniques based on their applications or types of
converters. Each technique is widely studied and focused on improving different character-
istics, such as the total harmonic distortion (THD), the weighted harmonic distortion at low
frequency (WTHD), the efficiency, power losses in semiconductors, and the computational
load, among others [11,12].
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This work focuses on the Feedback Quantizer (FBQ) modulation scheme, which is
a closed-loop modulation scheme with the natural behavior of mitigating low-frequency
harmonics, which are harmful to electrical equipment such as transformers [13,14]; in
addition, it is good at tracking the voltage reference at the fundamental frequency [15], easy
to implement, and also allows us to model the quantized noise with the introduction of
filters [16–19]. This technique can be applied to microgrids or systems with transformers
due to its low harmonic content at a low frequency, thus avoiding transformer saturation
and increasing the equipment’s lifespan [20–22].

The FBQ modulation scheme is discrete and has characteristics similar to the Finite
Control Set Model Predictive Control (FCS-MPC); it requires low system sampling times
for high performance, generating a sparse harmonic spectrum and variable switching
frequency [23–26].

So far, a slight improvement in the performance of the FBQ scheme has been achieved
using the SVM modulation scheme, but it generates considerable noise at PWM voltages
and still obtains a variable switching frequency [27].

The purpose of this work is to improve the FBQ modulation scheme at high sampling
times by introducing the concept of a Discrete Space Vector (DSV) [28–34], which consists of
the use of virtual vectors added to the conventional vector space of the converter to obtain
a better choice of the optimal state to use, thus improving the accuracy of the technique at a
high sampling time, and also setting the switching frequency to a fixed value equivalent to
the system’s sampling time.

The structure of this document is as follows: In Section 2, we present the FBQ modu-
lation scheme, showing its characteristics and simulating the system to be worked on. In
Section 3, the improvement proposal using the DSV is presented, the system is simulated,
and comparison indicators are shown to demonstrate the improvements in the technique.
In Section 4, we proceed to the experimental results to validate the proposal. In Section 5,
the advantages and disadvantage of the improved FBQ modulation scheme proposed are
shown. Finally, in Section 6, the conclusions are presented.

2. Feedback Quantizer

The Feedback Quantizer (FBQ) is a closed-loop modulation scheme. Given its charac-
teristics, it is possible to obtain an excellent harmonic spectrum in the PWM voltage of the
inverter through this modulation, particularly the mitigation of low-frequency harmon-
ics. The scheme is shown in Figure 1b, where V∗(z) is the voltage reference, V(z) is the
quantized output voltage, Q(z) represents the quantizer, q(z) is the quantized noise, H(z)
is the feedback transfer function that will shape the system noise, and u(z) and w(z) are
the quantized variables of the system.

The voltage reference is obtained by using the mathematical model of the voltage
source inverter in Figure 1a, which is calculated with Clark coordinates and discretized by
using the forward Euler method:

V∗
αβ(kT) =

(
iαβ(kT + T)− iαβ(kT)

[
1 − TsRL

LL

])
LL
Ts

. (1)

The cost function ‘g’ to be used for the minimization of the switching states that will
represent the quantizer Q(z) as:

g =

√
(V∗

α − Viα)
2 +

(
V∗

β − Viβ

)2
, (2)

where
(

V∗
α , V∗

β

)
and

(
Viα, Viβ

)
are the voltages in Clark coordinates of the reference and

switching state at instant i, respectively, where i = (0, 1, 2. . .7). A two-level voltage source
inverter has six valid switching states and two nulls. Table 1 shows the possible states of
the inverter.
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Figure 1. Conventional scheme: (a) two-level voltage source inverter (2L-VSI), (b) Feedback Quantizer
scheme, and (c) Bode sensitivity diagram of the scheme.

Table 1. Valid states of the voltage source inverter.

Vector a b c α β

V0 0 0 0 0 0
V1 1 0 0 2/3 0
V2 1 1 0 1/3 1/

√
3

V3 0 1 0 −1/3 1/
√

3
V4 0 1 1 −2/3 0
V5 0 0 1 −1/3 −1/

√
3

V6 1 0 1 1/3 −1/
√

3
V7 1 1 1 0 0

Then, the equation of the output variable of the scheme can be written as follows:

V(z) = V∗(z) + q(z)− q(z) = V∗(z) (3)

From (3), if H(z) = 1, we have perfect quantized voltage tracking, but this is not
possible due to causality; therefore, the optimal H(z) to use will be z−1, which has several
advantages, such as ease of system analysis, the natural behavior of the system for low-
frequency harmonic mitigation, and easy implementation of notch filters [16,17]. Therefore,
the equation of the system is as shown in Equation (4) and replacing H(z) = z−1 in (4), we
obtain Equation (5).

V(z) = V∗(z) + (1 − H(z))q(z) (4)
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V(z) = V∗(z) +
(

z − 1
z

)
q(z) (5)

From (5), we can obtain the transfer function of the system sensitivity S(z) (6), and
using the optimal H(z), we have (5):

S(z) = 1 − H(z) (6)

S(z) = 1 − z−1. (7)

For the analysis of the sensitivity system at the frequency plane, z = ejωn , the magni-
tude of the system can be obtained:

| 1 − H(ejωn) |=
√

2 − 2 cos(ωn). (8)

From the magnitude obtained in (8) and Figure 1c, we can observe the natural behavior
of the FBQ system, where it tends to mitigate the low-frequency harmonics, and, in addition,
good tracking of the voltage reference at the fundamental frequency (50 Hz) is obtained.
Then, it can be observed from (5), replacing H(z) with z−1, that by having a zero at z = 1 the
system will not have DC components in the voltages produced by the converter.

Next, we will show some brief simulations of the FBQ scheme, considering the param-
eters in Table 2.

Table 2. Simulation parameters 2L-VSI.

Symbol Name Value

RL Load Resistance 10 [ Ω]

LL Load Inductance 15 [mH]

Vdc DC Voltage Link 200 [V]

Ts Sampling Time 100 [µs]/200 [µs]

Figure 2 shows the FBQ simulation for different sampling times, namely, 100 [µs]
and 200 [µs], where the PWM voltages and the current phase “a” are shown for 2L-VSI
with their respective harmonic spectra (shown in Figure 3). The harmonic spectrum has
a low-order harmonic mitigation; as observed in the Bode diagram in Figure 1c, the low-
frequency harmonics in the PWM voltages (line to line and line to neutral) are mitigated.
In Figure 3a, these begin to show in approximately the 12th harmonic, with an amplitude
of 1% to its fundamental amplitude; after the 20th harmonic, its magnitude exceeds 10%.
Then, by increasing the sampling time to 200 µs (Figure 3b), a more significant distortion of
these signals can be observed, and the magnitude of the harmonics increases, with more
harmonic components showing at low frequencies. This is due to the high sampling time,
generating a deficient reference voltage because there are insufficient data, and the choice
of the optimal states has a greater range of error.

The objective of this work is to improve the performance of the FBQ modulation
scheme at high sampling times, in this case at 200 µs, with the use of DSV.



Sensors 2024, 24, 287 5 of 15

Sensors 2024, 24, x FOR PEER REVIEW 5 of 20 
 

 

Figure 2 shows the FBQ simulation for different sampling times, namely, 100 [μs] 

and 200 [μs], where the PWM voltages and the current phase “a” are shown for 2L-VSI 

with their respective harmonic spectra (shown in Figure 3). The harmonic spectrum has a 

low-order harmonic mitigation; as observed in the Bode diagram in Figure 1c, the low-

frequency harmonics in the PWM voltages (line to line and line to neutral) are mitigated. 

In Figure 3a, these begin to show in approximately the 12th harmonic, with an amplitude 

of 1% to its fundamental amplitude; after the 20th harmonic, its magnitude exceeds 10%. 

Then, by increasing the sampling time to 200 μs (Figure 3b), a more significant distortion 

of these signals can be observed, and the magnitude of the harmonics increases, with more 

harmonic components showing at low frequencies. This is due to the high sampling time, 

generating a deficient reference voltage because there are insufficient data, and the choice 

of the optimal states has a greater range of error. 

 
(a) (b) 

Figure 2. PWM voltages and current phase “a” of 2L-VSI: (a) FBQ 100 [μs], (b) FBQ 200 [μs]. Figure 2. PWM voltages and current phase “a” of 2L-VSI: (a) FBQ 100 [µs], (b) FBQ 200 [µs].

Sensors 2024, 24, x FOR PEER REVIEW 6 of 20 
 

 

 
(a) (b) 

Figure 3. Harmonic spectrum of signals: (a) FBQ 100 [μs] and (b) FBQ 200 [μs]. 

The objective of this work is to improve the performance of the FBQ modulation 

scheme at high sampling times, in this case at 200 μs, with the use of DSV. 

3. Proposal for a Feedback Quantizer with a Discrete Space Vector 

A Discrete Space Vector is a technique to approximate the choice of finite states in 

discrete systems more accurately, using virtual vectors in addition to the system’s real 

vectors. When implementing it in the FBQ modulation scheme, the totality of the vectors 

(real and virtual) must be considered in the vector of the possible states. Then, the cost 

function will iterate the number of vectors to obtain the closest one; for example, in Figure 

4a, we have defined 12 virtual vectors. Therefore, the system iteration will be 19 times, 

considering the sum of the real vectors; then, the approximation of the virtual vector is 

made with PWM, as shown in Figure 4b. 

Figure 3. Harmonic spectrum of signals: (a) FBQ 100 [µs] and (b) FBQ 200 [µs].



Sensors 2024, 24, 287 6 of 15

3. Proposal for a Feedback Quantizer with a Discrete Space Vector

A Discrete Space Vector is a technique to approximate the choice of finite states in
discrete systems more accurately, using virtual vectors in addition to the system’s real
vectors. When implementing it in the FBQ modulation scheme, the totality of the vectors
(real and virtual) must be considered in the vector of the possible states. Then, the cost
function will iterate the number of vectors to obtain the closest one; for example, in
Figure 4a, we have defined 12 virtual vectors. Therefore, the system iteration will be 19
times, considering the sum of the real vectors; then, the approximation of the virtual vector
is made with PWM, as shown in Figure 4b.
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to real vectors by using PWM.

Then, in Figure 5, the complete diagram is shown using DSV in the FBQ modulation
scheme. In the proposed scheme, the more virtual vectors are defined, the higher the
accuracy of the choice of the optimal vector to be chosen in the algorithm; therefore, a better
result is obtained in terms of wave quality (WTHD and THD) and reference tracking. By
increasing the number of virtual vectors, the computational load increases considerably;
therefore, due to hardware limitations, we will work with 84 virtual vectors (91 vectors in
total, Figure 6).

Next, Figure 7 shows the simulation of the proposed method, noting the improvement
in the scheme at a sampling time of 200 µs. Figure 7a shows the conventional scheme (same
Figure 2b), and Figure 7b shows the improved scheme with the DSV. A clear improvement
in the wave quality of the obtained signals and a considerable reduction in the magnitude
of the harmonic components can be observed in Figure 8b. In addition, a fixed switching
frequency equivalent to the sampling time used is obtained; this is due to the approximation
of the virtual to real vectors, by means of the triangular signal with a frequency equivalent
to the sampling time, i.e., 5 [kHz].
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Table 3. Harmonic distortion indicators summary of comparison indicators. 

 FBQ 100 [μs] FBQ 200 [μs] 
FBQ 200 [μs] 

91 Vectors 
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THD Va [%] 39.06 45.16 16.17 
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WTHD Van [%] 1.06 2.27 0.5021 

Figure 8. Harmonic spectrum of signals: (a) FBQ 200 [µs] and (b) FBQ DSV 200 [µs].
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Table 3 shows the summary of the indicators obtained from the simulations, first of
all noting the sampling change differences between THD and WTHD in the conventional
FBQ system. Also, the tracking of the voltage reference is obtained, where good results
are confirmed (higher than 99%, i.e., the scheme’s ability to follow the voltage reference
at fundamental frequency has an error of less than 1%); this is obtained by comparing the
fundamental components between the FBQ schemes, obtained using the harmonic spec-
trum and the fundamental component of the classical SPWM modulation. The indicators
corresponding to the proposed scheme are shown in the third column of Table 3, with better
results obtained at a higher sampling time than the two previous simulations. In addition,
it is noted that the fixed switching frequency is equivalent to the system’s sampling time.
The switching frequency of the system was calculated by taking the trigger pulses of each
phase. (Sa, Sb y Sc) for ten signal periods and averaged together (9).

fs =

(
Sa

n◦ Periods ∗ f f undamental(50 hz) + Sb
n◦ Periods ∗ f f undamental(50 hz) + Sc

n◦ Periods ∗ f f undamental(50 hz)
)

3
, (9)

Table 3. Harmonic distortion indicators summary of comparison indicators.

FBQ 100 [µs] FBQ 200 [µs] FBQ 200 [µs]
91 Vectors

THD Ia [%] 2.81 5.2 1.23
THD Va [%] 39.06 45.16 16.17

WTHD Ia [%] 0.083 0.30 0.0643
WTHD Van [%] 1.06 2.27 0.5021

Switching Frequency [Hz] 2500 1200 5000
Voltage Reference

Tracking [%] 99.74 99.76 99.81

4. Experimental Results

A three-phase two-level inverter was assembled to validate the proposed modulation
scheme. The experimental prototype is shown in Figure 9, where a MicroLabBox dSPACE
1202 was used for the digital processing. The system parameters were the same as those
used in the simulation results, as shown in Table 2.
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Figure 9. Experimental setup.

Next, the same procedure seen in the simulations was performed, obtaining steady-
state signals and visualizing the conventional FBQ scheme when the sampling time changed.
Figure 10a,b show that the signals immediately have more distortion at a higher sampling
time. This is mentioned above because the system’s reference depends on the sampling
time, and by increasing this, the data decreases to have a more accurate representation of
the reference, and the switching frequency decreases with this change in sampling time.



Sensors 2024, 24, 287 10 of 15

Sensors 2024, 24, x FOR PEER REVIEW 13 of 20 
 

 

 

 ( )V FBQ tab  ( )V FBQ tan  ( )i FBQ ta

 

 ( )V FBQ tab  ( )V FBQ tan  ( )i FBQ ta

 
(a) (b) 

Figure 10. Experimental results: (a) FBQ 100 [µs]; (b) FBQ 200 [µs]. 

For the distortion indicators for FBQ at 100 [µs], we have a THD of the PWM voltages 
of 35% and current THD of 2.48%, while for the weighted distortion at low frequency, we 
have a WTHD of 0.75% for the voltages and a WTHD of 0.08% for the current. Then, by 
analyzing the same indicators at a higher sampling time, in this case, at 200 [µs], we can 
appreciate the increase in the indicators, obtaining a voltage THD of 50% and a current 
THD of 5%, a WTHD of 1.74%, and, for the current, a WTHD of 0.28%. This is also reflected 
in the harmonic spectrum in Figure 11b, where we can see the increase in the magnitudes 
of the harmonic components in the PWM voltages and the presence of harmonics greater 
than 1% in the phase current. 

  

Figure 10. Experimental results: (a) FBQ 100 [µs]; (b) FBQ 200 [µs].

For the distortion indicators for FBQ at 100 [µs], we have a THD of the PWM voltages
of 35% and current THD of 2.48%, while for the weighted distortion at low frequency, we
have a WTHD of 0.75% for the voltages and a WTHD of 0.08% for the current. Then, by
analyzing the same indicators at a higher sampling time, in this case, at 200 [µs], we can
appreciate the increase in the indicators, obtaining a voltage THD of 50% and a current
THD of 5%, a WTHD of 1.74%, and, for the current, a WTHD of 0.28%. This is also reflected
in the harmonic spectrum in Figure 11b, where we can see the increase in the magnitudes
of the harmonic components in the PWM voltages and the presence of harmonics greater
than 1% in the phase current.
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Next, we obtained the experimental results of the proposed scheme by comparing the
results of the conventional and proposed schemes at a sampling time of 200 [µs]. Figure 12b
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shows that the waveforms obtained are much more defined compared to the conventional
FBQ modulation at the identical sampling time (Figure 12a). This can also be observed in
the harmonic aspect of the voltages of both results. In Figure 13b, the proposed scheme
obtains considerably lower magnitudes of the harmonics (no more than 4%), while the
conventional method has magnitudes of harmonics higher than 10%, and more harmonics
components are present at lower frequencies in the signal’s spectrums (Figure 13a).
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Figure 13. Experimental results of the harmonic spectrum: (a) FBQ 200 [µs]; (b) FBQ-DSV 200 [µs].

Regarding the distortion indicators obtained, for the PWM voltages, there is a THD
of 11.19%, while for the phase current, there is a THD of 1.28%; concerning the weighted
distortion indicators at low frequency, there is a voltage and current WTHD of 0.41% and
0.11%, respectively.
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Finally, a summary of the indicators measured up to the 51st harmonic obtained from
the experimental results is shown in Table 4. This is in exchange for an increase in the
switching frequency equal to the scheme’s sampling frequency. Finally, Figure 14 shows
the steady-state balanced three-phase currents of the system and its DC supply voltage.

Table 4. Harmonic Distortion Indicators.

FBQ 100 [µs] FBQ 200 [µs] FBQ 200 [µs]
91 Vectors

THD Ia [%] 2.4822 5.0631 1.2802

THD Van [%] 35.6874 50.8163 11.1990

WTHD Ia [%] 0.0881 0.2874 0.1106

WTHD Van [%] 0.7577 1.7429 0.4171
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5. Advantages and Disadvantages of the Proposed Scheme

The proposed scheme allows us to improve the conventional FBQ scheme at high
sampling times, where discrete schemes have a low performance (for this type of technique,
high sampling times above 100 µs and low sampling times below 50 µs are considered).
Also, a fixed switching frequency is obtained in comparison to the conventional scheme
that delivers a variable switching frequency. Finally, it should be noted that the DSV
technique takes into account the discrete nature of the converter, without affecting the
natural behavior of the FBQ scheme. Regarding the disadvantages of the technique, it is the
computational cost; the major computational cost of the technique focuses on the iterative
cycle to minimize the cost function. Thus, if the conventional FBQ scheme iterates eight
times, the proposed scheme iterates 91 times, increasing the computational load by slightly
more than 11 times. Finally, the switching frequency increases in synchronization with the
sampling frequency of the system.
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6. Conclusions

An improvement to the Feedback Quantizer modulation scheme with a Discrete
Space Vector applied to a three-phase two-level inverter was presented in this study. It
was possible to couple the DSV technique to the FBQ modulation scheme to improve the
wave quality of the signals at a high sampling time, in this case, 200 [µs], and to obtain
a fixed switching frequency equivalent to the system’s sampling time. The conventional
FBQ scheme at 100 [µs] obtained a 35.6% THD voltage and a 2.4% THD current; this was
calculated up to the 51st harmonic. The proposed scheme at 200 [µs], with 91 vectors
improves the wave quality, obtaining an 11.1% THD voltage and a 1.2% THD load current.

This fulfills the objectives of improving the conventional FBQ scheme at high system
sampling times and obtaining a fixed switching frequency, solving one of the problems
highlighted in discrete character schemes. Both the theoretical and experimental results
demonstrate the correct operation of the proposed scheme.
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