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Abstract: Patterns entered into knitting CAD have thousands or tens of thousands of different colors,
which need to be merged by color-separation algorithms. However, for degraded patterns, the current
color-separation algorithms cannot achieve the desired results, and the clustering quantity parameter
needs to be managed manually. In this paper, we propose a fast and automatic FCM color-separation
algorithm based on superpixels, which first uses the Real-ESRGAN blind super-resolution network
to clarify the degraded patterns and obtain high-resolution images with clear boundaries. Then, it
uses the improved MMGR-WT superpixel algorithm to pre-separate the high-resolution images and
obtain superpixel images with smooth and accurate edges. Subsequently, the number of superpixel
clusters is automatically calculated by the improved density peak clustering (DPC) algorithm. Finally,
the superpixels are clustered using fast fuzzy c-means (FCM) based on a color histogram. The
experimental results show that not only is the algorithm able to automatically determine the number
of colors in the pattern and achieve the accurate color separation of degraded patterns, but it also has
lower running time. The color-separation results for 30 degraded patterns show that the segmentation
accuracy of the color-separation algorithm proposed in this paper reaches 95.78%.

Keywords: knitting CAD; color-separation algorithm; blind super-resolution network; superpixel
algorithm; density peak clustering (DPC); fast fuzzy c-means (FCM)

1. Introduction

In the traditional textile industry, the pattern design of knitted products requires man-
ual tracing, which is time-consuming and cannot easily achieve the desired results. With
the development of the industry, we now produce and simulate knitted product pattern
designs through knitting CAD (computer-aided design) [1] to show the characteristics of
the knitted fabric’s shape, color, structure, etc., which improves the design of the product
and creates favorable conditions for the mass production of textile products and adapting
them to meet market demand.

Color separation [2], also known as color segmentation, is an important image pro-
cessing function of knitting CAD, in which the original colorful pattern is represented by a
small number of colors without changing the image effect. The patterns [3] that we obtain
through technical means, such as internet downloads, scanners, digital cameras, etc., are
true color images with thousands or tens of thousands of different colors. However, the
variety of yarn colors for pattern knitting is limited, so we must use the color-separation
function of knitting CAD to merge similar colors from the images to generate patterns.
Although knitting CAD saves much time compared with traditional pattern design meth-
ods, the current color-separation algorithm cannot achieve the ideal processing effect for
degraded patterns. The resulting products have defects such as variegated spots, inaccu-
rate edges, and color errors, and the parameter of the number of clusters needs to be set
manually [4], which does not enable complete automatic color separation.

Patterns exhibit different degrees of quality degradation in the processes of image
shooting, network transmission, image compression, and image editing [5], so most of the
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patterns we see are not particularly clear. Figure 1a,b shows degraded patterns and the
number of colors in RGB space they possess; it can be seen that the color boundaries of the
patterns are blurred, and the number of colors in the patterns far exceeds the range of the
number that can be recognized by the human eye. There are many research methods for
improving image quality, including the super-resolution reconstruction network [6], which
mainly recovers low-resolution images by learning the mapping relationship between low-
and high-resolution images [7]. However, the degradation of real images usually occurs
due to a complex combination of different degradation processes, and these methods [8–12]
only assume an ideal bicubic downsampling degradation kernel, which makes it difficult to
simulate complex degradation situations. Wang, X. et al. proposed a Real-ESRGAN blind
super-resolution network [13], which expands the classical “first-order” degradation model
to a “high-order” degradation model for real-world degradations, i.e., the degradations are
modeled with several repeated degradation processes, with each process represented by
the classical degradation model. This method better simulates some unknown and complex
degradation processes in real images, thus recovering their degradation patterns. However,
as image resolution increases, the number of pixels and colors also increases, which greatly
increases the computation complexity of the color-separation algorithm.
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According to the requirements of knitting product manufacturing processes, where
possible, color separation needs to be performed without affecting the perception of the
human eye, i.e., while maintaining maximum similarity between the color-separated image
and the original image, and the edges need to be as smooth and accurate as possible, with no
variegated spots in one color region. Currently, pixel-based clustering algorithms are com-
monly used for image color separation, such as K-means [14], hierarchical clustering [15],
spectral clustering [16], fuzzy c-mean (FCM) clustering [17], self-organizing mapping neu-
ral networks (SOM) [18], and deviation-sparse fuzzy c-means with a neighbor information
constraint (DSFCM_N) [19]. However, these algorithms only perform unsupervised clas-
sification of a large number of pixels based on color similarity information, ignoring the
local spatial information of pixels, and are prone to color-separation errors. In particular,
the color of the edge part is formed by mixing two colors at the junction; the color of the
edge is completely different from the color of the central pattern, and the color-separation
result will show variegated spots. Moreover, all these algorithms require predefined pa-
rameters for the number of clusters, which considerably affects their productivity. The
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number of pixels in an image is elevated after clarification, and if the above algorithms
are used to process high-resolution images, the computational overhead is high because
repeated computation and iterative optimization of the same pixels are required [20].
Rodriguez, A. et al. proposed density peak clustering (DPC) [21], which automatically
calculates the number of clusters for the data points, but the algorithm produces a large sim-
ilarity matrix when processing images directly, leading to memory overflow. Zhang, J. et al.
proposed a clustering algorithm that combines SOM and DPC [22], where the SOM algo-
rithm identifies the main image color clusters and then the best number of colors, and the
clusters are merged by the DPC algorithm; this algorithm shortens the computation time,
but the same problem of variegated spots will occur. Qian, M. [23] et al. proposed a color-
segmentation algorithm combining SOM and efficient dense subspace clustering (EDSC)
and eliminated the mis-segmentation of edge colors through post-processing techniques
such as gray-scale transformation, binarization, and open operation; however, the accuracy
of this method is still not high, and the process is complicated. Kumah, C. et al. used an
unsupervised mean shift algorithm for the color segmentation of printed fabrics [24]. The
experimental results show that the algorithm is able to accomplish the color segmentation
of fabric images under different texture and illumination conditions. The algorithm has
strong robustness but has some shortcomings in industrial applications because fabrics
need to be cleaned and ironed before color segmentation.

Superpixel segmentation [25] as a color-separation preprocessing method can effec-
tively reduce the complexity of image information [26]. Superpixel segmentation uses a
small number of pixel blocks instead of a large number of pixel points to express image
features, by combining the color information and spatial information of the pixels [27],
and enhances the accuracy of the color-separation algorithm. Achanta, R. et al. proposed
a simple linear iterative clustering (SLIC) algorithm [28], which generates compact, ap-
proximately uniform hexagonal superpixel regions with few parameter settings. However,
the edges of superpixel images generated by this algorithm are not smooth, and there
is a problem of over-segmentation. Hu, Z. et al. proposed a watershed transform (WT)
algorithm [29], which is an image-segmentation algorithm based on the idea of mathe-
matical morphology and of geomorphology and region growth. The algorithm produces
irregular superpixels more effectively than SLIC, but it is prone to noise interference and
exhibits considerable over-segmentation. Lei, T. et al. proposed a superpixel-based fast
fuzzy c-means (SFFCM) algorithm [30], in which watershed transform based on multiscale
morphological gradient reconstruction (MMGR-WT) is used as a pre-color-separation pro-
cess, which overcomes the problem of over-separation and obtains a superpixel image with
smooth edges without additional parameter settings. This method is based on the contour
information of the gradient image for superpixel segmentation, and there is no edge color
mis-segmentation, which solves the problem of variegated spots. However, the contour
information of the image is calculated based on the difference between the erosion and
dilation operations, and detailed areas in the image are often removed as noise, which can
lead to the loss of some information in the image [31].

In order to perform automatic and accurate color separation of degraded patterns, this
paper proposes a fast, automatic FCM color-separation algorithm based on superpixels.
For the first time, we applied the blind super-resolution network and superpixel algorithm
to color separation, which can achieve the automatic color separation of degraded patterns
with high segmentation accuracy at a very low computational cost. The contribution of
this paper is three-fold: first, we use the Real-ESRGAN blind super-resolution network as
an image clarification step, which can obtain higher-resolution images and enhance the
accuracy of the color-separation algorithm; second, we propose an improved MMGR-WT
superpixel algorithm for generating superpixel images with smooth and accurate edges.
This algorithm can effectively simplify the image information of high-resolution patterns,
reduce the computation time of subsequent clustering, solve the problem of variegated
spots, and does not lose information; finally, in order to achieve automatic color separation
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of images, we propose an improved DPC algorithm for calculating the number of superpixel
clusters, and the number of clusters is consistent with the perception of the human eye.

2. Materials and Methods

The flow of the color-separation algorithm proposed in this paper for degraded
patterns is shown in Figure 2, which includes four main steps: clarification processing,
superpixel segmentation, superpixel clustering, and image deflation. First, the degraded
patterns are clarified using the Real-ESRGAN blind super-resolution network [13] to obtain
high-resolution color images with clear boundaries; the clarification results and the number
of colors in RGB space are shown in Figure 1c,d. Then, the improved MMGR-WT superpixel
algorithm is used to perform superpixel segmentation on the high-resolution images,
and superpixel images with smooth and accurate edges are obtained. The improved
DPC algorithm is then applied to the superpixels to automatically determine the number
of clusters of superpixels without affecting the perception of the human eye, and the
superpixel clustering is completed via fast FCM based on a color histogram. Since the
Real-ESRGAN blind super-resolution network changes the size of the original image, the
nearest-neighbor interpolation algorithm [32] needs to be used in the final step to resize the
color-separated image, and this method does not change the number of colors in the image.
In this paper, an improved MMGR-WT superpixel algorithm, an improved DPC algorithm,
and fast FCM clustering based on a color histogram are introduced.
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2.1. Improved MMGR-WT Superpixel Algorithm

The detail information in a pattern is very rich, and if the MMGR-WT superpixel
algorithm is used for the superpixel segmentation of a high-resolution pattern, detail
information loss will occur. In this paper, bilateral filtering [33] is applied to the MMGR-
WT superpixel algorithm, and the algorithm framework is shown in Figure 3. First, the
image is processed through bilateral filtering to enhance the edge information of the
image; then, a gradient image is obtained by the Sobel operator [34], and a multiscale
morphological gradient reconstruction (MMGR) operation is defined to obtain a contour-
accurate superpixel image after WT. Finally, a color histogram of the superpixel image
is created.

Bilateral filtering combines the spatial proximity information and color similarity
information of pixels in a neighborhood and achieves filtering by applying a convolution
operation to the pixels in the neighborhood of the image and the weight coefficients of
the filter. While filtering out the noise and smoothing the image, the edge information of
the image is retained so that the gradient information is more accurate and continuous.
Let f (x,y) denote the pixel value of an image f at (x,y); then, the expression for bilateral
filtering is:

f (x, y) =

∑
(i,j)∈R(m,n)

f (i, j)w(x, y, i, j)

∑
(i,j)∈R(m,n)

w(x, y, i, j)
, (1)

where R(m,n) is the neighborhood with a size of (2m + 1) × (2n + 1) around the output pixel
point, and w(x,y,i,j) is the weight coefficient of each pixel in the neighborhood. The weight
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coefficients are composed of the product of the distance template coefficients wd(x,y,i,j) and
the value domain template coefficients wr(x,y,i,j).

w(x, y, i, j) = wd(x, y, i, j)× wr(x, y, i, j), (2)

wd(x, y, i, j) = e
(− (x−i)2+(y−j)2

2σ2
d

)
, (3)

wr(x, y, i, j) = e
(− ∥ f (x,y)− f (i,j)∥2

2σ2
r

)
. (4)

In the above equations, σ is the standard deviation of the Gaussian function.
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The direct use of the WT algorithm for gradient images causes severe over-segmentation,
and morphological gradient reconstruction (MGR) [35] is effective in overcoming this
problem. However, the structuring element (SE) of MGR has a single size and cannot
adaptively meet the needs of different images. MMGR reconstructs the gradient image
by fusing the multi-size SE values and eliminates the dependence of segmentation results
on SE values. By calculating the pointwise maximum of multiple reconstructed images,
most of the useless local minima are removed while important edge details are preserved.
MMGR is defined using RMC as follows:

RMC
f (g, r1, r2) = ∨

{
RC

f (g)Br1
, RC

f (g)Br1+1
, · · · , RC

f (g)Br2

}
, (5)

where B is the structure element SE with radius r; r1 and r2 represent the minimum and
maximum values of r, i.e., r1 ≤ r ≤ r2, r1, r2 ∈ N+; f is the input image; g is the labeled
image; ∨ represents the pointwise maximum; and RC

f (g)B denotes the morphological closed
reconstruction, i.e., the addition of erosion reconstruction on top of the closed operation,
defined as:

Rc
f (g)B = Rε( f •B), (6)

where • is the morphological closed operation, ε represents the erosion operation, and the
corresponding Rε represents the erosion reconstruction.

By combining bilateral filtering and MMGR-WT, a superpixel image with smooth
and accurate edges can be obtained in a shorter time. Then, the pixel values within each
superpixel region are averaged as the color of each superpixel region, and the number
of pixels within each superpixel region is calculated to obtain a color histogram of the
superpixel image.

Six superpixel algorithms are used for the superpixel segmentation of three high-
resolution images obtained by the Real-ESRGAN blind super-resolution network; they
are SLIC [28], linear spectral clustering (LSC) [36], WT [29], MMGR-WT [30], and the
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improved MMGR-WT proposed in this paper. The results are shown in Figure 4. From
Figure 4b–d, it can be seen that the processing effects of SLIC, LSC, and WT exhibit over-
segmentation. In Figure 4e, it can be seen that the number of superpixel regions upon
using MMGR-WT is significantly reduced compared with the previous three algorithms,
but there is a loss of detail information in the red boxes of the first and second subfigures.
As can be seen in Figure 4e, the superpixel algorithm proposed in this paper has fewer
superpixel regions due to the smoothing of the bilateral filtering process, and there is no
loss of detailed information.
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Figure 5a–c correspond to the number of colors in the high-resolution images, the
number of colors in the superpixel images, and the color histograms of the superpixel
images for the three patterns, respectively. The colors of the data points in the Figure 5a,b
represent the colors of the pixel and superpixel regions, respectively. As shown in the
figure, after the improved MMGR-WT pre-color-separation process, the number of colors in
the images is substantially reduced, which greatly reduces the computational effort of the
subsequent clustering algorithm. The histogram of the superpixel image counts the number
of pixels within each superpixel region, and the image is ready for fast FCM clustering.
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2.2. Improved DPC Algorithm

To solve the problem whereby the number-of-clusters parameter needs to be set
manually, this paper uses an improved DPC algorithm to calculate the number of clusters
for superpixel images without affecting the perception of the human eye. This method
uses the NBS distance to calculate the color distance between superpixels and redefines the
truncation distance dc according to the relationship with the perception of the human eye.

The superpixel image is still in an over-segmented state, although the number of colors
has been reduced. The DPC algorithm automatically calculates the number of clusters of
data points based on a decision graph, and the algorithm does not suffer from memory
overflow when applied to superpixel images. However, the truncation distance parameter
dc of the DPC algorithm is usually chosen empirically, and it is difficult to ensure an accurate
judgment of the number of clusters. Usually, the DPC algorithm uses the Euclidean distance
in calculating the distance between data points [37], and in order to measure the degree of
the human eye’s perception of chromatic aberration, Miyahara et al. proposed the concept
of NBS distance [38]. Instead of the Euclidean distance between data points, we determine
the NBS distance by converting the superpixels from the RGB color space to the HVC space
before calculating the NBS values between data points [39]. Assuming that there are two
superpixels of colors A and B and their HVC values are (HA VA CA) and (HB VB CB), the
formula for calculating the NBS distance can be expressed as follows:

NBS =

√
2CACB(1 − cos(

2π∆H
100

)) + (∆C)2 + (4∆V)2, (7)

among which 
∆H = |HA − HB|
∆V = |VA − VB|
∆C = |CA − CB|

, (8)
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The truncation distance parameter dc is an important threshold parameter for enabling
the DPC algorithm to determine whether the data points are in the same cluster class. Table 1
shows the correspondence between the NBS distance and the human eye’s perception of
chromatic aberration, and when the NBS distance between two colors is greater than 3.0, the
chromatic aberration of two colors is considered obvious. Therefore, we chose a truncation
distance dc of 3. The local density ρi of superpixel node i is calculated with a Gaussian
kernel as follows:

ρi = ∑N
j=1,j ̸=i Sj exp(−

d2
ij

dc
), (9)

where N is the number of superpixels; 1 ≪ i, j ≪ N; Sj is the number of pixels in the jth
superpixel region; and dij denotes the NBS distance between xi and xj. The larger the value
of ρi, the more likely it is to be at the center of the cluster, and on the contrary, the smaller
the value of ρi, the more likely it is to be noise or at the extremes of the dataset.

Table 1. NBS distance in relation to the perception of the human eye.

NBS Distance 0–0.5 0.5–1.5 1.5–3 3–6 6 or More

Perception of the
degree of color

difference

Perceived as
minimal

Perceived as
slight

Sense of
subtlety

Perceived as
obvious Strong

After calculating the density of each color, all the color nodes are sorted in descending
order of their density values. For the color nodes, after the sorting is completed, it is also
necessary to calculate the higher-density minimum distance δi for each color node, defined
as follows:

δi = min
j:ρj>ρi

(dij), (10)

The distance δi is the minimum distance from i for all color nodes that have a higher
density than color node i. For node i, the color node with higher density must be ranked in
front of i. The NBS distances to node i are sequentially calculated from the 1st node to the
end of the i-1st node, and the minimum value of the NBS distance is taken. For the color
node that ranks first, the δi value is taken as the maximum value of the NBS distance to the
remaining color nodes, i.e., max(dij). dij is defined as:

dij =

∥∥∥∥∥ 1
Si

∑p∈∂i
xp−

1
Sj

∑q∈∂j
xq

∥∥∥∥∥, (11)

For the superpixels whose density is the local or global maximum, their δ values will
be much larger than those of the other superpixels, and thus, the clustering centers have
larger values of ρ and δ. In this paper, we use the product of the local density ρi and the
distance δi to adaptively determine the clustering center by first defining a variable γi such
that the value of γi for a superpixel i is:

γi = ρi ∗ δi, (12)

Before calculating the γi values of the superpixels, Equation (10) is applied to nor-
malize γi. The normalized data can eliminate the influence of the difference in the mag-
nitudes of ρi and δi on the experimental results, and the values of γi are mapped to the
interval [0, 1] after normalization.

γi = (γi − γmin)/(γmax − γmin), (13)

Because the ρ and δ values of the clustering centers are larger, the γ values of the
clustering centers will also be larger. If the γ values of all the superpixels are ranked in
order from largest to smallest, it is found that the γ values for superpixels that are not
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clustering centers are very close to each other, while the differences in the γ values of
superpixels that are clustering centers are relatively large. Since the γ distribution satisfies
the power law, i.e., a log function is taken for γ, log (γ) is approximated in a linear form.
According to the optimized cutoff distance, to calculate ρi and δi, we take the log functions
for γi and arrange them in descending order; then, we take the difference between the
two adjacent numbers and find the value with the largest change in difference, and all the
data points before this are recorded as the cluster center to achieve automatic calculation
of the number of clusters. Using the improved DPC algorithm for the superpixel images
above, the decision diagram is generated as shown in Figure 6a–c, from which the number
of clusters for the superpixel images are 5, 4, and 5, respectively.
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2.3. Fast FCM Clustering Based on Color Histograms

To achieve fast clustering of superpixel images, we propose the following fast FCM
clustering objective function based on the obtained superpixel color histogram and the
number of superpixel clusters:

Jm =
q

∑
l=1

k

∑
i=1

Slum
li

∥∥∥∥∥
(

1
S l

∑
p∈Rl

xp

)
− ci

∥∥∥∥∥
2

, (14)

where l is the color level; q is the number of superpixel image regions; k is the number of
clusters calculated by the DPC algorithm; Sl is the number of pixels in the lth superpixel
region Rl; uli is the membership intensity of the lth superpixel region belonging to the ith
cluster; m is the weighting exponent, which is usually set to 2; xp is the pixel value of the
superpixel region obtained by the improved MMGR-WT; and ci is the clustering center of
the ith cluster.

Each pixel value in the high-resolution image is replaced by the average pixel value in
the corresponding region of the superpixel image, so the number of color classes is equal to
the number of regions in the superpixel image. Therefore, the computational complexity
of the proposed algorithm is significantly reduced since l ≪ N. ci and uli can be obtained
using the Lagrange multiplier method, and the expression is as follows:

ci =
∑

q
l=1 um

li ∑p∈Rl
xp

∑
q
l=1 Slum

li
, (15)

uli =

∥∥∥( 1
Sl

∑p∈Rl
xp)− ci

∥∥∥ −2
m−1

∑K
j=1

∥∥∥( 1
Sl

∑p∈Rl
xp)− ci

∥∥∥ −2
m−1

, (16)

By updating ci and uli through Equations (15) and (16), a membership intensity matrix
is obtained, and each pixel is assigned to one of the clusters with the largest membership
intensity to complete the image segmentation.
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The specific steps of the proposed algorithm are as follows:

1. Set the parameters, weighting exponent m, iteration error ε, and maximum number of
iterations t;

2. Calculate Equations (1)–(6) to obtain the superpixel region of the image;
3. Use Equations (7)–(13) to generate a decision graph and determine the number

of clusters;
4. Initialize the membership intensity matrix uli;
5. Calculate the clustering center ci using Equation (15);
6. Calculate the membership intensity matrix u using Equation (16);
7. Calculate the objective function Jm using Equation (14);
8. Determine whether

∣∣Ja
m − Ja−1

m
∣∣ ≤ ε is valid; if so, perform step 9, and if not, return to

step 4;
9. Return the membership intensity and assign all pixels to the cluster with the largest

membership intensity to complete color separation.

3. Experiments and Results

We chose 30 degraded patterns as experimental samples to verify the effectiveness
of the algorithms in this paper. All the algorithms were run on a computer with a Win10
operating system equipped with a 2.5 GHz Intel Core i7-7300HQ CPU and 16 GB of RAM,
and the experimental tool used was Matlab2016 A.

3.1. Color-Separation Results of the Algorithm in This Paper

In order to demonstrate the color-separation results of this paper’s proposed algorithm,
we selected three degenerate patterns from the sample. The color-separation process was
carried out using the algorithm in this paper, and the results of the clarification process and
the color-separation results are shown in Figures 7–9.
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Figure 9. (a) The third pattern and its number of colors. (b) High-resolution image and its number of
colors. (c) Color-separation result and its number of colors.

As shown in Figure 7a, the first pattern is not particularly clear. Due to the folds in the
sample fabric, there are some shadows in the image, which can affect the color-separation
results. According to the perception of the human eye, the patterns have three colors, but
the number of colors in the actual image is much more than three. As shown in Figure 7b,
after processing by the Real-ESRGAN blind super-resolution network, a high-resolution
image with clear edges is obtained, but the number of colors in the image also increases.
As can be seen in Figure 7c, the color-separation algorithm proposed in this paper classifies
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the final image into three colors (white, red, and blue) with no color-separation errors, and
the color-separation results are consistent with the perception of the human eye.

As shown in Figure 8a, the second pattern has more colors, a blurrier image, and
the same folds as that in Figure 8b. It can be seen in Figure 8b that the details of the
image become clear after the clarification process. In Figure 8c, the details are separated
completely without any loss of information or color-separation errors. The number of
colors in the final image is reduced to six, and the color-separation results are consistent
with the perception of the human eye.

The third pattern has the richest colors and the most details. As can be seen in Figure 9c,
the patterns are finally reduced from tens of thousands of colors to 11 colors by the color-
separation algorithm proposed in this paper. The results do not show any information
loss, the edges of the image are smooth and complete, and the effect is consistent with the
original image.

3.2. Clustering Parameter Validity Test

The number of clusters is an important parameter in the color-separation algorithm
proposed in this paper, and the wrong judgment of the number of clusters can lead to
significant color-separation errors. In order to verify the validity of the number of clusters
obtained by the improved DPC algorithm in this paper, we selected the six patterns
(A~F) mentioned in the summaries of Sections 2.1 and 3.1 as the experimental objects
and evaluated the number-of-clusters parameter by adopting the clustering validity index
S_Dbw [40].

S_Dbw is a density-based metric that evaluates the effectiveness of clustering by com-
paring the compactness within a class to the density between classes. Smaller S_Dbw values
imply better clustering, which means that the clusters are compact and well-separated from
other clusters. It is calculated using the formula:

S_Dbw = Scat + Dens_bw, (17)

where Scat denotes intra-class tightness, and Dens_bw denotes inter-class density, defined,
respectively, as follows:

Scat =
1
c

c

∑
i=1

∥∥∥∥σ(Ci)

σ(D)

∥∥∥∥, (18)

Dens_bw =
1

c(c − 1)

c

∑
i=1

(
c

∑
i=1i ̸=j

density(uij)

max
{

density(vi), dnesity(vj)
} ), (19)

where D is the entire dataset; c is the number of clusters; Ci represents the ith class; σ(ci)
denotes the variance vector of the samples in the ith class; σ(D) denotes the variance vector
of all the samples; vi and vj are the centers of clusters ci and cj, respectively; uij is the
mid-point of the line segment defined by the clustering centers vi and vj; and density
denotes the density of the data points.

We sequentially set the number-of-clusters parameter to 2–16 and used the color-
separation algorithm proposed in this paper to color-separate the six patterns. We calculated
their corresponding S_Dbw values, and the results are shown in Figure 10.

A smaller value of S_Dbw indicates a better effect of clustering. As can be seen from
Figure 10, the smallest S_Dbw values of patterns A–F correspond to cluster numbers of 5,
4, 5, 3, 6, and 11, respectively. Meanwhile, as can be seen above, the numbers of clusters
calculated by the improved DPC algorithm in this paper are 5, 4, 5, 3, 6, and 11, which is
in accordance with the numbers of colors obtained by the S_Dbw indicator. It can thus be
proven that our algorithm can provide reliable numbers of clusters for degraded patterns
and can achieve automatic color separation of patterns.
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3.3. Comparison with Other Color-Separation Algorithms

To evaluate the superiority of the algorithms in this paper, five popular color-separation
algorithms were used for comparison; they are FCM [17], DSFCM_N [19], SLIC-FCM [41],
MMGR-AFCF [42], and SFFCM [30]. FCM and DSFCM_N are pixel-based clustering
algorithms, and SLIC-FCM, MMGR-AFCF, and SFFCM are superpixel-based clustering
algorithms. For better comparison, we added the Real-ESRGAN blind super-resolution
network as a clarification step to all five algorithms. And since FCM, DSFCM_N, SLIC-
FCM, and SFFCM all need manual input of the clustering number parameter, we kept
this parameter consistent with the clustering number parameter calculated in this paper.
Figure 9 shows the color-separation results of each algorithm for the four images used in
the experiment.

According to the color-separation results, all the color-separation algorithms have
some color-separation effect, but there are some detail problems, which are highlighted by
red boxes. As shown in Table 2b, in the color-separation results of FCM, there are many
variegated spots at the boundaries of colors. As shown in Table 2c, in the color-separation
results of DSFCM_N, the first and third images have considerable color-separation errors;
the colors do not match the original images, and the second image has variegated spots.
As shown in Table 2d, there are no variegated spots in the color-separation results of the
SLIC-FCM algorithm, but the edges are not smooth enough, and the three red areas are
incorrectly concatenated into one area in the second pattern. As shown in Table 2e, MMGR-
AFCF is unable to preserve the detailed parts of the image, causing serious distortion and
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the worst results with color-separation errors. According to Table 2f, in the color-separation
results of the SFFCM algorithm, there are no variegated spots, and the edges are very
smooth, but there is some detail information loss. In Table 2g, it can be noted that the
color-separation algorithm proposed in this paper is able to accurately color-separate the
detailed regions in the four images from the experimental results; moreover, its results have
no variegated spots, and the edges of the images are smooth and accurate, without any
information loss. Compared with the other five algorithms, the color-separation algorithm
proposed in this paper has the best results.

Table 2. Comparison of various color-separation algorithms: (a) Degraded patterns. (b) Results of
FCM. (c) Results of DSFCM_N. (d) Results of SLIC-FCM. (e). Results of MMGR-AFCF. (f) Results of
SFFCM. (g) Results of this paper’s proposed algorithm.

a
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where Ak is the set of pixels belonging to the kth class found by the algorithm, and Ck is 
the set of pixels belonging to the class in GT. Larger values of S and SA indicate closer 
results to the ground truth. 

For each algorithm, for comparison, we set the values of the internal parameters to 
be optimal. The weighting factor for all the algorithms was 2, the iteration error was 10−6, 
and the maximum number of iterations was 100; furthermore, the number of superpixels 
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In order to compare the color-separation accuracy of these six algorithms for
30 degraded patterns, we used two performance metrics, quantitative score (S) and optimal
segmentation accuracy (SA) [43], and produced the corresponding ground truth (GT) [44]
for clarification-processed images based on manual color separation. The quantitative score
(S) is the degree of equality between the pixel set Ak and the ground truth Ck, and the
optimal segmentation accuracy (SA) is the sum of correctly classified pixels divided by the
total number of pixels. S and SA are defined as:

S =
c

∑
k=1

Ak ∩ Ck
Ak ∪ Ck

, (20)

SA =
c

∑
k=1

Ak ∩ Ck
c
∑

k=1
Cj

(21)

where Ak is the set of pixels belonging to the kth class found by the algorithm, and Ck is the
set of pixels belonging to the class in GT. Larger values of S and SA indicate closer results
to the ground truth.

For each algorithm, for comparison, we set the values of the internal parameters to be
optimal. The weighting factor for all the algorithms was 2, the iteration error was 10−6, and
the maximum number of iterations was 100; furthermore, the number of superpixels for the
SLIC-FCM algorithm was 800, and the merging radius was 1. For MMGR-AFCF, SFFCM,
and the algorithm proposed in this paper, the minimum radius of the SE was r1 = 1.

Thirty degraded patterns were used as experimental samples and six color-separation
algorithms were used to color-separate these degraded patterns. The average scores of the
corresponding segmentation performance evaluation indexes (S and SA) of each algorithm,
as well as the average computation time of each algorithm, were calculated, and the results
are shown in Table 3.

Table 3. Average segmentation metrics and average computation time for six algorithms for degener-
ate patterns.

Algorithms Number of Samples
(Amplitude)

S Mean Value
(%)

SA Mean Value
(%)

Average Calculation
Time (s)

FCM 30 83.79 88.81 96.45
DSFCM_N 30 69.66 73.31 197.27
SLIC-FCM 30 66.45 70.31 94.32

MMGR-AFCF 30 58.62 62.33 44.39
SFFCM 30 72.32 78.88 32.14

The algorithm proposed in this paper 30 92.11 95.78 38.67

From Table 3, it can be seen that among the pixel-based color-separation algorithms,
the FCM algorithm has higher evaluation metrics (S and SA), but the computation time is
long. The DSFCM_N algorithm has the longest running time due to the computation of
spatial neighborhood information in each iteration, and the segmentation accuracy of the
algorithm is not high enough. Among the superpixel-based algorithms, SLIC-FCM also
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has a long computation time due to the high number of generated superpixels, and the
color-separation effect is not satisfactory. The MMGR-AFCF algorithm has a much lower
computation time than the previous three algorithms but has the lowest segmentation
accuracy. The computation time of SFFCM is the best, but the accuracy of the color
separation is not high. The fast, automatic fuzzy c-means color-separation algorithm based
on superpixels proposed in this paper achieves an average quantitative score S of 92.11%
and a segmentation accuracy of 95.78%, which are much higher than those achieved by
the other algorithms, and the running time is much smaller than that of the pixel-based
clustering algorithm. However, due to the addition of bilateral filtering, the running time is
slightly higher than that of SFFCM. Therefore, it can be proven that the color-separation
algorithm proposed in this paper is capable of accurate automatic color separation with
very low computational cost for degraded patterns.

3.4. Comparison of Computational Complexity of Different Algorithms

The proposed color-separation algorithm can be roughly divided into three stages: the
first is image clarification processing, the second is image superpixel segmentation, and the
third is automatic fuzzy clustering. Since none of the other algorithms have a clarification
processing step, we chose image superpixel segmentation and automatic fuzzy clustering
to compare our algorithm’s computational complexity with that of the other algorithms.

The time complexity of the six algorithms is shown in Table 4. The computational
complexity of SLIC is O(N × K × t′), and that of MMGR is O(N × T′), which is lower
than that of SLIC. K denotes the number of neighboring centers, and t′ and T′ are iteration
numbers and are usually less than t. w denotes the size of the neighboring window, and
K denotes the number of neighboring centers. DSFCM_N has the highest computational
complexity because the neighboring information is computed at each pixel. SFFCM and
the algorithms in this paper have the lowest computational complexity because MMGR is
fast, and the number of superpixels N′ is much smaller than the number of pixels N.

Table 4. Computational complexity of different algorithms.

Algorithms Computational Complexity

FCM O(N × K × t)
DSFCM_N O(N × w2 × K × t)
SLIC-FCM O(N × K × t′ + N′ × c × t)

MMGR-AFCF O(N × T′ + N′ × c × t × 2)
SFFCM O(N × T′ + N′ × c × t)

The algorithm proposed in this paper O(N × T′ + N′ × c × t)

4. Discussion

This paper describes the significance and application value of color-separation algo-
rithms for degraded patterns, as well as several common methods in the field of clarification
and color separation. The advantages and disadvantages of super-resolution reconstruc-
tion networks, blind super-resolution reconstruction networks, pixel-based clustering
algorithms, and superpixel algorithms are comprehensively and systematically analyzed.
According to the application background, a complete set of color-separation algorithms for
degraded patterns is proposed using the Real-ESRGAN blind super-resolution network, an
improved MMGR-WT superpixel algorithm, an improved DPC algorithm, and fast FCM
clustering based on color histograms, and the color-separation algorithm proposed in this
paper are experimentally compared with other algorithms to prove the effectiveness of this
paper’s proposed algorithm.

The experimental results show that the color-separation algorithm proposed in this
paper can achieve the following objectives: (1) The clarification of degraded patterns by
the Real-ESRGAN blind super-resolution network yields a high-resolution image with
clear boundaries and increases the accuracy of the color-separation algorithm. (2) The
improved MMGR-WT superpixel algorithm is used as a color-separation preprocessing



Sensors 2024, 24, 281 17 of 19

method, which simplifies the information complexity of high-resolution images, obtains
superpixel images with smooth and accurate edges, and solves the problem of variegated
spots that exist in the pixel-based color-separation algorithm. (3) Using the improved
DPC algorithm, the number of clusters in the superpixel image is automatically calculated
without affecting the perception of the human eye, and the number of colors in the color-
separation algorithm does not require manual intervention. (4) The fast clustering of
superpixel images is achieved by fast FCM clustering based on a color histogram to obtain
the final color-separation results.

5. Conclusions

With the aim of improving upon existing color-separation algorithms that deal with
degraded patterns, which have unsatisfactory color-separation effects and for which
the number-of-clusters parameter needs to be managed manually, a fast and automatic
superpixel-based FCM color-separation algorithm is proposed. Considering that the pat-
terns are clarified by the Real-ESRGAN blind super-resolution network, the resolution
of the images is elevated, which will greatly increase the computation complexity of the
color-separation algorithm. In this paper, the superpixel algorithm is used for image color
separation for the first time, and the improved MMGR-WT superpixel algorithm is used as
the pre-color-separation processing step, which simplifies the computational complexity of
the subsequent clustering algorithm and generates superpixel images with smooth and ac-
curate edges; the number of superpixel clusters is automatically computed by the improved
DPC algorithm without affecting the perception of the human eye, which reduces human
intervention; and finally, the color-separation algorithm is applied to superpixel clusters
via fast FCM based on color histograms. The experimental results show that the algorithm
proposed in this paper can not only achieve the automatic color-separation of degraded
patterns at a very low computational cost but also attain high segmentation accuracy.

However, we added a bilateral filtering method to the superpixel segmentation, which
makes our algorithm time-consuming. In the future, we will consider using deep learning
methods to train the color-separation algorithm on patterns with different resolutions to
solve this problem and achieve faster and more accurate color separation.
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