
Citation: Piątkowski, D.; Puślecki, T.;

Walkowiak, K. Study of the Impact of

Data Compression on the Energy

Consumption Required for Data

Transmission in a Microcontroller-

Based System. Sensors 2024, 24, 224.

https://doi.org/10.3390/s24010224

Academic Editor: He Fang

Received: 11 November 2023

Revised: 15 December 2023

Accepted: 27 December 2023

Published: 30 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Study of the Impact of Data Compression on the Energy
Consumption Required for Data Transmission in a
Microcontroller-Based System
Dominik Piątkowski, Tobiasz Puślecki and Krzysztof Walkowiak *

Faculty of Information and Communication Technology, Wrocław University of Science and Technology,
50-370 Wrocław, Poland; tobiasz.puslecki@pwr.edu.pl (T.P.)
* Correspondence: krzysztof.walkowiak@pwr.edu.pl

Abstract: As the number of Internet of Things (IoT) devices continues to rise dramatically each
day, the data generated and transmitted by them follow similar trends. Given that a significant
portion of these embedded devices operate on battery power, energy conservation becomes a crucial
factor in their design. This paper aims to investigate the impact of data compression on the energy
consumption required for data transmission. To achieve this goal, we conduct a comprehensive study
using various transmission modules in a severely resource-limited microcontroller-based system
designed for battery power. Our study evaluates the performance of several compression algorithms,
conducting a detailed analysis of computational and memory complexity, along with performance
metrics. The primary finding of our study is that by carefully selecting an algorithm for compressing
different types of data before transmission, a significant amount of energy can be saved. Moreover,
our investigation demonstrates that for a battery-powered embedded device transmitting sensor
data based on the STM32F411CE microcontroller, the recommended transmission module is the
nRF24L01+ board, as it requires the least amount of energy to transmit one byte of data. This module
is most effective when combined with the LZ78 algorithm for optimal energy and time efficiency.
In the case of image data, our findings indicate that the use of the JPEG algorithm for compression
yields the best results. Overall, our research underscores the importance of selecting appropriate
compression algorithms tailored to specific data types, contributing to enhanced energy efficiency in
IoT devices.

Keywords: embedded systems; data compression; data transmission; Huffman; LZ77; LZ78; LZW;
JPEG; TinyML; Internet of Things

1. Introduction

There are numerous embedded devices present in various aspects of our everyday
lives, many of which are equipped with some form of connectivity, effectively classifying
them as Internet of Things (IoT) devices. As indicated by Marjani et al. [1], the number
of sensors is projected to increase by 1 trillion in 2030, directly impacting the volume of
generated and transmitted data. The escalating data production from the ever-growing
array of IoT devices introduces the concept of Big Data into the realm of IoT [2].

Given the non-negligible prevalence of battery-powered embedded systems, the aspect
of energy conservation becomes crucial. An intriguing recent concept related to embedded
devices is TinyML (Tiny Machine Learning) [3–5]. If the collected data were analyzed by
a Machine Learning (ML) model, only time-critical data could be promptly transmitted
for immediate analysis, obviating the need for frequent, relatively large bidirectional data
transmissions. This does not imply that non-critical data should be discarded; instead,
data could be buffered on the device, compressed, and sent as a complete buffer later.
This approach provides diagnostic data for more sophisticated cloud-based models, which
could predict device malfunctions or assess machine conditions. Additionally, the gathered

Sensors 2024, 24, 224. https://doi.org/10.3390/s24010224 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24010224
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4665-3301
https://orcid.org/0000-0003-1686-3110
https://doi.org/10.3390/s24010224
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24010224?type=check_update&version=1

Sensors 2024, 24, 224 2 of 30

data can serve as further training material for ML models. In the case of the presented
weather data example, it would take almost 40 h to exhaust the device memory, eliminating
the need for additional data storage as data can be transmitted when the buffer reaches
its capacity. It is noteworthy that the existing wireless communication board can be
utilized, resulting in no additional hardware requirements. To the best of our knowledge,
there is no TinyML research paper evaluating the impact of data compression on the
energy consumption required for data transmission in a microcontroller-based system with
resources comparable to the used STM32F411CE chip.

The utilization of TinyML has a positive impact on energy consumption, as the energy
requirement of microcontroller-based devices remains low even at maximum workload
levels [4], and the energy required for transmission is significantly greater than that needed
for TinyML-related computations [5].

The motivation behind this paper is linked to the minimization of energy consumption
in battery-powered embedded devices. Specifically, our focus is on identifying the most
suitable method for data processing that results in the lowest energy requirement for data
transmission. This not only reduces the wear on rechargeable batteries, extending each
charge cycle and prolonging battery lifespan but also delays the replacement and disposal
of rechargeable batteries. In the case of non-rechargeable batteries, this becomes even more
crucial, as a discharged battery must be replaced and properly disposed of after a single use.
Therefore, optimizing energy consumption can significantly reduce e-waste production.
Additionally, transmitting compressed data has the secondary benefit of putting less strain
on the utilized network compared to uncompressed data transmission, minimizing the
transmitted amount of data.

The main hypothesis of our paper is as follows: it is possible to lower the energy con-
sumption required for data transmission in a microcontroller-based system by compressing
the data using carefully selected algorithms. The primary challenge in this research is the
power consumption constraint of the chosen microcontroller, which directly influences the
amount of available resources, as low-power, efficient microcontrollers have very limited
memory and computational power. To address this, various transmission modules need
to be tested on a test bench with a microcontroller in scenarios involving the transmission
of various uncompressed data, as well as compressing the data and sending it afterward
to evaluate the impact of data compression on the energy consumption required for data
transmission. The main contribution of this paper is the study of the impact of data com-
pression, using various compression algorithms, on the energy consumption required for
data transmission, utilizing various transmission modules in a severely resource-limited
microcontroller-based system intended to be battery-powered.

This paper is organized as follows: In Section 2, related works are discussed, empha-
sizing the discovered research gap. In Section 3, the utilized hardware, i.e., the chosen
microcontroller and transmission modules, as well as data and algorithms, are described.
Limitations of the chosen microcontroller are discussed, followed by the method of com-
pressible data generation used to benchmark the approaches. The operating principle of
each implemented and tested algorithm is described, along with implementation details
that directly influence the resulting compressed data size and enable the algorithms to run
on severely constrained microcontroller hardware. Details and caveats of each transmis-
sion module are discussed, followed by important measurement details. In Section 4, the
results are presented, including time and energy ratios, as well as measurements of each
compression algorithm and transmission module. Section 5 contains a discussion of the
results. Section 6 concludes this paper.

2. Related Works

Encountering an embedded, microcontroller-based system equipped with Machine
Learning (ML) to transform it into a TinyML device capable of prediction, classifica-
tion, and decision-making is not uncommon. Numerous TinyML use cases share a
commonality—a significant amount of data. For instance, an electric motor anomaly detec-

Sensors 2024, 24, 224 3 of 30

tion system, as detailed in [6], could be implemented using a TinyML device. This device
would conduct data harvesting and analysis on-board, transmitting detected anomalies
promptly. Valuable non-anomalous data can be utilized for diagnostics to evaluate potential
device malfunctions, assess machine conditions, and serve as additional training material
for ML models. Given that this data does not require critical priority transmission, it can be
buffered on the device, compressed, and sent as a complete buffer later to conserve energy.
This is particularly crucial for battery-powered industrial sensors, where routing additional
wires might lead to OSHA violations due to the risk of wires becoming entangled around
the motor shaft. Minimizing energy consumption is imperative to prolong the lifespan of
battery-powered TinyML devices, driven by the following factors:

• Longer battery life in these systems minimizes maintenance costs by reducing the
frequency of battery replacements.

• These systems may be situated in hard-to-reach locations, and replacing batteries might
require the serviced machine to halt its operation, resulting in significant downtime
during each battery replacement.

There are other papers that analyze compression in the context of TinyML. An exam-
ple can be found in [7], where a new data compression algorithm tailored for TinyML is
proposed. As stated by researchers in [3], Huffman encoding is the most popular encoding
method in ML. This implies that an evaluation of results produced by the Huffman algo-
rithm can provide a valuable baseline for less commonly used methods. To the best of our
knowledge, the Lempel–Ziv algorithm family is not widely used in TinyML. In total, four
papers mentioning TinyML with any variation of Lempel–Ziv were found at the time of this
research. Two of these works acknowledge the existence of these algorithms but employ
a different approach [8,9]. One paper [10] refers to [11], presenting an approach that uses
Lempel–Ziv–Welch as one of the compression steps. There is also a highly specialized
paper, with a signal processing use case, that uses Lempel–Ziv–Welch to encode data [12].

Since there are also numerous TinyML image-driven use cases, such as fast image
recognition with a low memory footprint [13], image data transmission is not an implausible
scenario. This implies that the study of the impact of image data compression on energy
consumption required for data transmission in a microcontroller-based system is important
and cannot be omitted.

The previous papers [10,11,14–19] on this topic have primarily focused on compression
algorithms such as LZW and its variations (e.g., s-LZW) and have often employed hardware
with substantial computing power, such as the Raspberry Pi 4B with 8 GB RAM. In contrast,
this paper introduces, as the main contribution and novelty of our work, the following
new elements: the evaluation of canonical Huffman, Lempel–Ziv 77, Lempel–Ziv 78,
and Lempel–Ziv–Welch algorithms in terms of energy and time efficiency for compressing
and transmitting text data and the evaluation of the Joint Photographic Experts Group
algorithm in terms of energy and time efficiency for compressing and transmitting image
data. All evaluations were conducted using the STM32F411CE microcontroller, which is
suitable for building TinyML devices due to its low power consumption (100 µA/MHz
core current), a 100 MHz ARM Cortex M4 core providing ample computational power,
and a decent-for-TinyML-purposes 512 KB of Flash and 128 KB of RAM. It is important to
note that many of the evaluated algorithms were not used or compared to previous papers.

There are also existing research papers [20–23] that explore the topics of TinyML and
IoT in a manner similar to this paper.

Moreover, to the best of our knowledge, there is no TinyML research paper that
evaluates the impact of data compression on the energy consumption required for data
transmission in a microcontroller-based system with resources comparable to the used
STM32F411CE chip. Therefore, to fill this research gap, in the following sections of this
paper, we present a study of the impact of data compression on the energy consumption
required for data transmission in a microcontroller-based system.

Sensors 2024, 24, 224 4 of 30

3. Materials and Methods

This section presents the methods used in the proposed test bench, combined with
their implementation details, as well as the sources of data used to benchmark the compres-
sion algorithms. There are various compression algorithms, each with its own benefits and
drawbacks. A selection of simple, well-known algorithms was chosen because of the rela-
tively low amount of resources available on the chosen embedded platform. The presence
of important requirements of minimizing time and energy consumption can be satisfied in
an easier way by utilizing lightweight methods.

3.1. Hardware

Embedded systems are often battery-powered. This introduces an important factor
to be taken into consideration—energy consumption. In order to prolong the battery
life of such a system, evaluation of the energy efficiency of every part of the design is
mandatory. This includes the heart of every embedded system—a microcontroller. In this
paper, the Blackpill board with the STM32F411CE microcontroller [24] was chosen due to
several factors:

• Availability: a very popular board.
• Price: about $10.
• Performance: 100 MHz ARM Cortex M4.
• Memory size: 512 KB of Flash and 128 KB of RAM.
• Efficiency: 100 µA/MHz core current consumption.

The Blackpill board has a Light Emitting Diode (LED) indicating power status. As con-
stantly powered LED is not wanted in battery-powered, energy-efficient design, it is
reasonable to disconnect it on the measured board.

Three transmission modules are analyzed in our paper: FS1000A, nRF24L01+, and ESP-01.
FS1000A [25] is the cheapest of all tested transmission modules, available for under $2.

The detailed specification of this module is presented in Table 1. Due to the fact that the
433 MHz band is one of the most popular choices for wireless devices in Europe, and also
that the ASK modulation is sensitive to various interference types, adequate transmission
protocol is required for successful transmission. Another important aspect that must be
taken into consideration is the requirement of priming the Automatic Gain Control (AGC)
of the receiver by supplying a long enough signal at the beginning of transmission. The
used transmission protocol is shown on the Listing 1.

Listing 1. Protocol for FS1000A.

It should be noted that a logical one in ASK modulation implemented on this board is
equivalent to signal presence, and a logical zero is equivalent to no signal presence.

• 2000 µs of logical one
• 500 µs of logical zero
• Data encoded with Manchester II [26]:

– Low-high transition for bit 0.
– High-low transition for bit 1.

• 1000 µs of logical one, indicating the end of transmission

Requirement of priming the AGC of the receiver is satisfied with 2000µs of signal presence
at the beginning of transmission. Utilization of Manchester II [26] code solves two problems:

• Signal is present for 50% of the time during data transmission and is frequently alternating
its state, solving the problem of keeping the receiver’s AGC at the right level.

• It produces a self-clocking signal, solving the problem of receiver synchronization.

Sensors 2024, 24, 224 5 of 30

Manchester II code comes at a cost of double the required bandwidth, as sending the
same bit twice requires the signal to also change at the beginning of bit transmission. This
results in reduced transmission bit rate—speeds of up to 5 kbps can be achieved without
errors, but 10 kbps transmission is affected by severe deterioration of signal integrity.
Measurements of transmission speed are shown in Figure A1.

As neither the transmitter nor receiver board has an onboard antenna, it is mandatory
to add one before conducting transmission tests. The electromagnetic radiation wavelength
can be calculated using the Formula (1).

λ = c/ f , (1)

where λ—wavelength, c—speed of light and f —frequency.
For 433 MHz, the wavelength is equal to 69.236 cm. As a full-wave antenna of this size

is not realistically usable in an embedded device, another approach is required. It is not
uncommon to see half-wave and quarter-wave antennas. In fact, quarter-wave monopole
is one of the most common antennas found in portable devices [27]. For 433 MHz, the
half-wave antenna size is equal to 34.618 cm, and the quarter-wave antenna size is equal
to 17.309 cm. Due to the size acceptable for the embedded device, as well as a suitable
radiation pattern, a quarter-wave monopole antenna design was chosen.

nRF24L01+ module based on nRF24L01+ chip [28] is an ultra-low power transceiver
available for about $2. The detailed specification of this module is reported in Table 1. This
module automatically handles data packets, requiring no additional protocol specification,
which was mandatory for FS1000A. It also supports dynamic payload size, automatic
hardware acknowledgment (ACK), automatic packet integrity checking with Cyclic Re-
dundancy Check (CRC) and receiving data from six devices in parallel. As the nRF24L01+
module comes with a microstrip antenna, there is no need for an external one.

ESP-01 is a transceiver module based on ESP8266EX chip [29] available for under $3.
The detailed specification is shown in Table 1. This module, like nRF24L01+, comes with a
microstrip antenna, and there is no need for an external one. ESP-01 module has two LEDs,
indicating power status and UART transmission. As these LEDs are not needed for module
operation, they were disconnected.

Table 1. Transmission modules’ details.

FS1000A nRF24L01+ ESP-01

Supply voltage 3.5–12 V 1.9–3.6 V 3.3 V
Interface TTL SPI UART with AT commands

Transmission speed up to 10 kbps up to 2 Mbps 802.11 b/g/n
Frequency band 433 MHz 2.4 GHz ISM 2.4 GHz ISM

Signal modulation ASK GFSK 802.11 b/g/n

3.2. Data

In order to conduct research on compression algorithms, it is required to gather com-
pressible data. Some of the algorithms can be specialized in particular data types, for exam-
ple, Joint Photographic Experts Group (JPEG) algorithm [30] is used for images. This creates
a need for compressible data of various types in order to measure the results correctly.

3.2.1. Weather

In order to generate compressible text data, a simple weather station was created. It
consists of Bluepill board with STM32F103CB microcontroller and BME280 sensor board.

BME280 is a low-power sensor, capable of measuring temperature, pressure, and
relative humidity [31]. Due to the small package size (8-pin LGA, 2.5 × 2.5 mm), it is often
found on breakout boards with a 2.54 mm pitch goldpin connector. BME280 measurement
ranges are shown in Table 2.

Sensors 2024, 24, 224 6 of 30

Table 2. BME280 measurement ranges.

Parameter Range

Temperature −40. . .+85 ◦C
Pressure 300. . .1100 hPa

Relative humidity 0. . .100 %

Measurements were conducted every minute for 24 h with an oversampling factor
of 16. The weather data format is shown on the Listing 2, and each section is described
in Table 3. It should be noted that leading zeros are omitted in temperature, pressure and
relative humidity sections.

Listing 2. Weather data format.

YYYY-MM-DD HH:mm NNNNNNNN T: tt.tt P: pppp.pp H: hh.hh\r\n

Table 3. Sections of the weather data format.

Section Description Example

YYYY-MM-DD Current date 2023-03-22
HH:mm Current time 13:25

NNNNNNNN 8-byte sensor name Sensor 2
T: tt.tt Temperature T: 21.53

P: pppp.pp Pressure P: 995.95
H: hh.hh Relative humidity H: 66.57

\r\n CR LF line break

3.2.2. Images

A popular camera module used in embedded devices is based on OV7670 [32]. Due
to the fact, that it is difficult to accurately measure the time and energy required for
compression of RGB888 image with size of 640 by 480 px, as it would require 900 KB of
memory to store uncompressed image while the Blackpill board has only 128 KB of RAM
and 512 KB of Flash memory, another approach was required, as only smaller image sizes
would fit in the Blackpill board memory—320 by 240 px image with size of 225 KB could
fit in Flash memory for benchmarking purposes, and 160 by 120 px image with size of
56.25 KB could fit either in Flash or RAM memory. As measuring the compression of
images from the OV7670 module would include data acquisition, synthetic data were used
instead. Tested images consist of rows generated with pseudocode shown on the Listing 3.

Listing 3. Row generation pseudocode.

uint16_t size = image_width * 3;
uint_8 row[size];
for (uint16_t i = 0; i < size; i++)

row[i] = i % 256;

It should be noted that image width is multiplied by 3 due to the fact that RGB888
format uses 3 bytes per pixel.

Sensors 2024, 24, 224 7 of 30

3.3. Compression Algorithms
3.3.1. Huffman

Huffman coding [33] is one of the simplest methods of lossless data compression. Due
to the nondeterministic result of the constructed Huffman tree—storing the dictionary
requires storing both code words and symbols as well as code length. This inconvenience
can be solved by utilizing canonical Huffman code. It should be noted that code word
lengths will not change.

By using canonical Huffman code, the dictionary can be represented as:

• Size of dictionary.
• Number of symbols with code word length of 1 . . . n, where n is the longest code word

length.
• Symbols are sorted by code word length, and then by the symbol.

There is still room for improvement, this time in terms of efficient encoding of these
values. Considering there will never exist a dictionary with a size less than 1 and greater
than 256, it can be stored as a size decremented by one, effectively utilizing the 0. . .255
range that perfectly fits in one byte. The number of symbols with a given code word length
can be safely stored as one byte each, as it will never reach 255. Symbols by design need
to be stored as one byte each. This approach is more efficient in comparison with the
non-canonical Huffman dictionary, which requires:

• ASCII symbol.
• Code word.
• Code word length.

for each entry, as well as dictionary size.
In order to make the data decompressible without additional noise at the end caused

by trailing zeros that could be interpreted as valid symbols, it is a good idea to include
data size in the compressed data header. As STM32F411CE has 128 KB of RAM, a 16-bit
compressed data size should be sufficient.

3.3.2. Lempel–Ziv 77

Lempel–Ziv 77 (LZ77) [34] is a lossless data compression algorithm that leverages the
existence of repeating strings of symbols in data to compress it.

In terms of implementation, the buffer can be implemented as a circular buffer in
order to avoid time-costly memory copy operations. It should be noted that due to the
dictionary’s dependency on previously processed symbols, there is no need to store any
dictionary-related data, as it can be rebuilt during decompression. As n1 (dictionary size)
and n2 (input buffer size) directly influence the time complexity, memory requirements and
compression ratio of the algorithm, as well as being recommended to be of value allowing
to fully utilize the bits used to store them, these parameters require tuning, especially when
used on a microcontroller. In order to store match position and match length efficiently,
n1 should be a power of two minus one, and n2 should be a power of two. In this paper,
match position and match length are stored as one byte each, with symbols stored as one
byte by design. This directly translates into n1 equal to 255 and n2 equal to 256.

3.3.3. Lempel–Ziv 78

Lempel–Ziv 78 (LZ78) [35] is a lossless data compression algorithm that is based on
replacing the strings of symbols in data with tuples consisting of the index in a dictionary
storing previous occurrences of strings of symbols and the next symbol from the input.

In terms of implementation, the last tuple can be denormalized to index only in case
the next input symbol is the end of file (EOF)—storing EOF explicitly is not needed, as the
dictionary index alone holds required information in this case. The dictionary index can be
variable-width encoded, resulting in a better compression ratio—code used to calculate
the minimal amount of bits required to uniquely represent a dictionary index with a given

Sensors 2024, 24, 224 8 of 30

dictionary size is shown on the Listing 4. Symbols by design are stored as one byte each.
The dictionary was implemented as a tree structure.

Listing 4. Function calculating the minimal amount of bits required to uniquely represent a dictionary
index with a given dictionary size.

uint8_t bits(int dictionary_size)
{

uint8_t i = dictionary_size;
uint8_t result = 1;

while (i >>= 1) result++;

return result;
}

3.3.4. Lempel–Ziv–Welch

Lempel–Ziv–Welch (LZW) [36] is a lossless data compression algorithm based on LZ78.
In terms of implementation, the dictionary index is variable-width encoded in the same
way as LZ78. The dictionary was implemented as a vector containing objects composed
of a dictionary index and a string of symbols in the form of std::vector<uint8_t>. Due
to the brute-force match search of this implementation, measured execution time and
required energy were not acceptable. A second approach—utilizing a hash map—was
tested, with the dictionary rewritten as std::unordered_map, with a string of symbols in
the form of std::vector<uint8_t> as a key and dictionary index as value. Due to the
fact that there is no implementation of std::hash<vector<uint8_t>> in C++, a custom
hash solution for std::vector<uint8_t> was required—Fowler/Noll/Vo (FNV) hash
algorithm [37] was chosen for this task, as utilizing std::hash<std::string> is not a
resource-efficient approach.

The FNV algorithm [37] is a fast, lightweight hash algorithm that has a low collision
rate. FNV-1a variant was chosen due to slightly better dispersion with smaller inputs.
FNV-1a algorithm is shown on the Listing 5.

Listing 5. FNV-1a algorithm.

• Initialize the hash variable, and name it H, with an offset basis.
• For each byte of data, name it B:

– Set H to H XOR B
– Multiply H by FNV_prime

• Return H.

For the 32-bit hash version that was used, the offset basis is equal to 2166136261
(0x811C9DC5), and FNV_prime is equal to 16777619 (0x01000193). There are other FNV
hash variants:

• FNV-1 is identical to FNV-1a, with differences in the order of XOR and multiplication
operations.

• FNV-0 is identical to FNV-1, with differences in the hash initialization value of zero.

As stated earlier, FNV-1a hash was used instead of FNV-1 due to slightly better
dispersion with smaller inputs. FNV-0 hash is deprecated, as it returns the same value for
empty input and every input composed of any number of zero bytes. The offset basis for

Sensors 2024, 24, 224 9 of 30

FNV-1 and FNV-1a algorithms was created by calculating the FNV-0 hash of the signature
of one of the authors, shown on the Listing 6.

Listing 6. Signature of Landon Curt Noll, used to calculate offset basis for FNV-1 and FNV-1a.

chongo <Landon Curt Noll> /\../\

3.3.5. Joint Photographic Experts Group

JPEG [30] is a very popular lossy data compression algorithm, intended to be used on
images. Measurements were conducted using libjpeg implementation with a quality factor
of 85.

3.4. Measurement Details

In order to measure the time and energy required for individual operations, a test
bench was constructed. One of the microcontroller’s pins was used as output producing a
signal similar to the gating signal in terms of concept, with high logical level during mea-
sured operation and low level otherwise. This signal was measured using an oscilloscope,
along with the voltage drop across the 1 Ω shunt resistor to measure current using Ohm’s
law. The current measuring method is shown in Figure 1. Only the required peripherals of
the microcontroller were powered—that is—appropriate General-Purpose Input/Output
(GPIO) ports in order to use the microcontroller’s pins, and UART for transmitting the
size of compressed data that also served as an indicator if the compression was successful,
as large enough data can exhaust the microcontroller’s memory with certain algorithms,
causing the microcontroller to crash. The measurements were conducted using a maximum
available clock speed equal to 100 MHz.

Figure 1. Measuring current method.

It should be noted that the measured current includes a 3.3 V voltage regulator
quiescent current. This decision is caused by:

• The existence of ESP-01 current spikes of over 400 mA that—without mitigation—would
cause the supply voltage to drop under 2.9 V if the measurements were conducted
directly on a 3.3 V rail.

• FS1000A requires the supply of a voltage higher than 3.3 V with the Blackpill board
requiring 3.3 V—requirement to measure two currents at the same time was simplified
to measuring 5 V input current, with FS1000A powered from 5 V rail and everything
else from 3.3 V rail.

Although the Blackpill board has a 3.3V low dropout (LDO) regulator (AP7343) that
should produce similar results, it does not have sufficient current capabilities, as it is

Sensors 2024, 24, 224 10 of 30

rated for a maximum of 300 mA at recommended conditions and 400 mA as the absolute
maximum rating [38]. To solve this, a popular LM1117-3.3 breakout board was used. Due
to the fact that the quiescent current of this chip is typically equal to 5 mA and can reach
up to 10 mA [39], usage of this chip is not acceptable, as its quiescent current is of the
same order of magnitude as Blackpill current consumption. In order to fix this issue, the
MCP1825S33 chip was used, with a typical quiescent current of 120 µA and a maximum of
220 µA, and a guaranteed maximum current output of at least 500 mA [40]. Due to the fact
that LM1117 and MCP1825 chips are not pin compatible [39,40], MCP1825S33 was soldered
with its position shifted and one pin was connected using a soldering wick. As this power
supply board also has a power status LED that is not needed for module operation, it
was disconnected.

Due to the fact that FS1000A was powered with 5 V and for this reason required 5 V
TTL logic levels in order to operate correctly, it was mandatory to use a level converter
board in order to interface this module with the Blackpill board, as it operates at 3.3 V
level logic.

Due to the existence of big current spikes that exceed 400 mA during the operation of
ESP-01, two capacitors were added directly to the power pins of the board to mitigate the
impedance of wires powering the module. The first capacitor serves as a high frequency,
high current pulse buffer—a 100 nF Metalized Polypropylene (MPP) film capacitor was
chosen. The second capacitor serves as a short-term energy buffer—a 100 µF aluminum
electrolytic capacitor was used. This modification allowed a fault-free operation of the
ESP-01 module.

4. Results

This section presents the performance evaluation of each tested algorithm in terms of
attained results versus required time and energy, and each transmission module in terms
of required time and energy in order to send data of a given size. In order to understand
the observations better, three metrics were introduced:

• Compression ratio defined as the compressed data size divided by the original data size.
• Time ratio defined as the sum of time required for compressed data transmission and time

required for data compression, divided by time required for original data transmission.
• Energy ratio is defined as the sum of energy required for compressed data transmission

and energy required for data compression, divided by energy required for original
data transmission.

It should be noted that a ratio of value less than 1.0 directly translates into a profit,
meanwhile ratio of value greater than 1.0 directly translates into a loss. Compression
ratio is used in conjunction with measured time and energy to evaluate compression algo-
rithms. Time and energy ratios are used to compare the effectiveness of the “compress and
send compressed data” scenario versus the “send uncompressed data” scenario, with dif-
ferent compression algorithms and transmission modules. Selected oscillograms from
measurements related to data transmission are shown in Appendix A.

4.1. Data Transmission

This section presents the measurements of time and energy required to transmit data of
various lengths with different transmission modules. The main goal of these measurements
is to acquire data transmission results that are necessary for conducting calculations of time
and energy ratios.

4.1.1. FS1000A

Transmission measurements using the FS1000A module were conducted with 5 kbps
speed, as 10 kbps transmission is affected by severe deterioration of signal integrity, which
was discussed in Section 3.1. The byte value used for testing the FS1000A module, be-
ing the ‘A’ character, was chosen due to the fact that its binary representation—being
01000001—contains many consecutive zeros, resulting in testing the Manchester II encoded

Sensors 2024, 24, 224 11 of 30

signal at its full bandwidth. Transmission of a single byte is shown in Figure A3a. Due to
the fact that the current consumption of the test bench composed of the Blackpill board as
the main processing unit and the FS1000A board as the transmission module is constant
when averaged over the time of transmission of each input state, the following values have
been used for energy calculations:

• 37.457 mA for transmission of logical one.
• 14.390 mA for transmission of logical zero.

Time and energy required for data transmission using test bench composed of the
Blackpill board as main processing unit and the FS1000A board as transmission module,
calculated using the Formulas (2) and (3), respectively, include the transmission of preamble
and postamble of protocol shown on the Listing 1.

t = 3.5 + D ∗ 0.2 [ms], (2)

where D—data length in bytes.

E =
5 ∗ 37.457 ∗ (2.5 + D ∗ 0.1) + 5 ∗ 14.390 ∗ (1 + D ∗ 0.1)

1000
[mWs], (3)

where D—data length in bytes.
Using the Formulas (2) and (3) to calculate the time and energy required to transmit

10 B of data as an example, values of 5.5 ms and 0.799 mWs are calculated.

4.1.2. nRF24L01+

Transmission measurements using the nRF24L01+ module were conducted with
250 kbps speed, as using lower speeds results in increased signal-to-noise ratio (SNR),
allowing for successful communication over longer distances, which is often a desired
factor in embedded systems. Due to the fact that the nRF24L01+ module supports a
payload size of up to 32 B, transmission of each possible payload size was measured.
Selected measurement oscillograms are shown in Figures A3b and A4b. The time and
energy required to transmit a payload of a given size are shown in Figure 2.

Figure 2. Time and energy required to transmit a payload of given size with nRF24L01+ transmis-
sion module.

Transmission module reported the completion of transmission in payload size-agnostic
time of 4.020 ms. The energy required for transmission of payload of a given size has a trend
line that is positively correlated with payload size. This can be noticed on oscillograms, shown
in Figures A3b and A4b, as progressively longer time slices of increased current consumption
with larger payload sizes.

Sensors 2024, 24, 224 12 of 30

4.1.3. ESP-01

ESP-01 module is operating in 802.11 b/g/n standard, which means, it cannot instantly
transmit data after being turned on. Four steps were identified as required in order to
prepare the transmission module to be able to send data:

• Boot device.
• Connect to Access Point (AP).
• Obtain IP address with Dynamic Host Configuration Protocol (DHCP).
• Establish Transmission Control Protocol (TCP) connection.

Selected measurement oscillograms are shown in Figure A2. Measurement results of
each step are shown in Table 4.

Table 4. Time and energy are required for each preparation step of the ESP-01 transmission module.

Preparation Step Operation Time Operation Energy

Boot device 185.650 ms 75.805 mWs
Connect to AP 155.315 ms 85.343 mWs

Obtain IP address with DHCP 788.140 ms 386.147 mWs
Establish TCP connection 189.404 ms 106.295 mWs

When using the ESP-01 board as a transmission module in a battery-powered embedded
system, a special consideration of battery power capability is mandatory, as usage of this device
can result in current spikes of over 400 mA—rendering some of the batteries unsuitable for this
task. For example, a current spike of 412 mA was measured shortly after TCP communication
was established. This can be observed in the oscillogram shown in Figure A2d.

Due to the fact that the ESP-01 module supports a payload size of up to 2048 B,
the transmission of payload sizes of 2n was measured, where 0 ≤ n ≤ 11. Selected
measurement oscillograms are shown in Figure A4c–f. The time and energy required to
transmit a payload of a given size are shown in Figure 3.

Figure 3. Time and energy required to transmit a payload of given size with the ESP-01 transmis-
sion module.

It can be noticed that payloads of sizes up to 1024 B are transmitted using one packet,
and payload size of 2048 B is transmitted using two packets. This may be caused by a
maximum transmission unit (MTU) of 1500 B for the Ethernet frame, which is specified in
IEEE 802.3 standard [41].

As a result, the time and energy required for data transmission using a test bench
composed of the Blackpill board as the main processing unit and the ESP-01 board as the

Sensors 2024, 24, 224 13 of 30

transmission module included required preparation steps, and only 1024 B and 2048 B
payload sizes were used.

4.1.4. Summary

To sum up, a total of three transmission modules were tested: FS1000A, nRF24L01+ and
ESP-01. The cheapest board—FS1000A—requires an external antenna and carefully selected
data encoding in order to work properly. The most expensive board—ESP-01—requires a
careful assessment of battery power capability, as usage of this device can result in current
spikes of over 400 mA—rendering some of the batteries unsuitable. The best results in
terms of energy required to transmit data were achieved by the nRF24L01+ board.

4.2. Weather Station Data Compression

This section presents the measurements of time and energy required to compress
weather station data of various lengths with different compression algorithms. The main
goal of these measurements is to acquire data compression results that are necessary for
conducting calculations of time and energy ratios, as well as to gather compressed data
sizes, required for calculating the compression ratios. In order to measure the algorithms’
performance with different data lengths, smaller data samples were produced by trimming
the weather station data. This operation resulted in a test data set composed of 1, 2, 3, 4, 6,
8, 12 and 24 h of data.

As the Huffman algorithm is very lightweight in terms of memory requirements, it
was successfully tested using a full weather station test data set. The Huffman algorithm
resulted in a stable compression ratio between 0.529 and 0.542 on test data, requiring
considerably low amounts of time and energy.

As the LZ77 algorithm is lightweight in terms of memory requirements due to the
constant dictionary size, it was successfully tested using a full weather station test data set.
The LZ77 algorithm resulted in a compression ratio ranging from 0.195 to 0.272, showing a
decreasing trend with increasing input data size, at the cost of higher—albeit still in the low
range—amounts of time and energy required when compared to the Huffman algorithm.

Due to the fact that the dictionary size of the LZ78 algorithm grows with data size, it
was successfully tested using up to 6 h of weather station data, as larger data sizes resulted
in an embedded system crash caused by not enough memory available. The LZ78 algorithm
resulted in a compression ratio ranging from 0.274 to 0.389, showing a decreasing trend
with increasing input data size. In terms of compression ratio, this algorithm produced
results better than Huffman, and worse than LZ77. In terms of time and energy required for
compression, this algorithm is more lightweight than LZ77, while being more demanding
than Huffman.

Due to the fact that the dictionary size of the LZW algorithm grows with data size, it
was successfully tested using up to 4 h of weather station data, as larger data sizes resulted
in an embedded system crash caused by not enough memory available. The second
approach trades a small amount of memory for vast speed improvement, as a hash map
needs to store hash values in order to operate. This resulted in the maximum successfully
tested data size lowered to 3 h of weather station data, as larger data sizes resulted in
embedded system crashes caused by not enough memory available.

The LZW algorithm resulted in a compression ratio ranging from 0.229 to 0.313,
showing a decreasing trend with increasing input data size. In terms of compression ratio,
this algorithm produced results better than LZ78 and Huffman, and worse than LZ77.
In terms of time and energy required for compression, first approach is not recommended
due to time and energy requirements. Despite significant improvement in the second
approach, it is still more demanding than Huffman, LZ77 and LZ78 in terms of time and
energy requirements.

Sensors 2024, 24, 224 14 of 30

Comparison

The Huffman algorithm produced stable compression ratio results between 0.529 and
0.542 on test data. This can be explained due to the fact that this algorithm operates on
symbol occurrence frequency, which does not change with input data length in a significant
way. The LZ77 algorithm produced the best results of all tested algorithms in terms of
compression ratio, as it leveraged the existence of repeating strings of symbols in data to
compress it. The LZ78 algorithm produced slightly worse results than LZ77 in terms of
compression ratio while outperforming Huffman by a significant margin. This was caused
by the fact, that LZ78 excels at larger data sizes that are unattainable on the Blackpill board
due to the available memory restrictions. The LZW algorithm also produced slightly worse
results than LZ77 in terms of compression ratio, albeit with values closer to LZ77 than LZ78.
This algorithm also excels at larger data sizes that are unattainable on the Blackpill board
due to the available memory restrictions, hence the slightly worse results on relatively small
input data sizes. The comparison of tested compression algorithms in terms of compression
ratio is shown in Figure 4.

Figure 4. Comparison of compression algorithms tested on weather station data in terms of compres-
sion ratio.

The computational complexity of tested algorithms can be observed by examining
the time needed for compression, with the Huffman algorithm being the most lightweight,
and LZW requiring the most time for compression for tested data sizes. The comparison of
tested compression algorithms in terms of compression time is shown in Figure 5.

Figure 5. Comparison of compression algorithms tested on weather station data in terms of compres-
sion time.

Sensors 2024, 24, 224 15 of 30

As the microcontroller consumes different amounts of current during the execution of
various compression algorithms, it is also important to evaluate the energy required for
each operation. The comparison of tested compression algorithms in terms of compression
energy is shown in Figure 6.

Figure 6. Comparison of compression algorithms tested on weather station data in terms of compres-
sion energy.

4.3. Weather Station Data Transmission

This section presents the combined measurements of time and energy required for both
scenarios—“send uncompressed data” and “compress and send compressed data”—using
weather station data of various lengths with different compression algorithms and trans-
mission modules. The main goal of these combined measurements is to calculate the saved
time and energy by compressing and sending compressed data, compared to the scenario
of uncompressed data transmission.

4.3.1. FS1000A

In order to observe the impact of data compression on the energy consumption re-
quired for data transmission, transmission of original data was measured, as well as data
compressed with tested algorithms. To assess the impact of data compression, time and
energy ratios were evaluated. All algorithms except the first approach of LZW resulted
in ratios below 1.0, directly translating into a profit. Usage of the LZ78 algorithm yielded
the best time ratios across all data samples it was used on. In the case of energy ratios,
LZ77 provided the best results for data samples up to 4 h in length, but with data samples
containing 6 h of weather station data, LZ78 resulted in a slightly lower ratio, directly
translating to energy savings. This means, in the case of an embedded system consisting
of the Blackpill board as the main processing unit and the FS1000A board as the transmis-
sion module, in order to conserve energy it is most beneficial to use the LZ77 algorithm,
except for the small edge of 0.002 for the LZ78 algorithm in ratio difference for data length
of 6 h of weather station data. The comparisons of tested compression algorithms in terms
of time and energy ratios are shown in Figures 7 and 8, respectively.

Sensors 2024, 24, 224 16 of 30

Figure 7. Comparison of compression algorithms tested on weather station data and the FS1000A
board in terms of time ratio.

Figure 8. Comparison of compression algorithms tested on weather station data and the FS1000A
board in terms of energy ratio.

To sum up, usage of the LZ78 algorithm resulted in the best time ratios across all tested
data samples. In terms of energy ratios, LZ77 provided the best results for data samples up
to 4 h in length, with LZ78 providing better results for 6 h data samples. Therefore, it is
recommended to use these algorithms in the case of an embedded system comprised of
the Blackpill board as the main processing unit and the FS1000A board as the transmission
module in order to maximize the conservation of energy.

4.3.2. nRF24L01+

In order to observe the impact of data compression on the energy consumption re-
quired for data transmission, the transmission of original data was measured, as well as
data compressed with tested algorithms. To assess the impact of data compression, time
and energy ratios were evaluated. All algorithms except the first approach of LZW, and the
second approach of LZW with weather data length of 1 and 2 h, resulted in ratios below
1.0, directly translating into a profit. It should be noted that the second approach of LZW
with weather data length of 1 and 2 h resulted in time ratios below 1.0. Usage of the LZ78
algorithm yielded the best time ratios across all data samples it was used on. In the case of
energy ratios, LZ78 provided the best results for all data samples it was used on. This means,
in the case of an embedded system consisting of the Blackpill board as the main processing
unit and the nRF24L01+ board as the transmission module, in order to conserve energy

Sensors 2024, 24, 224 17 of 30

it is most beneficial to use the LZ78 algorithm. The comparisons of tested compression
algorithms in terms of time and energy ratios are shown in Figures 9 and 10, respectively.

Figure 9. Comparison of compression algorithms tested on weather station data and the nRF24L01+
board in terms of time ratio.

Figure 10. Comparison of compression algorithms tested on weather station data and the nRF24L01+
board in terms of energy ratio.

To sum up, usage of the LZ78 algorithm resulted in the best time and energy ratios
across all tested data samples. Therefore, it is recommended to use this algorithm in the
case of an embedded system comprised of the Blackpill board as the main processing unit
and the nRF24L01+ board as a transmission module in order to maximize the conservation
of energy.

4.3.3. ESP-01

In order to observe the impact of data compression on the energy consumption re-
quired for data transmission, the transmission of original data was measured, as well as
the data compressed with tested algorithms. To assess the impact of data compression,
time and energy ratios were evaluated. All algorithms except the first approach of LZW
resulted in ratios below 1.0, directly translating into a profit. Usage of the LZ77 algorithm
yielded the best time ratios for data samples up to 2 h in length, but with data samples
containing 3 or more hours of weather station data, LZ78 resulted in a slightly lower ratio,
directly translating to time savings. In the case of energy ratios, LZ77 provided the best
results for all data samples it was used on. This means, in the case of an embedded system

Sensors 2024, 24, 224 18 of 30

consisting of the Blackpill board as the main processing unit and the ESP-01 board as the
transmission module, in order to conserve energy it is most beneficial to use the LZ77
algorithm. The comparisons of tested compression algorithms in terms of time and energy
ratios are shown in Figures 11 and 12, respectively.

Figure 11. Comparison of compression algorithms tested on weather station data and the ESP-01
board in terms of time ratio.

Figure 12. Comparison of compression algorithms tested on weather station data and the ESP-01
board in terms of energy ratio.

To sum up, the utilization of the LZ77 algorithm resulted in the best time ratios for
data samples up to 2 h in length, with the LZ78 algorithm delivering better results for
data samples containing 3 or more hours of data. In terms of energy ratios, LZ77 provided
the best results across all tested data samples. Therefore, it is recommended to use this
algorithm in the case of an embedded system comprised of the Blackpill board as the main
processing unit and the ESP-01 board as the transmission module in order to maximize the
conservation of energy.

4.3.4. Summary

To conclude, in the case of the FS1000A transmission module, using the LZ78 algorithm
resulted in the best time ratios across all tested data samples. In terms of energy ratios, LZ77
provided the best results for data samples up to 4 h in length, with LZ78 providing better
results for 6 h data samples. Therefore, it is recommended to use these algorithms in the
case of an embedded system comprised of the Blackpill board as the main processing unit

Sensors 2024, 24, 224 19 of 30

and the FS1000A board as the transmission module in order to maximize the conservation
of energy.

For the nRF24L01+ transmission module, using the LZ78 algorithm resulted in the
best time and energy ratios across all tested data samples. Therefore, it is recommended to
use this algorithm in the case of an embedded system comprised of the Blackpill board as
the main processing unit and the nRF24L01+ board as the transmission module in order to
maximize the conservation of energy.

Finally, regarding the ESP-01 transmission module, using the LZ77 algorithm yielded
the best time ratios for data samples up to 2 h in length, while the LZ78 algorithm provided
better results for data samples containing 3 or more hours of data. In terms of energy ratios,
LZ77 provided the best results across all tested data samples. Therefore, it is recommended
to use this algorithm in the case of an embedded system comprised of the Blackpill board
as the main processing unit and the ESP-01 board as the transmission module in order to
maximize the conservation of energy.

4.4. Image Data Compression

This section presents the measurements of time and energy required to compress
image data of various image sizes. The main goal of these measurements is to acquire
image data compression results that are necessary for conducting calculations of time and
energy ratios, as well as to gather compressed image data sizes, required for calculating
the compression ratios. In order to measure the algorithm’s performance with different
image sizes, three sizes commonly found in embedded devices were chosen: 160 × 120 px,
320 × 240 px and 640 × 480 px.

JPEG

The JPEG algorithm was successfully tested with all image sizes. Measurement results
are shown in Table 5. In order to further evaluate the performance of the JPEG algorithm, a
validation subset of the COCO dataset [42] (2017 updated version) was used, consisting of
5000 photos of various classes. Each photo was resized to all sizes evaluated in this paper
(160 × 120 px, 320 × 240 px and 640 × 480 px) and compressed using the same quality
factor of 85.

Table 5. Image data compression—JPEG algorithm.

Image
Size

Original
Data Size

Compressed
Data Size

Compression
Ratio

Compression
Time

Compression
Energy

160 × 120 px 57,600 B 2105 B 0.037 93.526 ms 11.353 mWs
320 × 240 px 230,400 B 6783 B 0.029 354.482 ms 43.406 mWs
640 × 480 px 921,600 B 25,941 B 0.028 1408.710 ms 173.072 mWs

To sum up, the JPEG algorithm resulted in a compression ratio ranging from 0.028 to
0.037—an order of magnitude smaller than Huffman, LZ77, LZ78 and LZW—while being
considerably lightweight. Even in the worst-case scenario from the COCO dataset, the
maximum observed compression ratio is equal to 0.212, which is an impressive result.

4.5. Image Data Transmission

This section presents the combined measurements of time and energy required for both
scenarios—“send uncompressed data” and “compress and send compressed data”—using
image data of various image sizes with different transmission modules. The main goal of
these combined measurements is to calculate the saved time and energy by compressing and
sending compressed data, compared to the scenario of uncompressed data transmission.

Sensors 2024, 24, 224 20 of 30

4.5.1. FS1000A

In order to observe the impact of data compression on the energy consumption re-
quired for data transmission, the transmission of original data was measured, as well as
data compressed with the tested algorithm. To assess the impact of data compression,
time and energy ratios were evaluated. The JPEG algorithm resulted in ratios vastly below
1.0, directly translating into a profit. This means, in the case of an embedded system
consisting of the Blackpill board as the main processing unit and the FS1000A board as the
transmission module, in order to conserve energy it is crucial to use the JPEG algorithm
to compress image data. Visual representations of time and energy ratios are shown in
Figures 13 and 14.

Figure 13. Time ratio with image data and the FS1000A board.

Figure 14. Energy ratio with image data and the FS1000A board.

In summary, the JPEG algorithm produced energy ratios ranging from 0.020 to 0.033.
Even in the worst-case scenario from the COCO dataset, the maximum observed energy
ratio is equal to 0.220, which is an impressive result. Therefore, it is definitely recommended
to use this algorithm in the case of an embedded system comprised of the Blackpill board
as the main processing unit and the FS1000A board as a transmission module in order to
maximize the conservation of energy.

4.5.2. nRF24L01+

In order to observe the impact of data compression on the energy consumption re-
quired for data transmission, the transmission of original data was measured, as well as

Sensors 2024, 24, 224 21 of 30

data compressed with the tested algorithm. To assess the impact of data compression,
time and energy ratios were evaluated. The JPEG algorithm resulted in ratios vastly below
1.0, directly translating into a profit. This means, in the case of an embedded system
consisting of the Blackpill board as the main processing unit and the nRF24L01+ board as
the transmission module, in order to conserve energy it is crucial to use the JPEG algorithm
to compress image data. Visual representations of time and energy ratios are shown in
Figures 15 and 16.

Figure 15. Time ratio with image data and the nRF24L01+ board.

Figure 16. Energy ratio with image data and the nRF24L01+ board.

In summary, the JPEG algorithm produced energy ratios ranging from 0.040 to 0.049.
Even in the worst-case scenario from the COCO dataset, the maximum observed energy
ratio is equal to 0.226, which is an impressive result. Therefore, it is definitely recommended
to use this algorithm in the case of an embedded system comprised of the Blackpill board
as the main processing unit and the nRF24L01+ board as the transmission module in order
to maximize the conservation of energy.

4.5.3. ESP-01

In order to observe the impact of data compression on the energy consumption re-
quired for data transmission, the transmission of original data was measured, as well as
data compressed with the tested algorithm. To assess the impact of data compression,
time and energy ratios were evaluated. The JPEG algorithm resulted in ratios vastly below
1.0, directly translating into a profit. This means, in the case of an embedded system

Sensors 2024, 24, 224 22 of 30

consisting of the Blackpill board as the main processing unit and the ESP-01 board as the
transmission module, in order to conserve energy it is crucial to use the JPEG algorithm
to compress image data. Visual representations of time and energy ratios are shown in
Figures 17 and 18.

Figure 17. Time ratio with image data and ESP-01 board.

Figure 18. Energy ratio with image data and ESP-01 board.

To sum up, the JPEG algorithm resulted in an energy ratio ranging from 0.040 to 0.174.
Even in the worst-case scenario from the COCO dataset, the maximum observed energy
ratio is equal to 0.311, which is an impressive result. Therefore, it is definitely recommended
to use this algorithm in the case of an embedded system comprised of the Blackpill board
as the main processing unit and the ESP-01 board as the transmission module in order to
maximize the conservation of energy.

4.5.4. Summary

In summary, for the FS1000A transmission module, the JPEG algorithm yielded energy
ratios ranging from 0.020 to 0.033. Even in the worst-case scenario from the COCO dataset,
the maximum observed energy ratio is equal to 0.220, which is an impressive result.
Therefore, it is definitely recommended to use this algorithm in the case of an embedded
system comprised of the Blackpill board as the main processing unit and the FS1000A board
as the transmission module in order to maximize the conservation of energy.

Regarding the nRF24L01+ transmission module, the JPEG algorithm resulted in an
energy ratio ranging from 0.040 to 0.049. Even in the worst-case scenario from the COCO

Sensors 2024, 24, 224 23 of 30

dataset, the maximum observed energy ratio is equal to 0.226, which is an impressive result.
Therefore, it is definitely recommended to use this algorithm in the case of an embedded
system comprised of the Blackpill board as the main processing unit and the nRF24L01+
board as a transmission module in order to maximize the conservation of energy.

For the ESP-01 transmission module, the JPEG algorithm resulted in an energy ratio
ranging from 0.040 to 0.174. Even in the worst-case scenario from the COCO dataset, the
maximum observed energy ratio is equal to 0.311, which is an impressive result. Therefore,
it is definitely recommended to use this algorithm in the case of an embedded system
comprised of the Blackpill board as the main processing unit and the ESP-01 board as the
transmission module in order to maximize the conservation of energy.

5. Discussion

According to the measurements and results shown in this article, it is possible to lower
the energy consumption required for data transmission in a microcontroller-based system by
compressing the data using carefully selected algorithms. This results in a prolonged lifespan
of battery-powered TinyML devices, minimizing maintenance costs due to less frequent battery
replacements. For example, with an energy ratio of 0.2, five times more data can be transmitted,
resulting in a five times longer battery lifespan. It is also an important factor in the case of
systems located in hard-to-reach locations—for example, inside an industrial machine—as less
frequent battery replacements directly translate into lower total machine downtime.

It should be noted, that considering the existing TinyML studies and devices, to the
best of our knowledge, there is no TinyML research paper that evaluates the impact of data
compression on the energy consumption required for data transmission in a microcontroller-
based system with resources comparable to the used STM32F411CE chip. The main conclusion
of this paper is that by carefully selecting a compression algorithm and using it to compress
the data before transmission, a significant amount of energy can be saved. By using the best
approach for weather station data, that is, the nRF24L01+ board and the LZ78 algorithm, a
0.452 energy ratio can be achieved with 6 h of data, translating into a 2.21 times longer battery
lifespan. For the image data, by using the ESP-01 board and the JPEG algorithm, the energy
ratio ranged from 0.040 to 0.174, translating into a 5.74–25 times longer battery lifespan.

In the case of the FS1000A transmission module and weather data, using the LZ78
algorithm resulted in the best time ratios across all tested data samples. In terms of energy
ratios, LZ77 provided the best results for data samples up to 4 h in length, with LZ78 providing
better results for 6 h data samples. Therefore, it is recommended to use these algorithms in
the case of an embedded system comprised of the Blackpill board as the main processing unit
and the FS1000A board as the transmission module in order to maximize the conservation
of energy.

Regarding the nRF24L01+ transmission module and weather data, usage of the LZ78
algorithm resulted in the best time and energy ratios across all tested data samples. There-
fore, it is recommended to use this algorithm in the case of an embedded system comprised
of the Blackpill board as the main processing unit and the nRF24L01+ board as the trans-
mission module in order to maximize the conservation of energy.

For the ESP-01 transmission module and weather data, using the LZ77 algorithm
resulted in the best time ratios for data samples up to 2 h in length, with the LZ78 algorithm
delivering better results for data samples containing 3 or more hours of data. In terms of
energy ratios, LZ77 provided the best results across all tested data samples. Therefore, it
is recommended to use this algorithm in the case of an embedded system comprised of
the Blackpill board as the main processing unit and the ESP-01 board as the transmission
module in order to maximize the conservation of energy.

Regarding the FS1000A transmission module and image data, the JPEG algorithm resulted
in an energy ratio ranging from 0.020 to 0.033. Even in the worst-case scenario from the COCO
dataset, the maximum observed energy ratio is equal to 0.220, which is an impressive result.
Therefore, it is definitely recommended to use this algorithm in the case of an embedded

Sensors 2024, 24, 224 24 of 30

system comprised of the Blackpill board as the main processing unit and the FS1000A board as
a transmission module in order to maximize the conservation of energy.

In the case of the nRF24L01+ transmission module and image data, the JPEG algorithm
resulted in an energy ratio ranging from 0.040 to 0.049. Even in the worst-case scenario
from the COCO dataset, the maximum observed energy ratio is equal to 0.226, which is
an impressive result. Therefore, it is definitely recommended to use this algorithm in the
case of an embedded system comprised of the Blackpill board as the main processing unit
and the nRF24L01+ board as a transmission module in order to maximize the conservation
of energy.

Moreover, regarding the ESP-01 transmission module and image data, the JPEG algorithm
resulted in an energy ratio ranging from 0.040 to 0.174. Even in the worst-case scenario from the
COCO dataset, the maximum observed energy ratio is equal to 0.311, which is an impressive
result. Therefore, it is definitely recommended to use this algorithm in the case of an embedded
system comprised of the Blackpill board as the main processing unit and the ESP-01 board as
the transmission module in order to maximize the conservation of energy.

To summarize, the nRF24L01+ module is suggested for a battery-powered embedded
device that will transmit data, since it needs the least amount of energy to transmit one
byte of data. For weather data, the nRF24L01+ module is best combined with the LZ78
algorithm in order to achieve the best results, requiring only 29.061 mWs in order to compress
and transmit 1 h of weather station data, and 137.623 mWs for 6 h of weather station data.
In order to calculate the theoretical maximum amount of transmissions using one standard
18,650 battery with a nominal voltage of 3.7 V and capacity of 2500 mAh, energy amounts
can be recalculated to 3.7 V supply voltage, resulting in 21.505 mWs for 1 h of weather station
data and 101.841 mWs for 6 h of weather station data. As the mentioned 18,650 battery
contains 9250 mWh of energy, this results in 1,548,467 possible transmissions containing 1 h
of weather station data and 326,980 possible transmissions containing 6 h of weather station
data, translating into 1,548,467 h and 1,961,880 h worth of transmitted data, respectively. Due
to the fact that this is equal to over 176 years and over 223 years respectfully, the amount of
consumed energy over time is smaller than the self-discharge of such a battery, leaving plenty
of energy for other purposes including collecting data from multiple sensors, processing data,
and inferring TinyML models.

6. Conclusions

This paper presents an analysis of the impact of data compression on the energy
consumption required for data transmission in a system based on a battery-powered micro-
controller. The resource-constrained system under study is equipped with an STM32F411CE
chip and a transmission module. We have demonstrated that by carefully selecting an
algorithm for compressing various types of data before transmission, a significant amount
of energy can be conserved. To create a battery-powered embedded device for data trans-
mission, we recommend the use of the nRF24L01+ module, as it requires the least amount of
energy for transmission. For specific data types like weather data, the nRF24L01+ module
exhibits the best performance when paired with the LZ78 compression algorithm, providing
0.452 with 6 h of data, translating into a 2.21 times longer battery lifespan. In turn, for the
image data, the application of the ESP-01 board and the JPEG algorithm provides an energy
ratio in the range from 0.040 to 0.174, which yields a 5.74–25 times longer battery lifespan.

It is essential to emphasize that the energy saved through data compression can be
redirected to other operations, including collecting data from multiple sensors, process-
ing data, and notably, inferring TinyML models. While the implementation of artificial
intelligence methods reduces operating time, it introduces new functional possibilities for
the device.

There is still potential for further improvements. Future work may involve measure-
ments of different compression algorithms for text and image data. Additionally, research
could include further measurements of the JPEG algorithm, focusing on tuning the quality
factor to maximize the benefits of data compression while maintaining an acceptable level

Sensors 2024, 24, 224 25 of 30

of image quality, dictated by the specific use case. Further studies could also explore other
hardware options, encompassing both microcontrollers and transmission modules, that
can meet the stringent limitations of TinyML devices. Finally, a very interesting direction
for future research is cybersecurity, as it poses a serious threat to microcontroller-based
systems analyzed in our manuscript. Moreover, exploring how cryptographic algorithms
influence this consumption is another interesting topic for future work.

Author Contributions: Conceptualization, D.P. and K.W.; methodology, D.P. and K.W.; software, D.P.;
validation, D.P. and K.W.; formal analysis, D.P.; investigation, D.P.; resources, D.P.; data curation,
D.P.; writing—original draft preparation, D.P.; writing—review and editing, D.P., T.P. and K.W.;
visualization, D.P.; supervision, K.W.; project administration, K.W.; funding acquisition, K.W. All
authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by Department of Systems and Computer Networks, Wrocław
University of Science and Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available at: https://github.com/tobiaszpuslecki/Data_
ImpactOfCompression/ (accessed on 19 October 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ACK Acknowledgement
AP Access Point
AGC Automatic Gain Control
ASK Amplitude Shift Keying
CRC Cyclic Redundancy Check
CSV Comma-Separated Values
DCT Discrete Cosine Transform
DHCP Dynamic Host Configuration Protocol
EOF End of file
FNV Fowler/Noll/Vo
GFSK Gaussian Frequency Shift Keying
GPIO General-Purpose Input/Output
I2C Inter-Integrated Circuit
IC Integrated Circuit
IoT Internet of Things
ISM Industrial, Scientific, Medical
JPEG Joint Photographic Experts Group
LDO Low Dropout
LED Light-Emitting Diode
LZ77 Lempel–Ziv 77
LZ78 Lempel–Ziv 78
LZW Lempel–Ziv–Welch
ML Machine Learning
MPP Metallized Polypropylene
MTU Maximum Transmission Unit
SNR Signal-to-Noise Ratio
SPI Serial Peripheral Interface
TCP Transmission Control Protocol
TinyML Tiny Machine Learning
TTL Transistor-Transistor Logic
UART Universal Asynchronous Receiver-Transmitter
XOR Exclusive OR

https://github.com/tobiaszpuslecki/Data_ImpactOfCompression/
https://github.com/tobiaszpuslecki/Data_ImpactOfCompression/

Sensors 2024, 24, 224 26 of 30

Appendix A. Data Transmission Measurements

(a) 2 kbps frame (b) 2 kbps frame payload

(c) 4 kbps frame (d) 4 kbps frame payload

(e) 5 kbps frame (f) 5 kbps frame payload

(g) 10 kbps frame (h) 10 kbps frame payload

Figure A1. Measurements of FS1000A module transmission speed.

Sensors 2024, 24, 224 27 of 30

(a) Boot device (b) Connect to AP

(c) Obtain IP address with DHCP (d) Establish TCP connection

Figure A2. Measurements of time and current required to prepare ESP-01 for transmission.

(a) FS1000A, 5 kbps, payload size: 1 B (b) nRF24L01+, 250 kbps, payload size: 1 B

(c) nRF24L01+, 250 kbps, payload size: 8 B (d) nRF24L01+, 250 kbps, payload size: 16 B

Figure A3. Measurements of time and current required to transmit the data of given size (1).

Sensors 2024, 24, 224 28 of 30

(a) nRF24L01+, 250 kbps, payload size: 24 B (b) nRF24L01+, 250 kbps, payload size: 32 B

(c) ESP-01, payload size: 8 B (d) ESP-01, payload size: 512 B

(e) ESP-01, payload size: 1024 B (f) ESP-01, payload size: 2048 B

Figure A4. Measurements of time and current required to transmit the data of given size (2).

References
1. Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Hashem, I.A.T.; Siddiqa, A.; Yaqoob, I. Big IoT Data Analytics: Architecture,

Opportunities, and Open Research Challenges. IEEE Access 2017, 5, 5247–5261.
2. Khare, S.; Totaro, M. Big Data in IoT. In Proceedings of the 2019 10th International Conference on Computing, Communication

and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–7.
3. Dutta, L.; Bharali, S. TinyML Meets IoT: A Comprehensive Survey. Internet Things 2021, 16, 100461. [CrossRef]
4. Sanchez-Iborra, R.; Skarmeta, A.F. TinyML-Enabled Frugal Smart Objects: Challenges and Opportunities. IEEE Circuits Syst.

Mag. 2020, 20, 4–18. [CrossRef]
5. Banbury, C.R.; Reddi, V.J.; Lam, M.; Fu, W.; Fazel, A.; Holleman, J.; Huang, X.; Hurtado, R.; Kanter, D.; Lokhmotov, A.; et al.

Benchmarking TinyML systems: Challenges and direction. arXiv 2020, arXiv:2003.04821.
6. Egaji, O.A.; Ekwevugbe, T.; Griffiths, M. A Data Mining based Approach for Electric Motor Anomaly Detection Applied on

Vibration Data. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability
(WorldS4), London, UK, 27–28 July 2020; pp. 330–334.

7. Signoretti, G.; Silva, M.; Andrade, P.; Silva, I.; Sisinni, E.; Ferrari, P. An Evolving TinyML Compression Algorithm for IoT
Environments Based on Data Eccentricity. Sensors 2021, 21, 4153. [CrossRef] [PubMed]

8. Svoboda, F.; Fernandez-Marques, J.; Liberis, E.; Lane, N.D. Deep learning on microcontrollers: A study on deployment costs and
challenges. In Proceedings of the 2nd European Workshop on Machine Learning and Systems, Rennes, France, 5–8 April 2022;
pp. 54–63.

9. Abdou, A.; Krishnan, S. Horizons in Single-Lead ECG Analysis From Devices to Data. Front. Signal Process. 2022, 2, 27. [CrossRef]
10. Kahdim, A.N.; Manaa, M.E. Design an efficient internet of things data compression for healthcare applications. Bull. Electr. Eng.

Informatics 2022, 11, 1678–1686. [CrossRef]

http://doi.org/10.1016/j.iot.2021.100461
http://dx.doi.org/10.1109/MCAS.2020.3005467
http://dx.doi.org/10.3390/s21124153
http://www.ncbi.nlm.nih.gov/pubmed/34204300
http://dx.doi.org/10.3389/frsip.2022.866047
http://dx.doi.org/10.11591/eei.v11i3.3758

Sensors 2024, 24, 224 29 of 30

11. Abdulzahra, S.A.; Al-Qurabat, A.K.M.; Idrees, A.K. Compression-based data reduction technique for IoT sensor networks.
Baghdad Sci. J. 2021, 18, 184–198. [CrossRef]

12. Anavangot, V.; Kumar, A. Signal Source Distribution Approximation to Speedup Scalar Quantizer Design. IEEE Trans. Signal
Process. 2021, 69, 6314–6328. [CrossRef]

13. Sudharsan, B.; Salerno, S.; Ranjan, R. TinyML-CAM: 80 FPS image recognition in 1 kB RAM. In Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking, Sydney, Australia, 17–21 October 2022; pp. 862–864.

14. Ouda, H.; Badr, A.; Rashwan, A.; Hassanein, H.S.; Elgazzar, K. Optimizing real-time ecg data transmission in constrained
environments. In Proceedings of the ICC 2022-IEEE International Conference on Communications, Seoul, Republic of Korea,
16–20 May 2022; pp. 2114–2119.

15. Silva, M.V.; Mosca, E.E.; Gomes, R.L. Green industrial internet of things through data compression. Int. J. Embed. Syst. 2022,
15, 457–466. [CrossRef]

16. Al-Qurabat, A.K.M.; Mohammed, Z.A.; Hussein, Z.J. Data traffic management based on compression and MDL techniques for
smart agriculture in IoT. Wirel. Pers. Commun. 2021, 120, 2227–2258. [CrossRef]

17. Al-Qurabat, M.; Kadhum, A. A lightweight Huffman-based differential encoding lossless compression technique in IoT for smart
agriculture. Int. J. Comput. Digit. Syst. 2021, 11, 110109. [CrossRef] [PubMed]

18. Jawad, G.A.M.; Al-Qurabat, A.K.M.; Idrees, A.K. Maximizing the underwater wireless sensor networks’ lifespan using BTC and
MNP5 compression techniques. Ann. Telecommun. 2022, 77, 703–723. [CrossRef]

19. Ahmad, N.A.; Ameedeen, M.A. Enhancing Data Acquisition Accuracy in the Internet of Things with Context Awareness System:
Recent Trends and Future Directions. Int. J. Comput. Digit. Syst. 2023, 14, 78.

20. Hou, K.M.; Diao, X.; Shi, H.; Ding, H.; Zhou, H.; de Vaulx, C. Trends and Challenges in AIoT/IIoT/IoT Implementation. Sensors
2023, 23, 5074. [CrossRef]

21. Antonini, M.; Pincheira, M.; Vecchio, M.; Antonelli, F. An Adaptable and Unsupervised TinyML Anomaly Detection System for
Extreme Industrial Environments. Sensors 2023, 23, 2344. [CrossRef]

22. Albuali, A.; Srinivasagan, R.; Aljughaiman, A.; Alderazi, F. Scalable Lightweight IoT-Based Smart Weather Measurement System.
Sensors 2023, 23, 5569. [CrossRef]

23. Alajlan, N.N.; Ibrahim, D.M. DDD TinyML: A TinyML-Based Driver Drowsiness Detection Model Using Deep Learning. Sensors
2023, 23, 5696. [CrossRef]

24. STMicroelectronics. STM32F411CE—High-Performance Access Line, Arm Cortex-M4 Core with DSP and FPU, 512 Kbytes of
Flash Memory, 100 MHz CPU, ART Accelerator. Available online: https://www.st.com/en/microcontrollers-microprocessors/
stm32f411ce.html (accessed on 26 May 2023).

25. Circuits DIY. FS1000A 433Mhz RF Transmitter Receiver Modules. Available online: https://www.circuits-diy.com/fs1000a-43
3mhz-rf-transmitter-receiver-modules/ (accessed on 25 May 2023).

26. Tanenbaum, A. Computer Networks, 4th ed.; Prentice Hall: Hoboken, NJ, USA, 2002; pp. 274–275.
27. Schweber, B. Understanding Antenna Specifications and Operation. 2017. Available online: https://www.digikey.ch/en/articles/

understanding-antenna-specifications-and-operation (accessed on 4 May 2023).
28. Nordic Semiconductor. nRF24L01 Single Chip 2.4GHz Transceiver. Available online: https://www.mouser.com/datasheet/2/29

7/nRF24L01_Product_Specification_v2_0-9199.pdf (accessed on 26 May 2023).
29. Espressif Systems. ESP8266EX Datasheet. Available online: https://www.espressif.com/sites/default/files/documentation/0a-

esp8266ex_datasheet_en.pdf (accessed on 26 May 2023).
30. Recommendation T.81: Digital Compression and Coding of Continuous-Tone Still Images—Requirements and Guidelines; Technical report;

CCITT: Geneva, Switzerland, 1992.
31. Bosch Sensortec. BME280 Digital Humidity, Pressure and Temperature Sensor. Available online: https://www.mouser.com/

datasheet/2/783/BST-BME280-DS002-1509607.pdf (accessed on 26 May 2023).
32. OmniVision Technologies. OV7670/OV7171 CMOS VGA (640x480) CAMERACHIP™ Sensor with OmniPixel® Technology.

Available online: https://web.mit.edu/6.111/www/f2016/tools/OV7670_2006.pdf (accessed on 26 May 2023).
33. Huffman, D.A. A method for the construction of minimum-redundancy codes. Proc. IRE 1952, 40, 1098–1101. [CrossRef]
34. Ziv, J.; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977, 23, 337–343. [CrossRef]
35. Ziv, J.; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 1978, 24, 530–536.

[CrossRef]
36. Welch, T.A. A technique for high-performance data compression. Computer 1984, 17, 8–19. [CrossRef]
37. Noll, L. FNV Hash. Available online: http://www.isthe.com/chongo/tech/comp/fnv/index.html (accessed on 18 April 2023).
38. Diodes Incorporated. AP7343 300mA High PSRR Low Noise LDO with Enable. Available online: https://www.diodes.com/

assets/Datasheets/AP7343.pdf (accessed on 25 May 2023).
39. Texas Instruments. LM1117 800-mA, Low-Dropout Linear Regulator. Available online: https://www.ti.com/lit/ds/symlink/

lm1117.pdf (accessed on 25 May 2023).
40. Microchip Technology. MCP1825/MCP1825S 500 mA, Low Voltage, Low Quiescent Current LDO Regulator. Available on-

line: https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/MCP182
5-Family-Data-Sheet-DS20002056.pdf (accessed on 25 May 2023).

http://dx.doi.org/10.21123/bsj.2021.18.1.0184
http://dx.doi.org/10.1109/TSP.2021.3125602
http://dx.doi.org/10.1504/IJES.2022.129802
http://dx.doi.org/10.1007/s11277-021-08563-4
http://dx.doi.org/10.12785/ijcds/110109
http://www.ncbi.nlm.nih.gov/pubmed/32394994
http://dx.doi.org/10.1007/s12243-021-00903-6
http://dx.doi.org/10.3390/s23115074
http://dx.doi.org/10.3390/s23042344
http://dx.doi.org/10.3390/s23125569
http://dx.doi.org/10.3390/s23125696
https://www.st.com/en/microcontrollers-microprocessors/stm32f411ce.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f411ce.html
https://www.circuits-diy.com/fs1000a-433mhz-rf-transmitter-receiver-modules/
https://www.circuits-diy.com/fs1000a-433mhz-rf-transmitter-receiver-modules/
https://www.digikey.ch/en/articles/understanding-antenna-specifications-and-operation
https://www.digikey.ch/en/articles/understanding-antenna-specifications-and-operation
https://www.mouser.com/datasheet/2/297/nRF24L01_Product_Specification_v2_0-9199.pdf
https://www.mouser.com/datasheet/2/297/nRF24L01_Product_Specification_v2_0-9199.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.mouser.com/datasheet/2/783/BST-BME280-DS002-1509607.pdf
https://www.mouser.com/datasheet/2/783/BST-BME280-DS002-1509607.pdf
https://web.mit.edu/6.111/www/f2016/tools/OV7670_2006.pdf
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1978.1055934
http://dx.doi.org/10.1109/MC.1984.1659158
http://www.isthe.com/chongo/tech/comp/fnv/index.html
https://www.diodes.com/assets/Datasheets/AP7343.pdf
https://www.diodes.com/assets/Datasheets/AP7343.pdf
https://www.ti.com/lit/ds/symlink/lm1117.pdf
https://www.ti.com/lit/ds/symlink/lm1117.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/MCP1825-Family-Data-Sheet-DS20002056.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/MCP1825-Family-Data-Sheet-DS20002056.pdf

Sensors 2024, 24, 224 30 of 30

41. IEEE 802.3; The IEEE 802.3 Standard (Ethernet): An Overview of the Technology. IEEE: Piscataway, NJ, USA, 2001.
42. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in

Context. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September
2014; pp. 740–755.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Works
	Materials and Methods
	Hardware
	Data
	Weather
	Images

	Compression Algorithms
	Huffman
	Lempel–Ziv 77
	Lempel–Ziv 78
	Lempel–Ziv–Welch
	Joint Photographic Experts Group

	Measurement Details

	Results
	Data Transmission
	FS1000A
	nRF24L01+
	ESP-01
	Summary

	Weather Station Data Compression
	Weather Station Data Transmission
	FS1000A
	nRF24L01+
	ESP-01
	Summary

	Image Data Compression
	Image Data Transmission
	FS1000A
	nRF24L01+
	ESP-01
	Summary

	Discussion
	Conclusions
	Data Transmission Measurements
	References

