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Abstract: New artificial intelligence scenarios, such as high-precision online industrial detection,
unmanned driving, etc., are constantly emerging and have resulted in an increasing demand for real-
time image processing with high frame rates and low power consumption. Histogram equalization
(HE) is a very effective and commonly used image preprocessing algorithm designed to improve
the quality of image processing results. However, most existing HE acceleration methods, whether
run on general-purpose CPUs or dedicated embedded systems, require further improvement in their
frame rate to meet the needs of more complex scenarios. In this paper, we propose an HE acceleration
method for FPGAs based on a two-dimensional configurable pipeline architecture. We first optimize
the parallelizability of HE with a fully configurable two-dimensional pipeline architecture according
to the principle of adapting the algorithm to the hardware, where one dimension can compute the
cumulative histogram in parallel and the other dimension can process multiple inputs simultaneously.
This optimization also helps in the construction of a simple architecture that achieves a higher
frequency when implementing HE on FPGAs, which consist of configurable input units, calculation
units, and output units. Finally, we optimize the pipeline and critical path of the calculation units.
In the experiments, we deploy the optimized HE on a VCU118 test board and achieve a maximum
frequency of 891 MHz (which is up to 22.6 times more acceleration than CPU implementations), as
well as a frame rate of 1899 frames per second for 1080p images.

Keywords: field-programmable gate arrays (FPGAs); histogram equalization; two-dimensional
pipeline; hierarchical state machine

1. Introduction

Histogram equalization (HE) is a very important image preprocessing method that
is used to improve the quality of image processing results [1]. It has a wide range of
applications in high-precision online industrial detection [2], unmanned driving [3], med-
ical imaging [4], computer vision [5], video processing [6], etc. There are many different
versions of HE [7], such as global histogram equalization, average brightness preserv-
ing histogram equalization, bucket modified histogram equalization, and local histogram
equalization. Global histogram equalization is commonly used, and its main principle is
to change the distribution of the whole image’s histogram to a uniform distribution so
as to improve the contrast of the image. However, the characteristics of global histogram
equalization limit its maximum frame rate in high-speed scenarios, and its throughput
should thus be improved.

Multi-core processors are commonly used for accelerating algorithms according to par-
allel computing theories. However, the accumulation part of HE limits its parallelism, and
it is thus mainly implemented in the serial computing of traditional computers, which leads
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to its low computing performance. Most existing HE acceleration methods, whether run
on general-purpose CPUs or dedicated embedded systems, require further improvement
in their frame rate to meet the needs of complex scenarios [8,9]. Even when implemented
with GPUs, the performance gains are limited [10]. These methods also meet strict power
consumption constraints in embedded scenarios [11,12].

In order to achieve better acceleration performance, our work explores optimization
methods based on the principle of adapting algorithms to the hardware, taking field-
programmable gate arrays (FPGAs) as the accelerating platform. In contrast with other
typical parallel computing platforms, such as multi-core CPUs and GPUs, FPGAs have the
characteristics of highly customizable parallel computation, high compatibility, and low
power consumption [13].

The process of global HE can be divided into the following steps: calculating the
histogram of the image, i.e., the frequency of each pixel (which is the number of pixel
occurrences divided by the total number of pixels and is denoted by px); calculating the
cumulative histogram of the image, i.e., the frequency that is less than or equal to this pixel
(denoted by cd fx); obtaining converted pixels are according to the cumulative histogram,
and the cumulative histogram is multiplied by the largest pixel value (e.g., if the pixel bit
width is 8, the largest pixel value is 255); and finally, the original image is converted.

Satisfactory performance cannot be reached by implementing HE on FPGAs di-
rectly [14]. In order to improve the performance of HE on FPGAs, it is necessary to
optimize the method’s computing architecture and make it more suitable for FPGAs.

Our work first reconstructed the logic of HE to make it suitable for parallel computa-
tion, and it was then optimized to be a 2D pipeline architecture so as to improve the FPGAs’
computation speed. We then used three different methods to implement the optimized HE
on FPGAs according to different resource utilization strategies. In addition, the performance
bottleneck calculations and logic were optimized on the hardware level. We deployed the
optimized HE on a VCU 118 test board [15] using PCIe 3.0 communication ports. Compared
with a single-core CPU intel i7-8750H, the acceleration ratio of the PCIe3.0*16 interface
can be up to 22.6 times higher. Compared with other FPGA-based implementations of a
single-input architecture (based on Zynq-XC7Z030) [16], the performance was 43.0 times
higher.

In summary, this paper makes the following contributions:

1. We reconstruct HE according to the principle of adapting algorithms to the hardware
such that the customized two-dimensional configurable pipeline is able to improve the
throughput.

2. We propose a fully configurable computation architecture, and the parameters of HE
such as image resolution, pixel bit width, and number of input pixels can be easily
customized.

3. We improve the frequencies of the HE implementation through calculation transfor-
mation and by pipelining some of the steps of the calculation, such as accumulation
and comparison value updates.

2. Related Works

Many previous works have been dedicated to accelerating HE. One architecture that
has been studied is the “decoder + parallel computing unit” architecture [17]. The input of
the decoder is the pixel, and the output is the result corresponding to all pixel values. The
number of outputs is 2pixel_bitwidth, i.e., when a pixel is considered as an address and input
into the decoder, the output bit of the corresponding address and those values less than the
address are both 1, and all other bits are 0. Each computing unit receives one output bit
from the decoder. If the value of the bit is 0, its own statistical value remains unchanged; if
it is 1, its own statistical value increases by 1. After the statistics are finished, each parallel
computing unit stores its statistical values into the BRAM sequentially after calculating the
converted pixel values. The advantage of this architecture is that the cumulative histogram
that corresponds to all pixels can be calculated at the same time instead of calculating
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the individual histograms first and then the cumulative histogram, which saves time.
However, the wiring of this architecture is very complex, and the net delay is incredibly
large, so it cannot be run at a particularly high frequency. This method calculates division
using the higher-order bits, and it has limited application scenarios. The results obtained
from the calculation need to be sequentially stored in BRAM, which also causes greater
computational latency and degrades performance.

A few other articles have applied a similar architecture [18,19]. There are also articles
that improve upon this architecture or add other features. For example, the generated
histogram can be displayed directly through the display module [16]. An alternative to
sequential BRAM writing is to use a multiplexer, which does not require BRAM writing
time, while also allowing for the random selection of the calculation results [20]. The
calculation of division can also be made more flexible. One way to achieve this is to use
an integer divider, but this method cannot compute rounding [21]. The other method is to
multiply by a factor and then take the higher-order bits, but this method needs sufficient
precision [20].

Another typical architecture is to use BRAM for histogram calculation [22]. The input
pixel is used as the BRAM address, and the data stored in the BRAM correspond to the
accumulated number of corresponding pixels. But because one of BRAM’s ports can only
be read or written in a clock cycle, different studies have used different methods. One
such method is to read BRAM only when there is a change in the data. Another method
is to use two-port BRAM and read on one port and write the calculated value on the
other port, so that the read and write operations can be completed in one clock cycle.
After the histogram statistics are completed, the accumulated circuit is used to calculate
the accumulated histogram, and the converted data are calculated by the corresponding
calculation and stored back in the BRAM. This architecture has the advantage of saving
logical resources, but it is limited both in terms of speed and multi-input scaling.

There are many other implementations based on this architecture. Among them,
the addition used to generate the histogram can be calculated by DSP, thus reducing the
utilization of resources [23]. DSP can also be used in processing histograms. Not only can
DSP be used to generate cumulative histograms, but it can also be programmed to achieve
additional functions [24]. Based on this architecture, FPGAs and computer software can
be combined to achieve heterogeneous computing with greater flexibility that can achieve
more functions [25].

For the calculation of HE with multiple inputs and outputs, both of the above archi-
tectures have their corresponding variants. Multi-input and -output architectures, such as
the multi-decoder architecture, are the first kind [26]. In this artchitecture, multiple pixels
are input to multiple decoders, and the output of the same bit from different decoders is
input to the same computing unit. Each computing unit adds the accumulated value of its
own through the number of 1s obtained from multiple inputs, so as to calculate the accu-
mulated histogram. The second type of multi-input and -output architecture, such as the
multi-BRAM port architecture [27,28], can read or write in parallel, but not simultaneously.
In the case of parallel writing, statistics are performed through multiple BRAM ports, and
each port inputs a part of the image; then, the generated histograms are added together to
generate a complete histogram. In the case of parallel reading, one pixel is input each time
to multiple BRAM ports, and then multiple identical histograms will be generated and read
through multiple BRAM ports, so as to realize parallel reading. The performance of these
architectures is not high; the multi-decoder’s wiring is too complex, resulting in a large
wiring delay; the multi-BRAM ports do not achieve simultaneous input and output results;
and with the increase in the use of BRAM, the performance of the circuit will be reduced.

Concerning the calculation method of the cumulative histogram, some studies replace
division by taking the higher-order bit [17] because when the lower-order bits are all 0,
directly abandoning the low position is equivalent to a right shift operation, which can
replace division. However, this method can only calculate the division when the divisor
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is the index of 2. Other methods do not optimize the division and use hardware DSPs or
configurable logical resources to compute the division.

In addition to designing the computational architecture, the MATLAB code can be
automatically converted to RTL code and run on FPGAs [29]. There are also some imple-
mentations developed using HLS [30,31] and other tools [32]. These methods may speed
up development, but they are not specifically optimized for performance.

3. Parallelization of Histogram Equalization and Its Hardware Computing Architecture
3.1. Histogram Equalization Algorithm

Each image can be represented as an mr ∗mc matrix of integer pixel intensities ranging
from 0 to L− 1. L is the number of pixel intensities; if the bit width of the pixel intensities
is w, then L is 2w. For example, if w is 8, L is 256.

Let p denote the normalized histogram of the image with a bin for each possible
intensity, as follows:

px =
nx

n
=

∑n
i=1(xi == x)

n
, (1)

where nx is the number of pixels with an intensity of x; n is the total number of pixels and
n = mr ∗mc; and xi is the intensity value of the i’th pixel of the image, where (xi == x) is
a Boolean expression that equals 1 if xi and x are equal and 0 if they are not.

The output pixel intensity of HE for each input pixel intensity x is yx and is defined as

yx = round((L− 1)
x

∑
i=0

pi), (2)

where round() rounds to the nearest integer.

3.2. Parallelizing Histogram Equalization

We parallelize HE using two approaches: (1) computing all cd fx in parallel and
(2) processing multiple input pixels simultaneously.

For processing m inputs simultaneously and calculating ∑x
i=0 pi directly, according to

Formula (1),

nx =
n/m

∑
i=1

m

∑
j=1

(xij == x), (3)

where xij is the j’th input in the i’th multiple input.
In addition to computing m inputs simultaneously, we can also compute the cd fx

directly in parallel. According to Formulas (1)–(3),

cd fx =
1
n

x

∑
k=0

n/m

∑
i=1

m

∑
j=1

(xij == k). (4)

We can adjust the order of accumulation as follows:

1
n

x

∑
k=0

n/m

∑
i=1

m

∑
j=1

(xij == k)⇒ 1
n

n/m

∑
i=1

m

∑
j=1

x

∑
k=0

(xij == k). (5)

The innermost accumulation can be obtained directly:

x

∑
k=0

(xij == k)⇒ (xij <= x). (6)
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Finally, the formula to calculate cd fx in parallel is

cd fx =
1
n

n/m

∑
i=1

m

∑
j=1

(xij <= x), (7)

and according to Formulas (2) and (7), f (x) is

f (x) = round(
L− 1

n

n/m

∑
i=1

m

∑
j=1

(xij <= x)), (8)

L−1
n is a constant when L and n are determined.

So far, HE has been parallelized to fit m inputs simultaneously and can calculate cd fx
directly in parallel. The parallelized HE involves the computation of three dimensions.
Dimension i is the time dimension, which is executed sequentially. Dimension j is used for
multiple inputs, executed in parallel. The x dimension is the transformation result of each
pixel’s intensity, which is executed in parallel.

3.3. Principles of Hardware Computing Architecture

The typical architectures mentioned in the Related Works Section have their own
disadvantages and limited performance. The architecture based on BRAM, which is treated
as a lookup table, is not capable of parallel input and parallel output at the same time. In
addition, the fan-out architecture has a very high net delay and clock skew.

The overall architecture should keep the “total fan out” low. The connection complexity
of the architecture with a “high total fan-out” is big, which means that every cell extended
in one dimension needs to connect all the cells in the other dimension. As a result, the
architecture is not easy to scale, and has high net delay and clock skew.

3.4. Architecture for Parallelized Histogram Equalization

We proposed a novel approach to realize parallel computing in both dimensions, thus
forming the overall architecture of a two-dimensional pipeline, as shown in Figure 1.

The overall architecture consists of input units, computing units, and output units.
The input unit inputs the pixels of the image to be computed. When the input pixel (from
left) is less than or equal to the pixel for which the input unit is responsible, it will increase
the value of the unit above and output the result to the unit below. The input pixels will be
directly output to the right.

The behavior of the input units is shown in Algorithm 1, where “pixelIn” is the input
from the left, “valueIn” is the input from above, “pixelOut” is the output to the right, and
“valueOut” is the output below.

Algorithm 1 The Behavior of The Input Units

Input: pixelIn,valueIn
Output: pixelOut,valueOut

pixelOut← pixelIn
if (pixelIn <= compareNum) then

valueOut← valueIn + 1
else

valueOut← valueIn
end if

The computing unit performs multiplication and rounding calculations based on the
values input from above, and each computing unit is responsible for the calculation of
one pixel’s intensity. The computing unit passes the result to the output unit below. The
input from the left is the frame-synchronizing signal, which will control the output of the
computing unit and is also directly output to the right.
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Figure 1. Two-dimensional configurable pipeline architecture.

The behavior of the computing units is shown in Algorithm 2, where “frameSynIn” is
the input from the left, “valueIn” is the input from above, “frameSynOut” is the output to
the right, and “valueOut” is the output below.

Algorithm 2 The Behavior of The Computing Units

Input: valueIn,frameSynIn
Output: valueOut,frameSynOut

frameSynOut← frameSynIn
if (!frameSynIn) then

valueOut← valueOut
accumulator← accumulator + valueIn

else
valueOut← round( L−1

n ∗ accumulator)
accumulator← 0

end if

After the pixels of a frame are made into input units and the values are calculated by
the computing units, the calculation of f (x) in the histogram equalization is completed. At
this point, these pixels need to be made into output units to complete their conversion. The
output unit of each column is responsible for the transformation of the same pixel, that is,
x in Equation (8). f (x) is the input from the computing unit above and is output directly
below. The pixel to be converted is input from the left, and if the input value is the unit
the pixel is responsible for and has not been converted before, the value will be converted,
and the result will be output to the right. A flag bit is also required to indicate whether the
pixel has been converted. If the pixel has been converted, the flag bit will be set to one.

The behavior of the output units is shown in Algorithm 3, where “pixelIn” is the input
from the left, “valueIn” is the input from above, “pixelOut” is the output to the right, and
“valueOut” is the output to below. Moreover, “comparedIn” is the flag bit input from the
left, and “comparedOut” is the flag bit output to the right.
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Each unit is only connected to up to four other units, reducing the connection com-
plexity. The input–output of the units at the edge are special, with and input of 0 for the
topmost input unit and an input of 0 for the flag bit of the leftmost output unit. In this
way, we can add as many rows or columns as we need without affecting the connections
between original units. This means that we can easily scale up the computing architecture
without affecting the overall running frequency.

Algorithm 3 The Behavior of The Output Units

Input: pixelIn,comparedIn,valueIn
Output: pixelOut,comparedOut,valueOut

valueOut← valueIn
if (pixelIn == compareNum)&&(!comparedIn) then

pixelOut← valueIn
comparedOut← 1

else
pixelOut← pixelIn
comparedOut← comparedIn

end if

The example in Figure 2 shows the data flow of input units.

(a) (b)

(c) (d)
Figure 2. The data flow of input units. (a) t = 0. (b) t = 1. (c) t = 2. (d) t = 3.

The time complexity of the optimized HE is

O(n) = n/m, (9)

where m is the number of inputs and n is the number of pixels in the image. The number of
units N is

N = (2m + 1) ∗ L. (10)

4. Implementation of Histogram Equalization on FPGAs

We deploy the optimized HE on FPGAs. In order to study the acceleration effects and
resource utilization of HE on FPGAs in depth, we implement HE through three different
strategies: (1) with configurable logical (CL) resources only; (2) with CL and DSPs; and
(3) with CL, DSPs, and BRAMs. Each strategy achieves a different performance and resource
utilization, and can be applied in different scenarios. If we need high speed, we can use the
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CL only strategy; if the resources of the FPGAs are insufficient, the strategy utilizing CL
and DSPs can be used; and if the speed of the interface is limited, the strategy utilizing CL,
DSPs, and BRAMs can be used.

4.1. Utilizing Only Configurable Logical Resources

This method uses configurable logical resources, except for the FIFO used as the
axis interface.

4.1.1. Overall Architecture Based on FPGAs

The overall architecture based on FPGAs is shown in Figure 3. The calculation process
is to input two identical frames into the Input FIFO successively. The first frame is used
for calculation, and the second frame is used for conversion. The Controller controls the
input of the first frame to the first set of ports (1, 2, 3, 4) and the input of the second frame
to the second set of ports (5, 6, 7, 8).

Figure 3. Overall architecture utilizing only CL.

4.1.2. Overall Architecture of HE Core

The overall architecture adopted is shown in Figure 4. In the case of increasing input
and output, using a pipelined architecture to transfer multiple inputs and outputs can
reduce wiring complexity and logic delay and improve performance.

A vertical row of input units constitutes a multi-input pipeline architecture. The final
result of the multi-input pipeline architecture represents the number of input pixels that
this computing unit is responsible for. The calculate unit takes in the input values, performs
calculations, and outputs the final transformed result of the pixel it is responsible for. The
calculate unit also receives the state signal, which is used to perform frame synchroniza-
tion. A vertical row of output units constitutes a multi-output pipeline architecture. The
“direction” in the figure indicates the direction of the data flow. The multi-input pipeline
architectures, computational units, and multi-output pipeline architectures make up the
two-dimensional pipeline architecture.



Sensors 2024, 24, 280 9 of 21

Figure 4. Overall architecture of HE core.

4.1.3. State Machine Design

Since this architecture is composed of many computing units, sharing a global state
increases the total fan-out degree of the state machine. Different from the global state
machine, we adopt a pipelined distributed hierarchical state machine link, as shown in
Figure 5.

Figure 5. State machine link.

The first layer’s state machine is used to perform frame synchronization. Here, the
state machine is at the head of the pipeline, and the output state is transmitted downstream
along the pipeline. The second layer’s state machine is used to indicate the state of the
computed histogram, and each cell has its own second-layer state machine.

In the frame synchronization state machine, the state of s1 is in the frame, at which
point the counter counts the number of pixels received. The state of s2 is the end of the
frame, at which point the counter is cleared. c1 is the transition condition from s1 to s1
when the counter has not reached the end of a frame. c2 is the transition condition from s1
to s2 when the counter reaches the end of a frame.

In the calculation state machine, s1 is the state that counts and keeps the output value,
s2 counts and changes the output value, and s3 outputs the output value. c1 represents
the condition when the output value should not be changed, c2 is when the output value
should be changed but the frame does not end, and c3 is when the frame ends.
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Benefiting from the Xilinx’s distributed clock, the latency between blocks is very low,
so we use a distributed state machine architecture, where each state machine is measured
at the nearest computation unit and takes the clock signal from the block clock, so that the
different state machines can maintain a high degree of synchronization. When the number
of processing units increases, the maximum frequency caused by the extension of the state
machine line will not decrease as the single state machine does.

4.1.4. Details of Some Units

Since the input and output pipeline architecture needs to output the result of the input
in the same clock cycle, there will be a delay structure at the input and output to ensure that
the final output of the pipeline architecture is the result from the same clock cycle input.
The multi-input and multi-output delay structure is shown in Figure 6.

Figure 6. Multi-input/output delay structure.

4.1.5. Calculation Method Optimization

After we calculate ∑n/m
i=1 ∑m

j=1(xij <= x) in Equation (7), we need to calculate f (x) in
Equation (8). This requires the use of multiplication and division, but we can optimize
these functions to addition and subtraction.

For multiplication by L− 1, L is the exponent of 2, and multiplication by the exponent
of 2 can be solved by simply shifting bits to the left, as follows:

x ∗ (L− 1)⇒ (x << w)− x, (11)

where w is the pixel bit width. In this way, we optimize multiplication to subtraction.
In the case of dividing by n in Equation (8), it can be compared with n when accu-

mulating using an accumulation register. If the result is greater than n, the result register
is incremented by 1, and the accumulated result is reduced by n and stored back in the
accumulation register. Thus, Algorithm 4 can be optimized to Algorithm 5.

Algorithm 4 Dividing by n

Input: valueIn
Output: result

1: accumulator← 0
2: loop
3: accumulator← accumulator + valueIn
4: end loop
5: result← accumulator/n
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Algorithm 5 Optimized Dividing by n

Input: valueIn
Output: result

1: accumulator← 0
2: result← 0
3: loop
4: accumulator← accumulator + valueIn
5: if (accumulator > n) then
6: result← result + 1
7: accumulator← accumulator − n
8: end if
9: end loop

In this way, we optimize division to addition and subtraction.
By integrating the above two methods, we can obtain an optimized calculation method.

The optimized HE is shown in Algorithm 6.

Algorithm 6 The Behavior of The Computing Unit

Input: valueIn,frameSyn
Output: valueOut

1: if (!frameSyn) then
2: valueOut← valueOut
3: if (accumulator + (valueIn<<w) − valueIn ≥ n) then
4: accumulator← accumulator + (valueIn<<w) − valueIn − n
5: result← result + 1
6: else
7: accumulator← accumulator + (valueIn<<w) − valueIn
8: result← result
9: end if

10: else
11: valueOut← result
12: accumulator← n/2
13: result← 0
14: end if

The computing unit receives the number from the input module and multiplies the
received number by L− 1. The value obtained after multiplication is added to the previous
value in the accumulation register and is compared with n. Then, the accumulator and the
result are updated according to the method above.

4.1.6. Critical Path Optimization

The optimized calculation method does not run at very high frequencies, so the critical
path needs to be optimized. Here are some optimizations for the critical path:

1. Increase the number of stages in the pipeline: As Algorithm 7 shows, updating a in
one clock cycle does not result in strong performance for the following computation.

Algorithm 7 Updating a in one clock cycle

1: if (a + b > c) then
2: a← a + b − c
3: else
4: a← a + b
5: end if
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We can split this algorithm into three stages. The first stage computes a+ b, the second
stage compares the result to c and calculates the difference from c, and the third stage
selects a result and returns it to a.

2. Replace comparison with signed subtraction: Since the comparison operation circuit
will degrade the performance degradation of Algorithm 7, the subtraction operation
needed at the same time can be changed into a signed subtraction operation, and the
sign of the subtraction operation can be used instead of the output of the comparison
operation, so that the comparison and subtraction can be performed at the same time,
thus improving performance.

3. Replace signed subtraction with addition: The binary subtraction x ∗ L− x is calcu-
lated as

x ∗ L− x = x ∗ L+ ∼ x + 1, (12)

and when we put 0s in the lower-order bits of x to obtain x ∗ L and then replace the
lowest bit of x ∗ L with 1, we obtain x ∗ L + 1 directly:

x ∗ L− x = {x, ($size(L)− 1)′b0, 1′b1}+ ∼ x. (13)

The above equations refer to Verilog syntax.
4. Use clock enable: The clock enable port can be utilized to simplify the conditional

branch circuit and thus improve performance. Clock enable is conducted by establish-
ing the condition that the output value does not change in the outermost layer. This
was also on the critical path before optimization.

5. Condition separation: Some state machines have too many states, in which case the
condition can be separated into two registers to reduce the signal delay.

6. Loop structure optimization: The feedback circuit with only finite instances of feed-
back can be optimized into multiple non-feedback circuits with the same structure in
series to improve the performance.

The pseudocode of the computing unit with the critical path optimization applied is
shown in Algorithm 8, where “q1” is the first digit of the shift register, “q2” is the second
digit of the shift register, and “qk” is the k’th digit of the shift register. The input to the shift
register is “~frameSyn”. Algorithm 8 refers to Verilog syntax.

Algorithm 8 The Behavior of The Computing Unit

Input: valueIn,frameSyn
Output: valueOut

1: valueIn255← {valueIn,8’h01} + {8’hFF,~value}
2: if (q3&q4&q5) then
3: stage1← valueIn255 + remainder
4: else
5: stage1← valueIn255
6: end if
7: stage2← stage1
8: stage2diff← stage1 − pixelNum
9: if (stage2diff[sign_bit]) then

10: remainder← stage2
11: else
12: remainder← stage2diff
13: end if
14: if (stage2diff[sign_bit]&q4) then
15: quotient← quotient
16: else
17: if (stage2diff[sign_bit]) then
18: quotient← 0
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Algorithm 8 Cont.

19: else
20: quotient← quotient + 1
21: end if
22: end if
23: if (q4) then
24: quotientReg← quotient
25: else
26: quotientReg← quotientReg
27: end if
28: if (q1)|(q2&q3&q4) then
29: if (q1) then
30: accumulator← accumulator + remainder
31: else
32: accumulator← pixelNum/2
33: end if
34: else
35: accumulator← accumulator
36: end if
37: accudiff1← accumulator − pixelNum
38: accudiff2← accudiff1 − pixelNum
39: accudiff3← accudiff2 − pixelNum
40: if (q8) then
41: valueOut← ~accudiff1 + ~accudiff2 + ~accudiff3
42: else
43: valueOut← valueOut
44: end if

4.1.7. The Architecture of the Computing Unit

The architecture of the computing unit is shown in Figure 7.

Figure 7. The architecture of the computing unit.

The statistical value of pixels calcuIn will be input to multiplier for multiplication and
then input to accumulator for accumulation. The accumulative value will be compared
with the total number of pixels. If the value is greater than the total number of pixels, the
total number of pixels will be subtracted. Due to the fact that the accumulator accumulative
value is updated in three cycles, it will output one quotient and three remainders. Thus,
in the end, it will input into integrator, add the remainder of the three groups together,
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subtract and compare with the total number of pixels three times, and add the result to the
quotient to obtain the final result. Moreover, stateIn is the frame-synchronization signal.

The architecture of the accumulator is shown in Figure 8.

Figure 8. The architecture of the accumulator.

The value after multiplication is input into the accumulator, and the quotient and
remainder are calculated. The calculation takes three clock cycles, and each cycle has an
input, so the accumulator outputs three remainders. Since all quotients are added to one
register, only one quotient is output. stateIn1 is an AND logic with stateIn’s clock delay of
three, four, and five cycles, which is an indication signal for the accumulator to reaccumulate
at the beginning of a frame. stateIn2 is an indicator signal that the accumulator can clear
the quotient.

The architecture of the integrator is shown in Figure 9.

Figure 9. The architecture of the integrator.

The integrator adds the three remainders of the input together, compares them with
the total number of pixels three times, and adds the three results into the quotient to
obtain the final result. stateIn1 is an indication signal for the initialization of the integrator,
stateIn2 is the indication signal of the three accumulations, stateIn3 is the indication signal
to add the result of the three subtractions and the quotient, and stateIn4 is an indication
signal that the integrator outputs the result.
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4.2. Utilizing CL and DSP

The overall architecture of this method is the same as the previous method, but the
configurable logic resources responsible for the computation in the computing unit are
replaced with DSP. The accumulation and division functions of the unit are completed by
DSP. To calculate the rounding value of a number multiplied by a fraction, we can use
DSP’s integer multiplication and accumulation:

round(x ∗ a
b
) = x ∗ ⌊ a ∗ 2$size(b)+accuracy−1−$size(a)

b
⌋, (14)

where b is 2 to the n and dividing by b takes the higher-order bits. We take 9 higher-order
bits and round them to the 8-bit result. Thus, the approximate division operation is realized.
When the accuracy of the calculation is sufficient, there is no error.

In order to satisfy the accuracy, we use two DSPs to calculate the multiplication with
a bit width of 34 bits. One DSP is used to compute the multiplication and accumulation
operations of the lower-order bits, and the other DSP is used to compute the multiplication
and accumulation operations of the higher-order bits, and then add the output value from
the low-order bits.

4.3. Utilizing CL, DSP, and BRAM

Based on utilizing DSP resources, this method adds an image cache implemented by
BRAM. This architecture does not require the same image to be input twice. The overall
architecture is shown in Figure 10. The frame to be converted will be stored in the image
cache and be output according to the current state.

Figure 10. Overall architecture utilizing CL, DSP, and BRAM.

5. Experiments
5.1. Experimental Environment

The VCU 118 evaluation board platform was used in this experiment. The PCIe inter-
face of the evaluation board is PCIe3.0*16. The FPGA on the VCU118 contains 2.6 million
logical units, 6840 DSPs, and 2160 Block RAM, with a total capacity of 75.9 MB. The chip
has a 16 nm fabrication process, the maximum frequency of the clock buffer and DSP is
775 MHz, and the maximum frequency of the Block RAM is 737 MHz. The XDMA AXI
side operates at 250 MHz.
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5.2. Experimental Results

Figure 11 shows the picture before conversion and the picture after conversion with
FPGAs. The converted image is consistent with the openCV’s histogram equalization
output image, which proves that the running result is correct.

(a) (b)

(c)
Figure 11. (a) Figure before histogram equalization. (b) Figure after histogram equalization with
FPGAs. (c) OpenCV histogram equalization output image.

5.3. Resource Utilization of the Implementations with Different Parameters

This experiment tests the resource utilization of the three architectures with different
resolutions and different numbers of PCIe lanes.

Figure 12 shows the resource utilization of LUT.

Figure 12. Resource utilization of LUT.

As the number of pixels rises, the LUT utilization of the architecture using only
configurable logic (CL) increases, while the LUT utilization of the other two architectures
utilizing DSP remains basically the same. Due to the fact that a larger number of image
pixels requires a wider bit width calculation when utilizing only CL, the number of DSPs
and the computing bit width utilizing CL and DSP and utilizing CL, DSP, and BRAM
remain the same. In the architecture utilizing CL, DSP, and BRAM, the utilization of LUTs
will be slightly higher at 4 k resolution because a portion of the LUTs will be used to route
FIFOs with high BRAM utilization.
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Figure 13 shows the resource utilization of flipflop.

Figure 13. Resource utilization of flipflop.

The situation of flipflop utilization is similar to that of LUT utilization. The architecture
utilizing only CL uses more flipflops as the computational bit width increases, while the
other two architectures are unchanged. However, the architecture utilizing CL, DSP, and
BRAM does not need to use more flipflops at 4k resolution, so the utilization of flipflops
will not increase.

Figure 14 shows the resource utilization of BRAM.

Figure 14. Resource utilization of BRAM.

The architecture using only CL and the architecture using CL and DSP hardly utilize
any BRAM resources, while the BRAM utilization of architectures using CL, DSP, and
BRAM will increase significantly with the increase in the number of pixels.

As the number of PCIe channels increases, the LUT, FlipFlop, and BRAM utilization of
the three architectures increases. However, the utilization of DSP for the architecture utiliz-
ing CL and DSP and the architecture utilizing CL, DSP, and BRAM is 7.49%, independent
of the number of inputs and the total number of pixels.

5.4. Performance Comparison with CPU and Other FPGA-Based Implementations under
Different Configurations
5.4.1. Comparison with Single-Core CPU

The CPU model is an i7-8750H, and the HE is realized using the OpenCV framework.
The OpenCV framework uses only one core of the CPU. This performance test method
measures the difference between the running time of 11 images and 1 image, divides by 10
to obtain the running result of each image, and takes the average result of 10 tests.

Figure 15 shows the acceleration rate of this implementation for a single-core CPU.
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Figure 15. Acceleration rate for a single-core CPU.

When the resolution of the image is 3840 × 2160, in the architecture using CL,
DSP, and BRAM, the BRAM utilization rate is close to 100%, so the running frequency
will be decreased, and the performance will not be doubled compared with the other
two architectures.

5.4.2. Comparison with Other FPGA-Based Implementations

A comparison with other FPGA-based implementations is shown in Table 1. The ac-
celeration rate is the performance of proposed implementation divided by the performance
of other FPGA-based implementations. Acceleration ratios take into account the impact of
different models on performance.

Table 1. Acceleration rate of the proposed method (PCIe*16) and other FPGA-based implementations
(image size: 256 × 256).

Other FPGA-Based
Implementations Model of FPGA Frequency

(MHz)

Acceleration
Rate (Utilizing

CL, CL, and
DSP)

Acceleration
Rate (Utilizing
CL, DSP, and

BRAM)

Hazra et al. [16] XC7V2000T 368 21.4× 43.0×
Alsuwailem et al. [17] EP2S15F484C3 250 31.5× 63.3×

Sachdeva et al. [18] unknown 250 31.5× 63.3×
Li et al. [20] xc4vsx35-10ff668 200 39.4× 79.1×

Sadad et al. [21] XC7A100T 100 78.7× 158.2×
Li et al. [22] XC4010 50 1573.8× 3163.0×

Lianfa et al. [23] Flex10k10 3.33 2360.7× 4744.5×
Salcic et al. [25] Flex8000 30.0 262.3× 527.2×

Compared to the fastest single-input FPGA-based implementation [16], the perfor-
mance of the architecture utilizing CL and the architecture using CL and DSP is about
21.4 times better, and the performance of the architecture utilizing CL, DSP, and BRAM is
about 43.0 times better (65,536 pixels under PCIe×16).

Other architectures with multiple inputs do not mention a specific frequency, so
we consider them architecturally. The architecture in [26] is difficult to run at very high
frequency due to the need to connect modules at a long distance, the high fan-out degree,
and the complex wiring. The architecture in [27,28] does not really support multiple inputs
and outputs at the same time.

The previous comparisons are based on works accelerating the same algorithm, but
on different hardware platforms, as they are finished at different times. There is also
work using the ultrascale+ architecture of FPGAs [33], which implements the Contrast-
Limited Adaptive Histogram Equalization (CLAHE) algorithm. In this work, the authors
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redesigned a vector stream format (4 ppc) to implement the CLAHE algorithm, which
enables the processing of a 4K video stream at 60 fps. Our work can reach 964 fps for 4K
images. This difference is mainly caused by the difference in complexity between the two
algorithms. We both designed optimized FPGAs architectures for accelerating CLAHE
and HE. Therefore, users can select which one to use according to their requirements. In
addition, the innovative methods in [33] can also be references for our future research.

6. Discussion and Conclusions

In order to improve the calculation performance of HE, we optimized HE according to
the characteristics of FPGAs and proposed a two-dimensional pipeline architecture which
parallelizes HE in two dimensions. At the same time, the complexity of the connection is
not high, so the FPGAs can run at a high frequency. The optimized HE is implemented on
FPGAs, and the number of inputs, input bit width, image size, and resource usage strategy
can be configured. Pipelining and critical path optimization have been performed for the
computing unit so that it can run at higher frequencies.

Our proposed methods can improve the computational speed of HE. Compared with
the single-core CPU i7-8750H, the acceleration ratio of the PCIe3.0*16 interface can be up
to 22.6 times higher. Compared with other FPGA-based implementations of single-input
architectures (based on Zynq-XC7Z030) [16], the performance of the proposed architecture
is 43.0 times higher.

Our work mainly aimed to achieve better algorithm acceleration performance rather
than optimized resource utilization and power consumption. Therefore, in the performance
comparison section, we only compared the acceleration ratio and frequency, without taking
into account resource utilization and power consumption.

The current acceleration ratio is mainly limited by the speed of the IO interface.
Secondary factors affecting the performance are the maximum BRAM operating frequency
and the BRAM capacity. A single HE core can run at the maximum frequency of the FPGA
(4k, 32 inputs, based on xcvu13p@891MHz), except for when BRAM effects are present.

Future improvements can use the latest PCIe interface. If we switch to a later version
of PCIe, the acceleration ratio will be greater, ideally up to 90× based on PCIe5.0. Faster
BRAM with a larger capacity can also be used to ensure that the whole circuit runs at a
very high frequency.
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