
Citation: Suo, L.; Ma, H.; Jiao, W.;

Liu, X. Job-Deadline-Guarantee-

Based Joint Flow Scheduling and

Routing Scheme in Data Center

Networks. Sensors 2024, 24, 216.

https://doi.org/10.3390/s24010216

Academic Editor: Anfeng Liu

Received: 17 November 2023

Revised: 25 December 2023

Accepted: 25 December 2023

Published: 30 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Job-Deadline-Guarantee-Based Joint Flow Scheduling and
Routing Scheme in Data Center Networks
Long Suo 1,∗ , Han Ma 2, Wanguo Jiao 1 and Xiaoming Liu 1

1 College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China;
wgjiao@njfu.edu.cn (W.J.); lxm@njfu.edu.cn (X.L.)

2 State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China;
hanma@stu.xidian.edu.cn

* Correspondence: lsuo@njfu.edu.cn

Abstract: Many emerging Internet of Things (IoT) applications deployed on cloud platforms have
strict latency requirements or deadline constraints, and thus meeting the deadlines is crucial to ensure
the quality of service for users and the revenue for service providers in these delay-stringent IoT
applications. Efficient flow scheduling in data center networks (DCNs) plays a major role in reducing
the execution time of jobs and has garnered significant attention in recent years. However, only few
studies have attempted to combine job-level flow scheduling and routing to guarantee meeting the
deadlines of multi-stage jobs. In this paper, an efficient heuristic joint flow scheduling and routing
(JFSR) scheme is proposed. First, targeting maximizing the number of jobs for which the deadlines
have been met, we formulate the joint flow scheduling and routing optimization problem for multiple
multi-stage jobs. Second, due to its mathematical intractability, this problem is decomposed into
two sub-problems: inter-coflow scheduling and intra-coflow scheduling. In the first sub-problem,
coflows from different jobs are scheduled according to their relative remaining times; in the second
sub-problem, an iterative coflow scheduling and routing (ICSR) algorithm is designed to alternately
optimize the routing path and bandwidth allocation for each scheduled coflow. Finally, simulation
results demonstrate that the proposed JFSR scheme can significantly increase the number of jobs for
which the deadlines have been met in DCNs.

Keywords: data center networks; cloud computing; coflow; flow scheduling; deadline

1. Introduction

The last decade has witnessed explosive growth in the number of devices and data
traffic from the Internet of Things (IoT). Cloud computing can provide flexible and scalable
computing, storage, and networking resources in an on-demand, pay-as-you-go service
model, which makes it more convenient for users to deploy and maintain various IoT appli-
cations [1]. For most IoT solutions, devices collect and send massive raw data to cloud data
centers for storage, analysis, and decision making. Many emerging IoT applications have
strict latency requirements or deadline constraints, such as for virtual reality, augmented
reality, smart homes, smart cities, smart energies, and smart vehicles [2]. Keeping low
latency and meeting deadlines is vital for both the users’ quality of service (QoS) and the
service providers’ revenue in these delay-stringent IoT applications. Taking an intelligent
monitoring service for example, if the response times for user requests are too long, users
will resubmit or just give up their requests. If so, the abandoned overdue responses will
degrade the user experience and waste the computing and communication resources. Ac-
cording to the statistics in [3], a 100 ms latency increase generates a 1% income loss at
Amazon, while a 400 ms delay increase in search responses can reduce search volume by
0.7% for Google.

Offloading computation-intensive and delay-sensitive tasks to edge data centers is
an efficient way to reduce the end-to-end communication delays in IoT applications [4,5].

Sensors 2024, 24, 216. https://doi.org/10.3390/s24010216 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24010216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5477-2095
https://orcid.org/0000-0002-2075-3312
https://orcid.org/0000-0003-2629-621X
https://doi.org/10.3390/s24010216
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24010216?type=check_update&version=1


Sensors 2024, 24, 216 2 of 16

However, edge computing is unable to cut down the processing time of IoT tasks in data
centers. Though infrastructure providers continually updates the CPU and storage capacity
of commercial servers and the link bandwidth of switches, network resources still have
a performance bottleneck when handling cloud computing tasks due to the distributed
nature of parallel computing and the massive communication demands among servers
within data centers [6]. Popular cluster computing frameworks such as MapReduce [7] and
Spark [8] have been widely applied to process the explosively growing data volume. In
those typical cloud computing architectures, a cloud computing task, or a job, is usually
divided into multiple stages, and each stage also includes several computing tasks that
are parallel processed on different physical servers. In the cluster computing manner,
the output data resulting from upper-stage computing tasks are exactly the necessary
inputs for the lower-stage computing tasks, and thus a large quantity of intermediate data
should be exchanged among different physical servers in a data center via data center
networks (DCNs). Further, a lower-stage computing task shall not begin unless the result data
from all of its upper-stage tasks have been completely delivered. It is estimated that parallel
intermediate data transfers account for 33–50% of whole-job completion times [9]. Therefore,
improving DCN transmission efficiency is critical for reducing the processing delays of cloud
computing jobs.

Some researchers have studied deadline-aware flow scheduling in DCNs [10–14].
However, due to the distributed nature of cloud computing, these traditional deadline-
aware scheduling schemes for individual flows are no longer applicable. After analyzing
the communication patterns of typical cluster applications, Chowdhury et al. found that
computing machines are grouped according to job stages or functionality, and concurrent
intermediate flows between two adjacent computing stages usually have associated se-
mantics and a collective objective [15]. This semantically related flow collection between
two computing machine groups is referred to as coflow. According to the manner of
cluster computing, a coflow’s completion time depends on the completion time of the last
flow [16]. Thus, traditional flow-level scheduling schemes are inefficient for reducing the
completion times or meeting the deadline of coflows. Further, since one cloud computing
job usually contains multistage computing tasks and coflows, the dependency relation-
ships among coflows will influence the final completion time of the job, which should be
carefully considered in job scheduling. Moreover, a DCN can provide multiple routing
paths between each server pair to guarantee connection reliability in typical Fat-Tree or
Spine-Leaf architectures [17], and thus routing is another vital factor for reducing the job
completion time for cloud data centers.

For cluster computing applications, existing deadline-aware flow scheduling schemes
can be roughly classified into three types: single-stage coflow scheduling, multi-stage
coflow scheduling, and joint flow scheduling and routing. In the first type, researchers
usually treat different coflows as multiple independent entities and focus on meeting the
deadline of each coflow separately. Chowdhury et al. modeled the inter-coflow scheduling
problem as a concurrent open-shop scheduling problem and proposed heuristic algo-
rithms to minimize the coflow completion time (CCT) or to maximize the number of
deadline-guaranteed coflows [18]. They designed the Smallest Effective Bottleneck First
(SEBF) algorithm and the Minimum Allocation for Desired Duration (MADD) algorithm
to perform inter-coflow scheduling and intra-coflow scheduling, respectively. The SEBF
algorithm calculates the predicted CCTs of all coflows and preferentially schedules the
coflow with the minimum predicted CCT; the MADD algorithm determines the transmitted
rates of all flows in the same coflow so that they shall have the same completion time.
Chowdhury et al. also developed the coordinated coflow scheduler Varys and provided
coflow APIs for cluster computing frameworks. S. Ma et al. proposed the deadline-driven
coflow scheduling framework Chronos [19], which allocates bandwidth proportionally to
the selected flows and reserves some residual bandwidth for unselected coflows. Therefore,
Chronos is more work-conserving and starvation-free than Varys and can avoid complicated
coflow admission control. S. Luo et al. realized that the deadline-missed coflow mini-



Sensors 2024, 24, 216 3 of 16

mization problem is equivalent to the late job minimization problem in a concurrent open
shop [20,21]. Thus, on the basis of concurrent open-shop scheduling solutions, they designed
a decentralized, deadline-driven, coflow-aware scheduling (D2-CAS) system. The deadline-
aware coflow scheduling schemes in [18–21] all assume that prior knowledge of coflows,
such as the number, size, and endpoint of each flow, can be obtained before scheduling,
but in many practical cases, detailed coflow information is not known or is incomplete [22].
Faced with this problem, researchers have proposed some online information-agnostic coflow
scheduling schemes [22–24] in which they deduce each coflow’s remaining transmission time
and divide coflows into different priority queues according to the known attributes or arrived
bytes. In the second multi-stage coflow scheduling type, researchers scheduled dependent
coflows from precedence-constrained job stages [25–29]. From the perspective of job-level
performance rather than the coflow-level, meeting job deadlines is not equivalent to simply
minimizing each CCT. Y. Liu et al. formulated the average job completion time (JCT)
minimization problem with job deadline and coflow dependency constraints and proposed
a two-level heuristic scheduling solution [25]. In their solution, the first level performs
the Most Bottleneck First (MBF) algorithm to determine job orders, and the second level
performs intra-job and intra-coflow scheduling while considering different coflow depen-
dencies. W. Borjigin et al. divided dependent coflows into different stages and presented a
heuristic multi-objective time-saving first (MTF) scheduling algorithm to guarantee meet-
ing job deadlines [26]. S. Zhang formulated the multi-stage inter-coflow scheduling (MICS)
problem, partitioned MICS into multiple convex single-stage inter-coflow scheduling (SICS)
problems, and designed three online heuristics to balance the fairness and completion
times of coflows [27]. Besides heuristic solutions, B. Tian et al. provided a deterministic
approximation algorithm [28]. They formulated the multi-stage coflow scheduling problem
as a weighted JCT minimization problem, relaxed it into a linear programming problem for
a lower bound, and further constructed a (2M + 1)-approximation scheduling algorithm,
where M is the number of hosts. J. Wang et al. represented multi-stage jobs as directed
acyclic graphs (DAGs) and proposed a genetic-algorithm-based scheduling method to
reduce the time complexity while meeting job deadline demands [29].

In the third joint flow scheduling and routing type, the influence of DCN architecture
is taken into consideration. The previous two scheduling types all assume that perfect
traffic balancing and no over-subscription are achieved in DCNs. As a result, a DCN can
be modeled as a large non-blocking switch. However, perfect traffic balancing is unreal-
istic, since many commercial DCN architectures adopt the equal-cost multipath (ECMP)
hashing-based packet forwarding strategy [17,30]. Though some researchers have opti-
mized flow scheduling and routing jointly to reduce the energy consumption in DCNs,
they did not take the coflow communication feature into account [31]. Y. Zhao et al. were
the first to jointly consider coflow scheduling and routing to optimize the average CCT, and
they developed the scheduling framework RAPIER, which is compatible with commodity
switches [32]. They formulated the single coflow scheduling optimization problem with
routing constraints, proposed a minimum-CCT-based heuristic algorithm to determine
the rate and path for each flow, and scheduled coflows with longer waiting times and less
CCT as a priority. J. Jiang et al. proposed the coflow scheduler Tailor to monitor the flow
bottlenecks and reroute flow to lighter load links [33]. Since RAPIER enables bandwidth
preemption and Tailor enables dynamic routing, they cause frequent rerouting operations,
which seems unrealistic for real-time implementation and large DCNs. Y. Li et al. designed
the OneCoflow and OMCoflow algorithms to address the joint flow scheduling and routing
problems for a single coflow and multiple coflows, respectively [34,35]. OneCoflow is
based on convex programming and rounding and determines the routing path and band-
width allocation for a newly arrived coflow; OMCoflow reschedules the bandwidth for
each existing coflow when a new coflow arrives or when an old coflow is completed. In
OneCoflow and OMCoflow, once a coflow arrives, its routing path is determined, and
frequent re-routings are not allowed. Y. Chen et al. proposed the multi-hop coflow rout-
ing and scheduling (MCRS) strategy in the popular Spine-Leaf topology and allocated



Sensors 2024, 24, 216 4 of 16

longer detour paths to coflows to alleviate link congestion [36,37], which is applicable
to over-subscribed Spine-Leaf networks. The authors of [32–37] only focused on joint
flow scheduling and routing cases at the coflow level, whereas Y. Zeng et al. were the
first to study the job-level case [38]. They formulated the multi-stage job joint scheduling
and routing problem as a non-linear weighted JCT minimization problem and designed a
polynomial-time Multi-stage Job Scheduling (MJS) algorithm. This algorithm can achieve
constant approximation ratios in various typical DCN architectures. The MJS algorithm
determines the job scheduling order according to the optimal solution of the relaxed linear
programming problem and schedules active jobs and coflows one by one. When a new job
arrives or when a flow is completed, MJS recalculates the scheduling result until all jobs
are finished. However, the assumption that a flow can be suspended in MJS is impractical
and will increase the scheduling complexity.

In this paper, we aim to guarantee meeting the deadlines of as many delay-stringent
IoT jobs as possible by integrating scheduling-dependent coflows and optimizing routing
paths in the DCN topology. The main contributions of this paper are as follows. First, we
formalize the multi-job joint scheduling and routing problem with the object of maximiz-
ing the number of jobs for which the deadlines have been met. Second, the problem is
decomposed and solved by the proposed heuristic two-stage joint flow scheduling and
routing (JFSR) scheme. In the first stage, the smallest relative remaining time first (SRRTF)
criterion determines the scheduling order of coflows; in the second stage, the Iterative
Coflow Scheduling and Routing (ICSR) algorithm calculates the rate and path allocation
for each scheduled coflow. Finally, simulation results show that the proposed joint flow
scheduling and routing scheme can significantly increase the number of jobs for which the
deadlines have been met.

The rest of this paper is organized as follows. In Section 2, we introduce the system
model, and in Section 3, we present the deadline-met job number maximization problem
with coflow dependency and network constraints. The proposed two-stage JFSR scheme is
introduced in Section 4. Simulation results are shown in Section 5, and Section 6 concludes
the paper.

2. System Model

In this paper, the DCN topology is modeled as a graph G =< V,E >, where V is the
node set and E is the link set. The available bandwidth of link e ∈ E is denoted by Be.

The delay-stringent IoT job set to be scheduled is denoted by J = {Jn, 1 ≤ n ≤ N}, and
we assume the n-th job Jn contains Nn coflows. The m-th coflow of Jn is denoted by Cn,m, and
the coflow set of Jn is denoted by Cn = {Cn,m, 1 ≤ m ≤ Nn}. We also assume that coflow Cn,m
contains Nn,m flows, and the flow set of Cn,m is represented by Fn,m = {Fn,m,k, 1 ≤ k ≤ Nn,m}.
The k-th flow in Cn,m is further defined as fn,m,k =< sn,m,k, un,m,k, dn,m,k >, where sn,m,k, un,m,k,
and dn,m,k respectively represent the source node, destination node, and data volume of flow
fn,m,k. It is assumed that job information, including source nodes, destination nodes, data
volumes of all coflows, and arrival times and deadlines of jobs, can be obtained once the job
arrives. Note that a job’s arrival time only represents the arrival time of its first coflow, and
the arrival times of subsequent coflows depend on the completion times of their upstream
coflows. We assume that a coflow being transmitted cannot be preempted by other coflows,
and the residual bandwidth information for each link is available to the central job scheduler
whenever needed. The notations to be used are listed in Table 1.

In this paper we focus on the starts–after type coflow dependency, where the down-
stream coflow can not start before the upstream coflow ends, and a computer stage exists
between them [22]. To illustrate the relationship between multi-stage jobs and coflows, a
DAG-based job model from [29] is shown in Figure 1; it includes six computation stages and
five communication stages. The five communication stages can be also referred to as five
different coflows: denoted by C1, C2, C3, C4, and C5, respectively. The DAG can visually
show the data dependencies between adjacent coflows. For example, in Figure 1, T3 cannot
start before both C1 and C2 have ended, and C3 begins after T3 ends. The job completion



Sensors 2024, 24, 216 5 of 16

time is from the beginning of T1, T2, and T4 to the end of T6. Further, the durations of all
computing stages are assumed to be identical.

Table 1. Notations of variable and constants.

Symbol Definition

V Node set
E Link set
Be Bandwidth of link e
J Job set
N Number of jobs
Cn Coflow set of job Jn
Nn Number of coflows in job Jn
Fn,m Flow set of coflow Cn,m
Nn,m Number of flows in coflow Cn,m
sn,m,k Source node of flow fn,m,k
un,m,k Destination node of flow fn,m,k
dn,m,k Data volume of flow fn,m,k
rn Arrival time of job Jn
Dn Acceptable longest duration of job Jn
Tn Completion time of job Jn
Tn,m Completion time of coflow Cn,m
Tn,m,k Completion time of flow fn,m,k
bn,m,k(t) bandwidth of flow fn,m,k at time t
Gn Number of remaining coflow stages of job Jn
Rn,m Relative remaining time of coflow Cn,m
Pi

n,m,k i-th candidate path of fn,m,k

T1 T2 T4

T3

T5

T6

C1 C2

C3

C4

C5

Computation Stage

Communication Stage/Coflow

Job

Completion

Time

Figure 1. A job example represented by the DAG model; the job consists of multiple computation
stages and communication stages.

3. Deadline-Guaranteed Job Number Maximization Problem Formulation
3.1. Motivating Example of Joint Flow Scheduling and Routing

In this subsection, a simple motivating example is given to demonstrate how combin-
ing flow scheduling and routing can improve the JCT performance compared with isolate
coflow scheduling or routing.

In the two-level Spine-Leaf DCN shown in Figure 2, two jobs are deployed. Assume
job J1 contains two coflows C1,1 and C1,2, and job J2 contains coflow C2,1. Coflows C1,1, C1,2,
and C2,1 are respectively represented by an orange solid line, an orange dotted line, and a
blue solid line. For simplicity, we assume each coflow only contains one flow, and the sizes
of C1,1, C1,2, and C2,1 are, respectively, 10 MB, 50 MB, and 30 Mb. The link bandwidths are
all 10 Mbps. We also assume C1,1 and C2,1 are sent from S1 to S5, and C1,2 is sent from S2
to S6.



Sensors 2024, 24, 216 6 of 16

S1 S2 S3 S4 S5 S6

L1 L2
L3

C1 C2

1 1
C 1 2

C
2 1
C

Figure 2. A routing case from ECMP containing coflows C1,1, C1,2, and C2,1.

With a random routing policy such as equal-cost multipath (ECMP), one possible routing
result is shown in Figure 2. C1,1 and C2,1 are transmitted via path S1 − L1 − C1 − L3 − S5,
and C1,2 passes through S2− L1−C1− L3− S6. In this case, the completion times of J1 and J2
under the Smallest Coflow First (SCF) strategy [18] and the Job Completion Time Aware (JCTA)
strategy [25] are shown in Figure 3a,b, respectively. In Figure 3a, the completion times of two
jobs under SCF are respectively 9 s and 4 s, while the JCTs under JCTA are respectively
9 s and 3 s in Figure 3b. Though the JCT of J2 remains unchanged, the JCT of J1 can be
optimized by JCTA.

L1->C1->L3

1 4 9 t/s

1 1
C 1 2

C
2 1
C

(a) SCF

L1->C1->L3

3 4 9 t/s

1 1
C 1 2

C
2 1
C

(b) JCTA

Figure 3. Scheduling results of SCF and JCTA strategies with the routing case above. (a) Completion
times of J1 and J2 under the Smallest Coflow First (SCF) strategy. (b) Completion times of J1 and J2

under the Job Completion Time Aware (JCTA) strategy.

By integrating routing and flow scheduling, an optimized routing solution is shown
in Figure 4, where C1,2 are allocated to path S2 − L1 − C2 − L3 − S6. The corresponding
scheduling results of SCF and JCTA are also shown in Figure 5a,b. In Figure 5a, the
completion times of two jobs under SCF are respectively 5 s and 4 s, while the JCTs under
JCTA are respectively 5 s and 3 s. Similarly, the JCT of J1 can be reduced by JCTA.



Sensors 2024, 24, 216 7 of 16

S1 S2 S3 S4 S5 S6

L1 L2
L3

C1 C2

1 1
C 1 2

C
2 1
C

Figure 4. An improved routing case containing coflows C1,1, C1,2, and C2,1.

1 54

L1->C1->L3

L1->C3->L3

t/s

1 1
C

1 2
C

2 1
C

(a) SCF

3 54

L1->C1->L3

L1->C3->L3

t/s

1 1
C

1 2
C

2 1
C

(b) JCTA

Figure 5. Scheduling results of SCF and JCTA strategies with the improved routing case above.
(a) Completion times of J1 and J2 under the SCF strategy. (b) Completion times of J1 and J2 under the
JCTA strategy.

According to the results above, the average JCT can be optimized by properly scheduling
flows in the time domain after routing is determined. As shown by comparing Figure 3a,b,
the SCF strategy determines the transmission sequence according to the coflow size but does
not consider the coflow dependency or whether multiple coflows belong to the same job; the
JCTA strategy pays more attention to the coflow dependency within the same job, which can
contribute to reducing some jobs’ completion times.



Sensors 2024, 24, 216 8 of 16

Moreover, by comparing the results under the same scheduling policy but different
routing paths, such as Figures 3b and 5b, the JCT’s performance can be further improved
by introducing the path-choosing dimension. The random routing policy may result in
load unbalancing, leaving some links utilized inefficiently. As shown in Figure 2, three
coflows all pass through links L1 − C1 and C1 − L3, making the two links the bottleneck for
job processing while an idle candidate path still exists. Therefore, to guarantee meeting
as many job deadlines as possible, one should properly design joint flow scheduling and
routing policies rather than performing isolated optimization of flow scheduling or routing.

3.2. Deadline-Guaranteed Job Number Maximization Optimization Problem

We aim to maximizing the number of jobs for which the deadlines have been met, i.e.,

max
N

∑
n=1

yn. (1)

The binary variable yn indicates whether job jn can be completed before its deadline
Dn, denoted by

yn =

{
1, if Tn 6 rn + Dn
0, if Tn > rn + Dn.

(2)

Here, rn represents the arrival time of job Jn. The completion times of job Jn, coflow
Cn,m, and flow fn,m,k are respectively denoted by Tn, Tn,m, and Tn,m,k. Since a job’s comple-
tion time depends on the completion time of its last coflow, and a coflow’s completion time
depends on the completion time of its last flow, we have the following two completion
time constraints:

Tn = max
Cn,m∈Cn

Tn,m, ∀n (3)

Tn,m = max
fn,m,k∈Fn,m

Tn,m,k, ∀Cn,m (4)

Variable bn,m,k(t) represents the transmission rate of flow fn,m,k at time t, and thus the
traffic volume constraint for flow fn,m,k can be written as

∫ Tn,m,k

rn
bn,m,k(t)dt = dn,m,k, ∀ fn,m,k. (5)

The starts–after dependency between the m-th and the m′-th coflow of job Jn is denoted
by Cn,m’ > Cn,m, where Cn,m begins after Cn,m’ ends. The precedence constraint in (6)
ensures that Cn,m will not start during the transmission of Cn,m’.∫ Tn,m’

rn
bn,m,k(t)dt = 0, ∀Cn,m’ > Cn,m, ∀ fn,m,k ∈ Fn,m. (6)

The binary variable xn,m,k
e represents whether flow fn,m,k will pass through link e, so

there are flow conservation constraints [39] as (7) and (8), where out(v) and in(v) represent
the set of outgoing links from node v and the set of incoming links to node v, respectively.

∑
e∈out(v)

xn,m,k
e − ∑

e∈in(v)
xn,m,k

e = 0, ∀ fn,m,k, ∀v /∈ {sn,m,k, un,m,k} (7)

∑
e∈out(sn,m,k)

xn,m,k
e − ∑

e∈in(sn,m,k)

xn,m,k
e = 1, ∀ fn,m,k (8)



Sensors 2024, 24, 216 9 of 16

To guarantee that the accumulated rate of all flows allocated to link e will not exceed
the bandwidth, we have the bandwidth constraint as

∑
n

∑
m

∑
k

xn,m,k
e bn,m,k(t) 6 Be, ∀e, ∀t ∈ [Γ0, Γ1], (9)

where Γ0=min
n

rn, Γ1 = min
n

(rn + Dn).

Since the transmission of flow fn,m,k should be between the arrival time and the
deadline of job Jn, we have two rate constraints as (10) and (11).

bn,m,k(t) = 0, ∀ fn,m,k, ∀t ∈ [Γ0, rn) ∪ [Dn, Γ1] (10)

bn,m,k(t) > 0, ∀ fn,m,k, ∀t ∈ [rn, Γ1) (11)

Thus, the multi-job joint flow scheduling and routing problem in a DCN can be
formulated as the non-linear optimization problem P in (12).

P : max
xn,m,k

e ,bn,m,k(t)

N

∑
n=1

yn

s.t. xn,m,k
e ∈ {0, 1}, ∀e, ∀ fn,m,k

Constraint(2)− (11)

(12)

The joint scheduling and routing problem for coflows has been proved to be
NP-hard [32], while P is more complicated due to the nonlinear constraints and binary vari-
ables. Therefore, we decompose P and design an alternative heuristic suboptimal solution.

4. Two-Stage Joint Flow Scheduling and Routing

Due to its intractability, we decompose P into two decoupled sub-problems: the inter-
coflow scheduling problem and the intra-coflow scheduling problem, and we develop a
two-stage JFSR scheme. In JFSR, the first stage performs inter-coflow scheduling based on
the relative remaining time (RRT) criterion and determines the target coflow to be further
processed in the second stage. The second stage aims to figure out whether the target
coflow can be scheduled immediately by arranging the routing path and transmission
rate for each flow in the target coflow with the proposed Iterative Coflow Scheduling and
Routing (ICSR) algorithm. For simplicity, we made three assumptions. First, once a coflow
has been scheduled, the routing paths and transmission sequences of its flows cannot be
preempted by any other coflow that is scheduled later. Second, the bandwidth allocated to
each flow remains constant during its transmission. Third, each flow is unsplittable, i.e., it
is not allowed to be divided into several segments and transmitted via different paths.

4.1. The Smallest Relative Remaining Time First Criterion

In the first stage of JFSR, the key is to determine the target coflow to be scheduled
at time t0. In summary, there are three times when coflows will be checked for possible
scheduling. The first when a new job arrives, and thus the system immediately investigates
whether its first-stage coflows do not have any starts–after-type dependencies from up-
stream coflows and can thus be scheduled via the following ICSR algorithm in the second
stage. If granted, a first-stage coflow from a newly arrived job can be transmitted at once; if
denied due to limited bandwidth, the first-stage coflow will be put on the waiting list to
wait for the next scheduling chance.

The second kind of schedule timing is when a coflow from a previously arrived job is
ready, i.e., when all of its upstream computation stages are finished. Similarly, the system
checks whether this coflow can begin its transmission or should go on the waiting list.

The third kind of schedule timing is when a coflow from a previously arrived job
is finished and some bandwidth resource is released. In this case, the system investi-



Sensors 2024, 24, 216 10 of 16

gates whether any queuing coflow on the waiting list can have a chance. In this case,
the scheduling priority of a queuing coflow is determined by the SRRTF criterion. If
coflow Cn,m is on the waiting list, job Jn has Gn unscheduled coflow stages at time t0, and
coflow Cn,m belongs to the g-th stage, then the RRT of coflow Cn,m at time t0 is defined as
Rn,m = g(rn + Dn − t0)/Gn. For consistency, the RRT values of ready-to-go coflows from
the first two kinds of timings are all set as zero. As a result, in all the three kinds of timings,
ready-to-go coflows and queuing coflows all update their RRT values, and the coflow with
the minimum RRT is chosen as the most urgent one and is handled by the second stage.

4.2. The Iterative Coflow Scheduling and Routing Algorithm

In the second stage, we focus on joint scheduling and routing for the single coflow
chosen from the first stage. If coflow Cn,m is chosen, problem P is simplified into P1, which
aims to minimize the CCT of Cn,m. In P1, (14)–(17) respectively represent the binary variable
constraint, rate variable constraint, traffic volume constraint, and bandwidth constraint,
while (18) and (19) denote the flow conservation constraints.

P1 : min
bn,m,k,xn,m,k

e

Tn,m (13)

s.t. xn,m,k
e ∈ {0, 1}, ∀e, ∀ fn,m,k ∈ Fn,m (14)

bn,m,k > 0, ∀ fn,m,k ∈ Fn,m (15)

Tn,m >
dn,m,k

bn,m,k
, ∀ fn,m,k ∈ Fn,m (16)

∑
fn,m,k∈Fn,m

xn,m,k
e bn,m,k 6 Be, ∀e (17)

∑
e∈out(v)

xn,m,k
e = ∑

e∈in(v)
xn,m,k

e , ∀ fn,m,k ∈ Fn,m, ∀v /∈ {sn,m,k, un,m,k} (18)

∑
e∈out(sn,m,k)

xn,m,k
e − ∑

e∈in(sn,m,k)

xn,m,k
e = 1, ∀ fn,m,k ∈ Fn,m (19)

In fact, P1 is an integer multi-commodity flow problem, which has been proved to
be NP-hard [32]. Therefore, based on the alternating optimization principle, an Iterative
Coflow Scheduling and Routing (ICSR) algorithm is proposed to alternately update the
bandwidth and path allocation for the coflow being scheduled. The basic idea of ICSR is to
fix one of the two kinds of variables—the bandwidth allocation variable bn,m,k or the path
allocation variable xn,m,k

e —in turns and solve for the other one.
At first, the flow rate bn,m,k is initialized to obtain the candidate paths. For flow

fn,m,k, its initial rate is set as bn,m,k(0) = dn,m,k/(rn + Dn − t0). By treating the bandwidth
allocation variable bn,m,k as constant and relaxing the binary constraint of the path allocation
xn,m,k

e , P1 is simplified into the feasibility problem P2. P2 is a linear programming (LP)
problem and can be efficiently solved. Though the object of P2 is a constant, a feasible
solution of P2 is a group of routing paths for which the available bandwidths can satisfy
the bandwidth constraints. When the available bandwidth is limited, it is possible that
the value of xn,m,k

e obtained from P2 is a fraction. In this case, flow fn,m,k can be split into
multiple sub-flows, which are transmitted through different paths. Since each flow is
unsplittable in our fundamental assumption, at the end of the ICSR algorithm, the values
of xn,m,k

e should be recovered to be binary.
During the first iteration loop, it is possible that P2 has no feasible solutions. In this

case, there does not exist a candidate group of routing paths with adequate available
bandwidth to accommodate coflow Cn,m. Thus, the ICSR algorithm ends and coflow Cn,m is
put on the waiting list. When a previously scheduled coflow is finished and the bandwidth



Sensors 2024, 24, 216 11 of 16

is released, all coflows on the waiting list update their RRT values and wait to be processed
by the two stages of JFSR again.

P2 : min
xn,m,k

e

0

s.t. 0 6 xn,m,k
e 6 1, ∀e, ∀ fn,m,k ∈ Fn,m

Constraint(17)− (19)

(20)

With the feasible solutions of xn,m,k
e obtained from P2, we calculate the transmission

rate bn,m,k. By treating xn,m,k
e as constant and introducing the auxiliary variable a = 1/Tn,m,

P1 is simplified and reformulated into the LP problem P3. The resulting values of bn,m,k
will be the input of P2 in the next iteration.

P3 : max
bn,m,k

a

s.t. bn,m,k > 0, ∀ fn,m,k ∈ Fn,m

bn,m,k 6 dn,m,ka, ∀ fn,m,k ∈ Fn,m

∑
fn,m,k∈Fn,m

xn,m,k
e bn,m,k 6 Be, ∀e

(21)

The pseudocode of the ICSR algorithm is given in Algorithm 1. At first, the path
allocation variable xn,m,k

e and the rate allocation variable bn,m,k are alternately optimized
according to P2 and P3, respectively. After enough iterations, the resulting CCT may
be satisfying, but there is a high probability that the values of xn,m,k

e are not binary. To
ensure xn,m,k

e is binary, which guarantees each flow only goes through one path, for flow
fn,m,k we check the value of wi

n,m,k = min
e∈Pi

n,m,k

xn,m,k
e among all candidate paths, where Pi

n,m,k

represents the i-th candidate path of fn,m,k. The candidate path with the maximum value
of wi

n,m,k is chosen as the final transmission path, denoted by P∗n,m,k. Thereafter, the final
transmission rate of flow fn,m,k, denoted by b∗n,m,k, and the corresponding CCT of Cn,m,

denoted by T∗n,m, are determined by solving P3 again with the recovered binary xn,m,k
e . Thus,

the joint scheduling for the finishing and routing of coflow Cn,m is finished. As time goes
by, the system continues to repeat the two steps of the JSFR scheme.

Algorithm 1 Iterative Coflow Scheduling and Routing Algorithm

Require: The prior information of coflow Cn,m.
Ensure: The CCT, path, and rate allocation of Cn,m.

1: Initialization: Set iteration number n = 0, bn,m,k(0) = dn,m,k/(rn + Dn − t0) for all flows
in Cn,m.

2: if P2 is infeasible then
3: Put Cn,m on the waiting list.
4: else
5: repeat
6: 1) Update xn,m,k

e (n + 1) for all flows in Cn,m and all links by solving P2 with
known bn,m,k(n).

7: 2) Update bn,m,k(n + 1) for all flows in Cn,m by solving P3 with known
xn,m,k

e (n + 1), and n← n + 1.
8: until the predetermined iteration number.
9: For flow fn,m,k, choose the final path P∗n,m,k = arg max min

e∈Pi
n,m,k

xn,m,k
e , and set

xn,m,k
e = 1, ∀e ∈ P∗n,m,k, and xn,m,k

e = 0, ∀e /∈ P∗n,m,k.

10: Calculate the final rate b∗n,m,k and CCT T∗n,m by solving P3 with the final xn,m,k
e .

11: end if



Sensors 2024, 24, 216 12 of 16

5. Simulation Results

In this section, the validity of the proposed JFSR scheme is confirmed by Monte Carlo
simulation. The Fat-Tree topology with k = 4 is adopted as the DCN topology [40], and
we utilize Pulp as the LP problem solver [41]. Job arrivals follow the Poisson process with
an average arrival interval λ. The longest acceptable job duration, the number of coflows
in each job, and the number of flows in each coflow all obey uniform distribution. The
data size of flow fn,m,k follows a Gaussian distribution as dn,m,k ∼ N(100, 30) Mb. The link
bandwidth Be is set as 10 Gbps.

The performance of three scheduling schemes were simulated and compared, i.e.,
the Baseline scheme, the Scheduling-Only scheme, and the proposed JFSR scheme. The
Baseline scheme adopted the ECMP routing strategy, shared the bandwidth fairly, and
scheduled coflows based on the SCF policy; the Scheduling-Only scheme also adopted
ECMP and fair bandwidth sharing but scheduled coflows according the SRRTF criterion.

At first, we examine the convergence property of ICSR. The iterative CCT values in
one coflow realization are shown in Figure 6. There are 130 flows in this coflow, and its
RRT is set as 1 s. As shown in Figure 6, the CCT gradually approaches the minimal value.
It should be noticed that this smooth convergence is only guaranteed in the iteration steps
of ICSR. After its last iteration step, the ICSR algorithm recovers the binary variable xn,m,k

e ,
which may not be optimal for the relaxed version of P1. However, the low-complexity
iterative searching of ICSR allows for the performance of more iterative steps and may
capture a satisfactory solution within the limited decision time.

0 1 2 3 4 5

Iteration number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
of

lo
w

 c
om

pl
et

io
n 

tim
e 

/s

Figure 6. Convergence performance of ICSR for a single coflow instance.

The performance metric used to measure the deadline-guarantee capability of schedul-
ing schemes in the simulation is the average normalized number of jobs for which the
deadlines have been met, which is defined as the mean of the ratios of the number of jobs
for which the deadlines have been met to the total number of all jobs in different snapshots
with the same simulation parameters. The average normalized numbers of jobs for which
the deadlines have been met with different flow numbers in each coflow from three schedul-
ing schemes are compared in Figure 7. The average job arrival interval is λ = 3s, the longest
acceptable job duration Dn is uniformly distributed in the interval [10s, 50s], and the coflow
number of each job is subject to a discrete uniform distribution in the interval [10, 20]. The
flow number in each coflow is also subject to a discrete uniform distribution, and the end
points of the distribution interval increase with a step size of 20 until [180, 200] in different
simulation cases. As shown in Figure 7, when the flow number in each coflow is below
20, the average normalized numbers of jobs for which the deadlines have been met from
the three scheduling schemes are close to one. In this case, the flow load is relatively light



Sensors 2024, 24, 216 13 of 16

and almost all jobs’ deadlines can be met. As the flow number in each coflow gradually
increases, the proposed JFSR scheme achieves significantly better performance than the
other two scheduling schemes, while the Scheduling-Only scheme also outperforms the
Baseline scheme. Therefore, integrating optimizing the routing path into coflow scheduling
can efficiently guarantee the deadline-met performance for multi-stage time-sensitive jobs.
The Baseline and Scheduling-Only schemes both adopt ECMP as the random routing
strategy and use fair bandwidth sharing, and the hash-table-based path selection may
arrange for too many flows to share the bandwidth of the same bottlenecked link. As a
result, the limited bandwidth allocated to every flow passing through the bottlenecked
link will remarkably increase the completion times of these unlucky flows, which will
further raise the completion times of the coflows as well the jobs that contain these delayed
flows. As the flow number in each coflow increases, the effect becomes more and more
pronounced. At the same time, the proposed JFSR scheme can optimize the routing paths
and the bandwidth allocations for the flows of each coflow via the designed ICSR algorithm.
Thus, the completion time of each coflow can be reduced, which will further contribute to
reducing the JCT. Therefore, the increase in each coflow’s flow number has a smaller impact
on the curve of JFSR in Figure 7. Further, the performance difference between the Baseline
and Scheduling-Only schemes can be attributed to their inter-coflow scheduling policies.
The Baseline scheme determines the scheduling priorities of coflows according to their
data volumes, i.e., via the SCF policy, but does not involve the deadline information. The
Scheduling-Only scheme considers prior deadline information of jobs as well as the RRT of
coflows and thus can guarantee more jobs’ deadlines are met than the Baseline scheme.

Flow number in each coflow

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
liz

e
d
 d

e
a
d
lin

e
 m

e
t 
jo

b
 n

u
m

b
e
rs

JSFR

Scheduling-Only

Baseline

Figure 7. The average normalized numbers of jobs for which the deadlines have been met with the
increase in the flow number in each coflow under different scheduling policies.

The influence of the coflow number in each job on the average normalized number of
jobs for which the deadlines have been met from three scheduling schemes is illustrated in
Figure 8. The settings of λ and Dn are identical as those in Figure 7, and the flow number in
each coflow is subject to a discrete uniform distribution on the interval [80, 100]. The coflow
number in each job is also subject to a discrete uniform distribution, and the end points of
the distribution interval increase from [10, 12] to [28, 30] in different simulation cases. As
the coflow number in each job increases, the average normalized numbers of punctual jobs
from the three scheduling schemes all gradually decrease in Figure 8. Similar to Figure 7,
the proposed JFSR scheme can still guarantee meeting many more job deadlines than the
other two scheduling schemes, and the Scheduling-Only scheme is also superior to the
Baseline scheme in Figure 8. With the increase in the coflow number in each job, heavier
flow loads are deployed into the network, and the starts–after-type coflow dependency
relationships becomes more and more complicated. The JFSR scheme can both optimize
the completion of each coflow via the ICSR algorithm and arrange for a more appropriate
dispatching sequence for coflows via the SRRTF criterion. These two factors ensure the
JFSR scheme can maintain better performance at guaranteeing meeting job deadlines than
the other two scheduling schemes under different flow loads.



Sensors 2024, 24, 216 14 of 16

Coflow number in each job

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o
rm

a
liz

e
d
 d

e
a
d
lin

e
 m

e
t 
jo

b
 n

u
m

b
e
rs

JSFR

Scheduling-Only

Baseline

Figure 8. The average normalized numbers of jobs for which the deadlines have been met with the
increase in the coflow number in each job under different scheduling policies.

6. Conclusions

In this paper we focused on how to guarantee meeting the deadlines of time-sensitive
IoT jobs by jointly considering flow scheduling and routing in DCNs. First, the multi-job
joint flow scheduling and routing problem was formulated as a non-linear optimization
problem with the object of maximizing the number of jobs for which the deadlines have
been met. Then, we decomposed the problem into two inter-coflow scheduling and intra-
coflow scheduling sub-problems to reduce the complexity of solving the problem. In the
inter-coflow scheduling subproblem, coflows are ordered by their relative remaining times;
in the intra-coflow scheduling subproblem, an iterative coflow scheduling and routing
(ICSR) algorithm was designed to determine the transmission rates and routing paths
for the scheduled coflow. Simulation results verified the proposed two-stage joint flow
scheduling and routing can efficiently improve the number of jobs for which the deadlines
have been met in DCNs. However, the proposed JFSR scheme is based on some ideal
assumptions, and these assumptions are less practical in real data center scenarios. For
example, we assume that complete job information, including the source nodes, destination
nodes, and data volumes of all coflows in each job, can be obtained once the job arrives,
and the residual bandwidth information for each link is available whenever needed. In fact,
in practical scenarios, the detailed coflow information is not known or is incomplete, and
the link’s residual bandwidth information is usually outdated. Even so, we think the basic
principle of the proposed JFSR scheme is still applicable for designing online information-
agnostic coflow scheduling schemes and may be helpful for researchers or engineers in this
field. For example, incomplete coflow information can be replaced by statistical information
derived from massive historical records of the same kind of cluster computing jobs, and
link residual bandwidth may be obtained by advanced forecasting algorithms. In the
future, these realistic constraints should be considered for designing a more practical
flow scheduling scheme for cloud data centers, which is attractive for researchers or
engineers developing software programs to configure and manage physical or virtual
network resources for cloud data center infrastructure providers or service providers.

Author Contributions: Conceptualization and methodology, L.S. and W.J.; Formal analysis, vali-
dation, and writing—original draft preparation, L.S. and H.M.; software and writing—review and
editing, X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (62101415).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.



Sensors 2024, 24, 216 15 of 16

Acknowledgments: The authors would like to thank the Editor-in-Chief, Editor, and anonymous
Reviewers for their valuable reviews.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhao, W.; Liu, J.; Guo, H.; Hara, T. ETC-IoT: Edge-Node-Assisted Transmitting for the Cloud-Centric Internet of Things.

IEEE Netw. 2018, 32, 101–107. [CrossRef]
2. Pan, J.; McElhannon, J. Future Edge Cloud and Edge Computing for Internet of Things Applications. IEEE Internet Things J.

2018, 5, 439–449. [CrossRef]
3. Bozkurt, I.; Aguirre, A.; Chandrasekaran, B. Why is the Internet so Slow? In Proceedings of the International Conference on

Passive and Active Network Measurement, Sydney, NSW, Australia, 30–31 March 2017; Volume 10176; pp. 173–187. [CrossRef]
4. Liu, B.; Liu, C.; Peng, M. Resource Allocation for Energy-Efficient MEC in NOMA-Enabled Massive IoT Networks. IEEE J. Sel.

Areas Commun. 2021, 39, 1015–1027. [CrossRef]
5. Zhang, J.; Li, T.; Ying, Z.; Ma, J. Trust-Based Secure Multi-Cloud Collaboration Framework in Cloud-Fog-Assisted IoT. IEEE Trans.

Cloud Comput. 2023, 11, 1546–1561. [CrossRef]
6. Giroire, F.; Huin, N.; Tomassilli, A.; Pérennes, S. When network matters: Data center scheduling with network tasks. In

Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019;
pp. 2278–2286.

7. Dean, J.; Ghemawat, S. MapReduce: simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]
8. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster Computing with Working Sets. In Proceedings

of the 2nd USENIX Conference on Hot Topics in Cloud Computing, Boston, MA, USA, 22–25 June 2010; p. 10.
9. Chowdhury, M.; Zaharia, M.; Ma, J.; Jordan, M.I.; Stoica, I. Managing Data transfers in computer clusters with orchestra.

ACM Sigcomm Comput. Commun. Rev. 2011, 41, 98–109. [CrossRef]
10. Hong, C.Y.; Caesar, M.; Godfrey, P.B. Finishing Flows Quickly with Preemptive Scheduling. In Proceedings of the ACM

SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, Helsinki,
Finland, 13–17 August 2012 ; pp. 127–138.

11. Guo, Z.; Hui, S.; Xu, Y.; Chao, H.J. Dynamic flow scheduling for power-efficient data center networks. In Proceedings of the 2016
IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), Beijing, China, 20–21 June 2016; pp. 1–10. [CrossRef]

12. Gopalakrishna, V.K.; Kaymak, Y.; Lin, C.B.; Rojas-Cessa, R. PEQ: Scheduling Time-Sensitive Data-Center Flows using Weighted
Flow Sizes and Deadlines. In Proceedings of the 2020 IEEE 21st International Conference on High Performance Switching and
Routing (HPSR), Newark, NJ, USA, 11–14 May 2020; pp. 1–6. [CrossRef]

13. Xu, Y.; Luo, H.; Ren, F. Is minimizing flow completion time the optimal way in meeting flow’s deadline in datacenter networks.
China Commun. 2016, 13, 6–15. [CrossRef]

14. Ho, J.M.; Hsiu, P.C.; Chen, M.S. Deadline Flow Scheduling in Datacenters with Time-Varying Bandwidth Allocations. IEEE Trans.
Serv. Comput. 2020, 13, 437–450. [CrossRef]

15. Chowdhury, M.; Stoica, I. Coflow: a networking abstraction for cluster applications. In Proceedings of the 11th ACM Workshop on
Hot Topics in Networks, Association for Computing Machinery, Redmond, WA, USA, 29–30 October 2012; pp. 31–36. [CrossRef]

16. Qiu, Z.; Stein, C.; Zhong, Y. Minimizing the Total Weighted Completion Time of Coflows in Datacenter Networks. In Proceedings
of the 27th ACM Symposium on Parallelism in Algorithms and Architectures. Association for Computing Machinery, Portland,
OR, USA, 13–15 June 2015; pp. 294–303. [CrossRef]

17. Chen, T.; Gao, X.; Chen, G. The features, hardware, and architectures of data center networks: A survey. J. Parallel Distrib. Comput.
2016, 96, 45–74. [CrossRef]

18. Chowdhury, M.; Zhong, Y.; Stoica, I. Efficient coflow scheduling with Varys. ACM Sigcomm Comput. Commun. Rev. 2014, 44,
443–454. [CrossRef]

19. Ma, S.; Jiang, J.; Li, B.; Li, B. Chronos: Meeting coflow deadlines in data center networks. In Proceedings of the 2016 IEEE
International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [CrossRef]

20. Luo, S.; Yu, H.; Li, L. Decentralized deadline-aware coflow scheduling for datacenter networks. In Proceedings of the 2016 IEEE
International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 23–27 May 2016; pp. 1–6. [CrossRef]

21. Luo, S.; Yu, H.; Zhao, Y.; Wang, S.; Yu, S.; Li, L. Towards Practical and Near-Optimal Coflow Scheduling for Data Center Networks.
IEEE Trans. Parallel Distrib. Syst. 2016, 27, 3366–3380. [CrossRef]

22. Chowdhury, M.; Stoica, I. Efficient Coflow Scheduling without Prior Knowledge. ACM SIGCOMM Comput. Commun. Rev.
2015, 45, 393–406. [CrossRef]

23. Zhang, T.; Ren, F.; Shu, R.; Wang, B. Scheduling Coflows with Incomplete Information. In Proceedings of the 2018 IEEE/ACM
26th International Symposium on Quality of Service (IWQoS), Banff, AL, Canada, 4–6 June 2018; pp. 1–10. [CrossRef]

24. Wang, Z.; Zhang, H.; Shi, X.; Yin, X.; Li, Y.; Geng, H.; Wu, Q.; Liu, J. Efficient Scheduling of Weighted Coflows in Data Centers.
IEEE Trans. Parallel Distrib. Syst. 2019, 30, 2003–2017. [CrossRef]

25. Liu, Y.; Li, W.; Li, K.; Qi, H.; Tao, X.; Chen, S. Scheduling Dependent Coflows with Guaranteed Job Completion Time. In
Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016; pp. 2109–2115. [CrossRef]

http://doi.org/10.1109/MNET.2018.1700164
http://dx.doi.org/10.1109/JIOT.2017.2767608
http://dx.doi.org/10.1007/978-3-319-54328-4_13
http://dx.doi.org/10.1109/JSAC.2020.3018809
http://dx.doi.org/10.1109/TCC.2022.3147226
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/2043164.2018448
http://dx.doi.org/10.1109/IWQoS.2016.7590399
http://dx.doi.org/10.1109/HPSR48589.2020.9098992
http://dx.doi.org/10.1109/CC.0.7560891
http://dx.doi.org/10.1109/TSC.2017.2701363
http://dx.doi.org/10.1145/2390231.2390237
http://dx.doi.org/10.1145/2755573.2755592
http://dx.doi.org/10.1016/j.jpdc.2016.05.009
http://dx.doi.org/10.1145/2740070.2626315
http://dx.doi.org/10.1109/ICC.2016.7511249
http://dx.doi.org/10.1109/ICC.2016.7511251
http://dx.doi.org/10.1109/TPDS.2016.2525767
http://dx.doi.org/10.1145/2829988.2787480
http://dx.doi.org/10.1109/IWQoS.2018.8624126
http://dx.doi.org/10.1109/TPDS.2019.2905560
http://dx.doi.org/10.1109/TrustCom.2016.0324


Sensors 2024, 24, 216 16 of 16

26. Borjigin, W.; Ota, K.; Dong, M. Time-Saving First: Coflow Scheduling for Datacenter Networks. In Proceedings of the 2017 IEEE
86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–5. [CrossRef]

27. Zhang, S.; Zhang, S.; Qian, Z.; Zhang, X.; Xiao, M.; Wu, J.; Ge, J.; Wang, X. Efficient scheduling for multi-stage coflows.
CCF Trans. Netw. 2019, 2, 83–97. [CrossRef]

28. Tian, B.; Tian, C.; Wang, B.; Li, B.; He, Z.; Dai, H.; Liu, K.; Dou, W.; Chen, G. Scheduling dependent coflows to minimize the total
weighted job completion time in datacenters. Comput. Netw. 2019, 158, 193–205. [CrossRef]

29. Wang, J.; Zhou, H.; Yang, H.; Laat, C.D.; Zhao, Z. Deadline-aware coflow scheduling in a DAG. In Proceedings of the 2017
IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Hong Kong, 11–14 December 2017;
pp. 341–346. [CrossRef]

30. Yuang, M.; Tien, P.L.; Ruan, W.Z.; Lin, T.C.; Wen, S.C.; Tseng, P.J.; Lin, C.C.; Chen, C.N.; Chen, C.T.; Luo, Y.A.; et al. OPTUNS:
Optical intra-data center network architecture and prototype testbed for a 5G edge cloud [Invited]. J. Opt. Commun. Netw.
2020, 12, A28–A37. [CrossRef]

31. Zhu, H.; Liao, X.; de Laat, C.; Grosso, P. Joint flow routing-scheduling for energy efficient software defined data center networks
A prototype of energy-aware network management platform. J. Netw. Comput. Appl. 2016, 63, 110–124. [CrossRef]

32. Zhao, Y.; Chen, K.; Bai, W.; Yu, M.; Tian, C.; Geng, Y.; Zhang, Y.; Li, D.; Wang, S. Rapier: Integrating routing and scheduling for
coflow-aware data center networks. In Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM),
Kowloon, Hong Kong, 26 April–1 May 2015; pp. 424–432. [CrossRef]

33. Jiang, J.; Ma, S.; Li, B.; Li, B. Tailor: Trimming Coflow Completion Times in Datacenter Networks. In Proceedings of the 2016 25th
International Conference on Computer Communication and Networks (ICCCN), Waikoloa, HI, USA, 1–4 August 2016; pp. 1–9.
[CrossRef]

34. Li, Y.; Jiang, H.C.; Tan, H.; Zhang, C.; Lau, F. Efficient online coflow routing and scheduling. In Proceedings of the the 17th ACM
International Symposium. Association for Computing Machinery, Trento, Italy, 12–16 December 2016; pp. 161–170. [CrossRef]

35. Tan, H.; Jiang, S.H.C.; Li, Y.; Li, X.Y.; Zhang, C.; Han, Z.; Lau, F.C.M. Joint Online Coflow Routing and Scheduling in Data Center
Networks. IEEE/ACM Trans. Netw. 2019, 27, 1771–1786. [CrossRef]

36. Chen, Y.; Wu, J. Multi-Hop Coflow Routing and Scheduling in Data Centers. In Proceedings of the 2018 IEEE International
Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [CrossRef]

37. Chen, Y.; Wu, J. Joint coflow routing and scheduling in leaf-spine data centers. J. Parallel Distrib. Comput. 2021, 148, 83–95.
[CrossRef]

38. Zeng, Y.; Ye, B.; Tang, B.; Guo, S.; Qu, Z. Scheduling coflows of multi-stage jobs under network resource constraints. Comput. Netw.
2021, 184, 107686. [CrossRef]

39. Kai, H.; Hu, Z.; Luo, J.; Liu, X. RUSH: RoUting and Scheduling for Hybrid Data Center Networks. In Proceedings of the 2015 IEEE
Conference on Computer Communications (INFOCOM), Kowloon, Hong Kong, 26 April–1 May 2015; pp. 415–423. [CrossRef]

40. Al-Fares, M.; Loukissas, A.; Vahdat, A. A Scalable, Commodity Data Center Network Architecture. In Proceedings of the ACM
SIGCOMM 2008 Conference on Data Communication. Association for Computing Machinery, Seattle, WA, USA, 17–22 August 2008;
pp. 63–74. [CrossRef]

41. PuLP. Available online: https://pypi.org/project/PuLP/ (accessed on 5 May 2005 ).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/VTCFall.2017.8288339
http://dx.doi.org/10.1007/s42045-019-00018-6
http://dx.doi.org/10.1016/j.comnet.2019.05.010
http://dx.doi.org/10.1109/CloudCom.2017.55
http://dx.doi.org/10.1364/JOCN.12.000A28
http://dx.doi.org/10.1016/j.jnca.2015.10.017
http://dx.doi.org/10.1109/INFOCOM.2015.7218408
http://dx.doi.org/10.1109/ICCCN.2016.7568579
http://dx.doi.org/10.1145/2942358.2942367
http://dx.doi.org/10.1109/TNET.2019.2930721
http://dx.doi.org/10.1109/ICC.2018.8422880
http://dx.doi.org/10.1016/j.jpdc.2020.09.007
http://dx.doi.org/10.1016/j.comnet.2020.107686
http://dx.doi.org/10.1109/INFOCOM.2015.7218407
http://dx.doi.org/10.1145/1402958.1402967
https://pypi.org/project/PuLP/

	Introduction
	System Model
	Deadline-Guaranteed Job Number Maximization Problem Formulation
	Motivating Example of Joint Flow Scheduling and Routing 
	Deadline-Guaranteed Job Number Maximization Optimization Problem

	Two-Stage Joint Flow Scheduling and Routing
	The Smallest Relative Remaining Time First Criterion
	The Iterative Coflow Scheduling and Routing Algorithm

	Simulation Results
	Conclusions
	References

