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Abstract: Pomological traits are the major factors determining the quality and price of fresh fruits. This
research was aimed to investigate the feasibility of using two hyperspectral imaging (HSI) systems in
the wavelength regions comprising visible to near infrared (VisNIR) (400−1000 nm) and short-wave
infrared (SWIR) (935−1720 nm) for predicting four strawberry quality attributes (firmness—FF, total
soluble solid content—TSS, titratable acidity—TA, and dry matter—DM). Prediction models were
developed based on artificial neural networks (ANN). The entire strawberry VisNIR reflectance
spectra resulted in accurate predictions of TSS (R2 = 0.959), DM (R2 = 0.947), and TA (R2 = 0.877),
whereas good prediction was observed for FF (R2 = 0.808). As for models from the SWIR system, good
correlations were found between each of the physicochemical indices and the spectral information
(R2 = 0.924 for DM; R2 = 0.898 for TSS; R2 = 0.953 for TA; R2 = 0.820 for FF). Finally, data fusion
demonstrated a higher ability to predict fruit internal quality (R2 = 0.942 for DM; R2 = 0. 981 for TSS;
R2 = 0.976 for TA; R2 = 0.951 for FF). The results confirmed the potential of these two HSI systems as a
rapid and nondestructive tool for evaluating fruit quality and enhancing the product’s marketability.

Keywords: quality attributes; visible–near infrared system; short-wave infrared system; artificial
neural networks; data fusion

1. Introduction

Nowadays, agrifood industries have increased expectations about sustainable pro-
duction, the delivery of high-quality and safe food products, and the reduction in food
losses along the entire supply chain, including post-harvest losses. The quick and accurate
monitoring and evaluation of the quality, safety, nutrition, sensorial attributes, and shelf
life of food products are being increasingly requested by the agrifood industries. Unfor-
tunately, many industries rely on traditional human visual inspection to monitor product
quality. However, this method is inefficient and subjective [1]. Furthermore, traditional and
analytical techniques, such as proximate analysis, as well as chromatographic and mass
spectrometry, are destructive, expensive, time-consuming, and not useful for large-scale
sample evaluation, and they can generate pollution and harmful waste [2,3]. In fact, unlike
traditional analytical methodologies for fruit internal quality assessment, the advantages
of using hyperspectral imaging systems include rapid analysis times; small sample size;
simple sample preparation, usually requiring few steps; reduced costs (compared to other
laboratory equipment); and the absence of toxic or carcinogenic chemicals.

In recent years, some smart methods and real-time and nondestructive systems to
assess quality parameters have been developed. Among these, computer vision technology
and optical techniques have received increased attention for quality assessment. The first
technique, based on image processing and analysis, allows for automated visual inspection.
However, it can be inefficient in the evaluation of objects with similar colors or for detecting
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invisible defects. Moreover, it cannot be useful for predicting food chemical composi-
tion [1]. On the contrary, vibrational spectroscopy methods, particularly near-infrared
spectroscopy (NIRS), have the potential for simultaneously measuring multiple quality
properties [1]. However, they are limited in the spatial dimension, without information on
position/location of the constituents investigated and could miss contaminants confined to
small areas on the products [4].

The combination of spectroscopic techniques and imaging processing gives rise to the
hyperspectral imaging (HSI) system, which enables the immediate recognition of different
elements and their spatial distribution in the samples in a nondestructive, highly accurate,
and fast way with minimal sample preparation. HSI produces a two-dimensional spatial
array of vectors, which corresponds to the spectrum at each pixel location. Therefore, a
three-dimensional dataset with the two spatial dimensions and one spectral dimension (i.e.,
a hypercube) is obtained. The spectrum related to each pixel in a food image can represent
a fingerprint to identify the biochemical composition of the pixel, thus allowing for the
vision of the constituents of the food sample at a pixel level with high accuracy. In fact,
HSI can provide simultaneously spatial and physical attributes such as shape, texture, and
color of the samples, as well as intrinsic and molecular information [5].

HSI has been successfully used to assess fruit quality, fruit ripeness, and fruit dam-
age [6–14]. In particular, the rapid and nondestructive evaluation of quality attributes,
especially for easily perishable fruit, is a crucial point along all the supply chain. Strawberry
fruit (Fragaria × ananassa Duch.) is the most consumed berry fruit crop worldwide [15].
It can be consumed fresh or frozen, or utilized for garnishing cakes and pastries or as
raw material and additive for jams, juices, ice cream, and jellies [16,17]. However, it is
a strongly focused fruit due to its high perishability. Therefore, identifying the quali-
tative characteristics of the fruit—which are also related to genetic and environmental
conditions—to establish the most appropriate time for harvesting, retail sale, and consump-
tion, is of fundamental importance.

In recent years, machine learning has been successfully applied in precision agri-
culture and the food industry, especially for the prediction and classification of quality
parameters of fruit and vegetables [18]. Among the various machine learning techniques,
artificial neural networks (ANN) have a powerful learning ability and identifying and
modeling ability for the complex and often nonlinear relationships between input and
output signals depending on the provided patterns [19]. Furthermore, ANN can learn from
examples datasets through iteration without requiring prior knowledge of the relationships
between the process variables. Previous studies proved that ANN can reliably predict fruit
characteristics [20–23].

In light of these considerations, our study aimed to assess the performances
in the prediction of two hyperspectral imaging systems with different wavelength
ranges, a visible–near-infrared (VisNIR, 400–1000 nm) system and a short-wave infrared
(SWIR, 935–1720 nm) system. Prediction models were developed for strawberry firmness,
total soluble solid content, titratable acidity, and dry matter using artificial neural network
algorithms, highlighting the most predictive input spectral regions for the two systems.
Moreover, the fusion of spectral information from visible-light and short-wave infrared
bands was used to improve predictiveness of all models. Although previous studies investi-
gated the application of hyperspectral imaging for predicting major strawberry pomological
traits [6,14,24], no studies were found to predict dry matter. In general, measurements
of several parameters for a single small fruit and berry are quite difficult to carry out,
because there is not enough material for a lot of physical and chemical determinations.
For this reason, the studies on strawberry often do not consider dry matter coupled with
total soluble solid content, titratable acidity, or other phytochemicals. All the pomological
traits considered in our study can determine the quality, the price of fresh fruit, and the
fruit’s specific intended use. In particular, total soluble solids and titratable acidity can be
useful for identifying fruit quality for ready-to-eat purposes, whereas a high content of dry
matter is a good indicator for the industrial processing of strawberries into jams, jellies, and
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juices, among others [25]. This study can provide a valuable contribution to agricultural
technology and the food industry by applying hyperspectral imaging for a rapid and
nondestructive assessment of strawberry internal quality. Moreover, the identification of
the most predictive input spectral regions can be the starting point for building new and
inexpensive sensors based on a small number of wavelengths, to be used commercially or
for broader practical application.

2. Materials and Methods
2.1. Plant Material and Experimental Design

Strawberry fruits (Fragaria × ananassa L.) from four everbearing strawberry cultivars,
listed in Table 1, were bought from local markets in two different periods (April and July).

Table 1. Cultivars, pedigree, origin, cultivation area (from: https://plantgest.imagelinenetwork.com;
accessed on 18 December 2023) for the four strawberry cultivars.

Cultivar Pedigree Origin

Sabrina Sel. 90-020-01 × Sel. 97-19 Spain

Calinda Unknown Netherlands and Bonares,
Andalusia, Spain

Marimbella Unknown Italy
Sabrosa-Candonga Sel. 92-38 × Sel. 86-032 Spain

Samples for each cultivar are shown in Figure 1.
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measured with a penetrometer (Fruit Pressure Tester FT011, TR snc, Forlì, Italy), using an 
8 mm tip, and the result was expressed in Newton (N). Skin color was acquired on the 

Figure 1. Samples of (A) Sabrina; (B) Calinda; (C) Marimbella; (D) Sabrosa.

After purchase, the fruits were immediately transported to the laboratory and screened
for uniformity, appearance, and the absence of physical defects or decay. Two independent
sets of 200 fruit samples, referring to the types of spectroscopic acquisition (VisNIR and
SWIR) were constituted. Fifty strawberries were considered for each of the four cultivars
(Calinda, Marimbella, Sabrina, Sabrosa).

2.2. Analytical Methods

Quality analyses (i.e., weight, length, width, thickness, color (CIELab coordinates:
L*, a*, b*), firmness (FF), dry matter (DM), titratable acidity (TA), and total soluble solid
content (TSS)) were performed on single fresh fruits, as previously reported by Amoriello
et al. (2022) [15]. In detail, digital calliper (±0.05 mm accuracy) was used to determine
the strawberry dimensions (length, width, thickness) expressed in mm. Dry matter was
evaluated drying the fresh samples at 105 ± 1 ◦C until a constant weight was reached
using oven, and the results were expressed as g 100 g−1 of fresh weight (FW). Berry
firmness was measured with a penetrometer (Fruit Pressure Tester FT011, TR snc, Forlì,
Italy), using an 8 mm tip, and the result was expressed in Newton (N). Skin color was
acquired on the external opposite sides of fruit using CIELab color space, obtained with
a tristimulus colorimeter (Chroma Meter CR-200; Minolta, Milan, Italy), equipped with a
D65 illuminant [15].

https://plantgest.imagelinenetwork.com
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The method for titratable acidity was based on titration of the acids present in the
juice with sodium hydroxide (0.1 N) using an automatic titration system (785 DPM Titrino,
Metrohm Ltd., Herisau, Switzerland). Data were given as mEq L−1. TSS evaluation
was made with a digital refractometer (Refractometer 30PX, Mettler Toledo, Greifensee,
Switzerland). TSS was expressed as g 100 g−1 of FW.

2.3. Hyperspectral Image Acquisition

Two hyperspectral imaging systems (VisNIR and SWIR) were used to acquire hyper-
spectral images of strawberry samples.

Images from the first set of samples (VisNIR) were acquired in reflectance mode using
a portable Specim IQ hyperspectral camera with push-broom technology (Specim, Spectral
Imaging Ltd., Oulu, Finland), as described by Dashti et al. [5]. The VisNIR system included
a spectrometer, a CMOS surface detector, a lens (Specimens FX10, Specim, Spectral Imaging
Ltd., Oulu, Finland) with a detection range of 400–1000 nm and 224 wavelength points, and
a computer system with an imaging acquisition software (Lumo-Scanner, Specim, Spectral
Imaging Ltd., Oulu, Finland).

The spatial resolution was 512 × 512 pixels and the spectral resolution was 7 nm
resulting in 204 spectral bands across the wavelength range. Therefore, a 3D hypercube was
obtained with dimensions of 512 × 512 × 204 with over 53 million data points for each scan
and active pixel pitch 17.58 µm. The camera was fixed on the tripod facing downwards,
and samples were positioned on a table below the camera for scanning (Figure 2). Two
halogen-based lamps, placed at 45◦ facing downwards, were used as the light source. The
integration time of the hyperspectral camera was set to 45.0 ms. A white diffuse reflectance
target was used to carry out a white reference image to operate in simultaneous modality.
The RGB and hyperspectral images were acquired through IQ studio software (Specim,
Spectral Imaging Ltd., Oulu, Finland).

Figure 2. Schematic diagram of the VisNIR hyperspectral imaging system.

Images from the second set of samples (SWIR) were acquired in reflectance mode using
a SisuCHEMA Hyperspectral Chemical Imaging Analyser (SPECIM, Spectral Imaging LTD,
Oulu, Finland) system. The system uses a push-broom imaging technology that captures
one line of an image at a time while scanning the sample on a sliding table. The system
included (1) a scanner table having a maximum scanning rate of 60 mm/s and a spatial
resolution of 600 µm, with an integrated SPECIM diffusive line illumination unit (located
on top of the samples in a 45◦ angular position with respect to the samples) to illuminate
the camera’s field of view; (2) a monochrome InGaAs image sensor detector (Specim FX17,
Spectral Imaging Ltd., Oulu, Finland) with a spectral range of 935–1720 nm and spatial
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resolution of 640 pixels, 224 wavebands and spectral resolution of 8 nm full width half
maximum; (3) a computer with an imaging acquisition software (Lumo-Scanner, Specim,
Spectral Imaging Ltd., Oulu, Finland). The exposure time of the hyperspectral camera
was set to 4.70 ms, the frame rate to 15.20 Hz, the positioning speed of the platform to
20.00 mm s−1, and the scanning speed to 5.84 mm s−1.

All acquired raw hyperspectral images were then corrected into reflectance hyperspec-
tral images using the white and dark references [26], according to the following equation:

I =
Iraw − IB

IW − IB
(1)

where I = the corrected reflectance, Iraw = the original reflectance, IB = the black reference,
and IW = the white reference.

2.4. Data Analysis

Two hundred samples for each of the two sets of strawberries were acquired twice, on
opposite sides of the fruit. The mean spectrum from two spectra was determined for each
sample, baseline corrected and used as a spectral signature of the sample in the spectral
dataset. First-order Savitzky–Golay derivative was applied on the data for baseline cor-
rection and smoothing. The Savitzky–Golay filter was chosen because it tends to preserve
the original signals by removing noise only to some degree [27]. Image segmentation was
carried out with the principal component analysis (PCA) algorithm on mean centered
spectra, considering the first two principal components (PCs) to remove the background
and extract the pixels of each strawberry sample from the entire hyperspectral image. PCA
allowed a lower dimensional representation of the data by forming linear combinations
of the original wavebands in direction of maximal variance [28]. This is represented by
score images. Then, all the hypercubes were transformed into two-dimensional matrices
containing as many rows as the pixels retained after background elimination and as many
columns as the number of wavelengths by unfolding. The spectra related to all pixels
of strawberries were then averaged to obtain the mean spectrum of each sample. This
processing was obtained using Evince software (Prediktera AB, Umeå, Sweden).

2.5. Prediction Models

Pomological traits of the strawberries (firmness, total soluble solid content, titratable
acidity, dry matter) were predicted using artificial neural networks (ANN). A feed-forward
architecture of ANN, known as multilayered perceptron (MLP), with back propagation
and training algorithms, was employed to build predictive and nonlinear models for the
output variables (FF, TSS, TA, DM) for both VisNIR and SWIR systems. Each of two whole
datasets, containing the mean spectra of each strawberry sample, was randomly divided
into training set (80% of data) and testing set (20% of data).

The ANN model consisted of three layers: an input layer with the neurons as in-
dependent variables (the spectral response), one or more hidden layers, and one output
layer for each output variable (FF, TSS, TA, DM) with the neurons as dependent variables,
as shown in Figure 3. The number of artificial neurons or nodes equals the size of the
input vector. Different activation functions (identity function, logistic function, hyperbolic
tangent function, and exponential function), as reported by Amoriello et al. (2022) [15],
were considered. Different topologies with different neurons in the hidden layer (from
1 to 25) were tested, and the training process of the network was run 100,000 times with
random initial values of weights and biases. The best topology for all pomological traits
was evaluated using prediction performance values.
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Prediction performances of various ANN configurations for each pomological trait
were evaluated using four statistical metrics: the coefficient of determination (R2), the mean
absolute error (MAE), the root mean squared error (RMSE), and the relative standard error
(RSE), as defined by Amoriello et al. (2022) [15].

To improve the performances of models for all quality parameters, the fusion of
spectral data from the two HSI systems was applied. It was performed at low-level fusion.
Therefore, the two spectral datasets were first autoscaled to compensate for the scale
differences, and then concatenated and merged into a single matrix containing 406 variables
for modeling.

Data were processed using TIBCO® Statistica statistical package software (version
13.5, TIBCO software Inc., Palo Alto, CA, USA).

2.6. Statistical Analysis

Differences in all measured properties were determined using a one-way analysis of
variance (ANOVA) and the Kruskal–Wallis nonparametric test at a significance level of 5%,
using SPSS statistical software (version 22, SPSS, Chicago, IL, USA).

3. Results and Discussion
3.1. Exploratory Analysis

The main quality traits of the first set of strawberry varieties under evaluation are
shown in Table 2.

A considerable variability was observed in all pomological traits among the cultivars.
Fresh weight ranged from 57 ± 13 g (Sabrina) to 22 ± 10 g (Sabrosa). Consequently, Sabrina
and Sabrosa were characterized by the greatest and lowest values of length and width,
respectively (Table 2). Data agreed with those reported in several studies on physical
characteristics of different strawberry varieties [29–32]. Fruit color coordinates showed
marked differences between Sabrina and Sabrosa. Marimbella and Calinda were between
these two cultivars and were very similar to each other from the point of view of color.
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Table 2. Means and standard deviation of quality parameters of first set (VisNIR) samples divided by
cultivar. Differences between letters (a, b, c) in the same row indicate significant differences (p < 0.05).

Sabrina Calinda Marimbella Sabrosa

Weight (g) 57 ± 13 a 48 ± 14 a 46 ± 16 a 22 ± 10 b
Length (mm) 71 ± 10 a 60 ± 5 a 64 ± 10 ab 46 ± 9 b
Width (mm) 48 ± 5 a 46 ± 5 a 45 ± 7 a 34 ± 5 b

Thickness (mm) 34 ± 2 b 40 ± 3 a 37 ± 5 ab 31 ± 4 b
L* 33.17 ± 2.47 a 35.55 ± 3.56 a 35.28 ± 3.69 a 39.56 ± 4.03 a
a* 27.24 ± 4.31 b 31.27 ± 3.55 ab 32.71 ± 3.99 ab 34.54 ± 3.46 a
b* 16.09 ± 5.98 a 16.15 ± 4.59 a 19.93 ± 5.89 a 24.96 ± 5.46 a

FF (N) 25 ± 6 a 24 ± 4 a 28 ± 8 a 21 ± 6 a
TSS (g 100 g−1 FW) 5.9 ± 0.7 bc 5.4 ± 0.5 c 6.8 ± 0.7 ab 9 ± 2 a
TA (mEq 100 L−1) 89 ± 13 b 76 ± 12 b 113 ± 15 a 128 ± 18 a

DM (g 100 g−1 FW) 6.8 ± 0.9 a 7.7 ± 0.4 a 6.5 ± 0.7 a 8.8 ± 2.7 a

Legend: FF = firmness; TSS = total soluble solid content; TA = titratable acidity; DM = dry matter; FW = fresh
weight; L*, a*, b* = CIELab coordinates.

On average, no significant differences on firmness were observed among the investigated
cultivars. Among genotypes, Sabrosa showed the highest total soluble solid content and
titratable acidity (9 ± 2 g 100 g−1 FW, and 128 ± 18 mEq 100 g−1 FW, respectively; Table 3),
whereas the lowest mean values were recorded by Calinda (5.4 ± 0.5 g 100 g−1 FW, and
76 ± 12 mEq 100 g−1 FW, respectively). Sabrosa also showed the high dry matter content,
whereas the lowest was observed in Marimbella (Table 2). These results were in accordance
with previous studies reported by several authors [15,33,34].

Table 3. Means and standard deviation of quality parameters of second set (SWIR) samples divided
by cultivar. Differences between letters (a, b, c) in the same row indicate significant differences
(p < 0.05).

Sabrina Calinda Marimbella Sabrosa

Weight (g) 27 ± 10 b 48 ± 14 ab 58 ± 10 a 35 ± 9 b
Length (mm) 54 ± 6 b 59 ± 5 b 72 ± 7 a 58 ± 8 ab
Width (mm) 35 ± 6 b 46 ± 5 a 50 ± 4 a 40 ± 4 b

Thickness (mm) 31 ± 4 b 40 ± 3 a 37 ± 3 ab 35 ± 4 ab
L* 34.81 ± 4.11 a 35.47 ± 3.51 a 36.32 ± 3.80 a 36.09 ± 4.95 a
a* 30.56 ± 4.33 a 33.28 ± 3.52 a 34.24 ± 2.45 a 33.93 ± 2.79 a
b* 18.48 ± 6.68 a 16.57 ± 4.68 a 18.20 ± 5.37 a 25.26 ± 7.14 a

FF (N) 28 ± 9 a 24 ± 5 a 27 ± 7 a 24 ± 5 a
TSS (g 100 g−1 FW) 6.4 ± 0.5 a 5.4 ± 0.6 a 6.6 ± 0.8 a 6.8 ± 1.2 a

TA (mEq L−1) 112 ± 11 a 75 ± 9 b 103 ± 20 a 111 ± 16 a
DM (g 100 g−1 FW) 6.2 ± 0.8 b 7.7 ± 0.3 a 6.7 ± 0.7 b 6.5 ± 1.2 b

Legend: FF = firmness; TSS = total soluble solid content; TA = titratable acidity; DM = dry matter; FW = fresh
weight; L*, a*, b* = CIELab coordinates.

A similar trend reported above was observed in all investigated attributes also for
second set samples, as shown in Table 3.

3.2. Image Processing and Spectra Analysis

Firstly, the unfolding was applied: the hypercube, in which rows and columns rep-
resent pixel position in the image and the third dimension of the spectral variables, was
reorganized in a bi-dimensional structure for the PCA to be enforced. The new 2D data
matrix had pixels as rows and variables as columns. After PCA, was possibly to come back
to the original structure by applying the refolding procedure. Figure 4 showed an image of
a strawberry before and after the processing phase. The filter application and the removal
of pixels corresponding to the background, leaving only the fruit, were shown. A score
plot of the first two PCs, which explained more than 98% of variance for all images, was
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represented. Moreover, a refolded hyperspectral image of strawberry represented by the
first principal component score was shown.
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The average mean spectra for the four cultivars are shown in Figures 5 and 6. In
general, VisNIR spectra (region from 400 to 1000 nm) (Figure 4) is featured by vibration
overtones and combination bands of O–H, C–H, and N–H bonds related to the princi-
pal structural organic molecules [35]. Many studies on fruit characteristics revealed the
presence of the O–H overtone at and 970 nm related to the water [36,37]. In addition,
other authors [38–40] also reported a strong water absorption peak in fruit samples at
around 960 nm. However, Benelli et al. (2022) [35] highlighted a reduced marking and
amplitude of the water absorption peaks between 700 and 1000 nm, making the spectral
information of the substances at low concentrations in the fruit less covered by the presence
of water [35]. Regarding carbohydrates, the absorbance peaks were found in the spectra
regions between 950 and 1000 nm, characterized by the O–H and N–H second overtone,
the O–H bonds’ combination band, and the C–H third overtone [41]. Pu et al. (2016) [39]
indicated a probable sugar absorption band at 840 nm. Fruit pigments can be evaluated
based on their spectral characteristics. The wavelength range from 420 to 503 nm is charac-
terized by adsorption of carotenes and xanthophylls [36]. The fruit pigment beta-carotene
strongly absorbs near to 475 nm, while the xanthophylls lutein and violaxanthin strongly
absorb at approximately 435 nm, with strong absorption across the 350–500 nm range [42].
Sabrina showed a slightly different behavior in this spectral region in comparison with the
other cultivars. An anthocyanin pigment sugar–protein complex leads an absorption at
around 530–550 nm [43,44]. The spectral reference for chlorophyll absorbance is the peak at
680 nm [42]. Strawberries’ spectra revealed differences at around 680 nm: Marimbella and
Sabrosa showed a reduced chlorophyll content in comparison with the other cultivars. This
different reflectance data variability among cultivars was likely caused by different levels
of fruit ripeness. Moreover, the peak of reflectance for strawberries had occurred at around
800–840 nm, as noted by Tallada et al. (2006) [45].

Regarding the SWIR spectra region, the most prominent reflectance peaks in the
regions between 1000–1150 nm are characterized by C–H and O–H functional groups,
common in major constituents (e.g., water, sucrose, and cellulose) within the samples [46].
Other vibrational bands for C–H functional groups were also reported in the region from
1300 to 1400 nm. An O–H overlapping with the first overtones of the O–H stretching modes
of self-associated and water-bonded O–H functional groups could be found from 1400 to
1600 nm [46]. The local reflectance trough, which appears at approximately 1200 nm, is due
to the presence of water in the sample. The reflectance peaks at 1060 and 1270 nm (C–H
stretching second overtone) are due to sucrose and cellulose, respectively [46].
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3.3. Prediction of Pomological Traits

Predictive models for pomological traits were developed using the artificial
neural networks.

Different ANN configurations were tested and compared with each other to deter-
mine the optimal MLP architecture (input–hidden–output layers). The network included
204 wavelengths for the VisNIR dataset and 224 wavelengths for the SWIR dataset as input
data in the first layer, and one output layer that represented the strawberry parameters.
Hidden neurons in the hidden layers were set to a range between 1 and 25. The best
configuration for each pomological trait, i.e., the best goodness of fit of ANN models, was
highlighted by the lowest RMSE of the training and test sets.

Tables 4 and 5 show the neural networks’ architectures according to their topolo-
gies, including the MLP algorithm; the numbers of neurons in input, hidden, and output
layers; the hidden and output neurons’ activation functions; and the regression metrics
(R2; RMSE; MAE and RSE) for the highest training and test set predictions for each po-
mological trait (FF, TSS, TA, DM). The best topology for each attribute was found using
neurons in the hidden layer from 1 to 25. The same procedure was applied to both VisNIR
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and SWIR datasets. The best five ANN architectures for each parameter were shown in
Tables S1 and S2 (Supplementary Materials).

Table 4. Visible–near-infrared spectrometer. Neural network architectures, regression metrics for
the highest training and test set predictions, goodness of fit, and residual analysis for the developed
ANN models.

Neural Network
Topologies

(Input–Hidden–
Output)

Activation Function Training Set Test Set

Hidden Neurons Output Neurons R2 RMSE MAE RSE R2 RMSE MAE RSE

FF MLP (204–11–1) Logistic Identity 0.682 3.577 0.014 14.443 0.808 3.493 0.484 14.234
TSS MLP (204–22–1) Exp Tanh 0.967 0.317 0.002 4.720 0.959 0.394 0.067 5.544
TA MLP (204–16–1) Identity Identity 0.973 3.922 0.019 3.959 0.877 9.306 1.003 8.438
DM MLP (204–19–1) Exp Exp 0.967 0.315 0.013 4.273 0.947 0.380 0.038 4.911

Legend: MLP = multilayer perceptron; Tanh = hyperbolic tangent function; Exp = exponential function;
FF = firmness (N); TSS = total soluble solid content (g 100 g−1 FW); TA = titratable acidity (mEq L−1);
DM = dry matter (g 100 g−1 FW).

Table 5. Short-wave infrared spectrometer. Neural network architectures, regression metrics for the
highest training and test set predictions, goodness of fit, and residual analysis for the developed
ANN models.

Neural Network
Topologies

(Input–Hidden–
Output)

Activation Function Training Set Test Set

Hidden
Neurons

Output
Neurons R2 RMSE MAE RSE R2 RMSE MAE RSE

FF MLP (224–10–1) Logistic Identity 0.932 1.896 0.041 7.191 0.820 2.740 0.313 10.774
TSS MLP (224–11–1) Logistic Identity 0.965 0.187 0.008 2.995 0.898 0.297 0.029 4.593
TA MLP (224–19–1) Logistic Exp 0.987 2.396 0.157 2.387 0.953 4.838 1.069 4.869
DM MLP (224–11–1) Logistic Exp 0.981 0.135 0.003 1.984 0.924 0.306 0.018 4.542

Legend: MLP = multilayer perceptron; Tanh = hyperbolic tangent function; Exp = exponential function;
FF = firmness (N); TSS = total soluble solid content (g 100 g−1 FW); TA = titratable acidity (mEq L−1);
DM = dry matter (g 100 g−1 FW).

Regarding the VisNIR dataset, the best model for berry firmness was carried out with
11 neurons in the hidden layer, a logistic activation function for the hidden neurons, and
identity activation function for the output neurons (Table 4). The optimal model for total
soluble solid content was developed with 22 neurons in the hidden layer, an exponential
activation function for the hidden neurons, and a hyperbolic tangent activation function
for the output neurons. The best model of titratable acidity had 16 neurons in the hidden
layer, and an identity activation function for the hidden neurons, and an identity activation
function for the output neurons. The best model for dry matter was characterized by
19 neurons in the hidden layer, an exponential activation function for hidden neurons, and
an exponential function for output neurons.

Table 4 and Figure 7 show a high goodness of fit for all parameters, especially for
total soluble solid content and dry matter, and with the exception of firmness. In fact, the
TSS model had coefficients of determination close to 1 (R2 = 0.967 for the training test and
R2 = 0.959 for the test set) and the other metrics close to 0, indicating a low dispersion of
residuals. Likewise, DM also had very high coefficients of determination (R2 = 0.967 for the
training test and R2 = 0.947 for the test set) and very low other metrics. Optimal values of
the coefficients of determination of TA (R2 = 0.973 for the training test and R2 = 0.877 for the
test set), MAE, RMSE, and RSE (0.019, 3.922, and 0.019 for the training set, and 1.003, 9.306,
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and 8.438 for the test set, respectively) showed a high ability in predicting the strawberry
titratable acidity. Finally, a poor goodness of fit resulted for firmness, due to low coefficients
of determination (R2 = 0.682 for the training test and R2 = 0.808 for the test set) and high
values of MAE, RMSE, and RSE. The low performance of the FF model may be due to
two reasons. At first, FF measurements were performed with a manual penetrometer, and
therefore were subject to associated operator error. Secondly, the calibrations were carried
out using samples at the commercial harvest stage, with FF values between 45 and 10 N.
Optimal calibrations for FF should be built by a wider range of variability of FF values, also
including samples at different levels of ripeness.
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Regarding the SWIR dataset, the best model for firmness was carried out with 10
neurons in the hidden layer, a logistic activation function for the hidden neurons, and an
identity activation function for the output neurons (Table 5). The optimal model for total
soluble solid content was obtained with 11 neurons in the hidden layer, a logistic activation
function for the hidden neurons, and an identity activation function for the output neurons.
The best model of titratable acidity had 19 neurons in the hidden layer, and an identity
activation function for the hidden neurons, and an identity activation function for the
output neurons. Finally, the best model for dry matter was characterized by 19 neurons in
the hidden layer, an exponential activation function for hidden neurons, and an exponential
activation function for output neurons.

Table 5 and Figure 8 showed a good agreement between experimental and predicted
SWIR for all parameters. Dry matter showed high coefficients of determination (R2 = 0.981
for the training test and R2 = 0.924 for the test set) and values of the other metrics close to 0.
An optimal prediction performance resulted for titratable acidity (R2 = 0.987 for the training
test and R2 = 0.953 for the test set) and total soluble solid content (R2 = 0.965 for the training
test and R2 = 0.898 for the test set). The model for firmness was promising, with R2 being



Sensors 2024, 24, 174 12 of 18

equal to 0.932 for the training test and R2 being equal to 0.820 for the test set, and showing
low values of MAE. However, a large dispersion of residuals, i.e., high RMSE, indicated
a discrete prediction performance of the models (RMSE = 7.191 for the training test and
RMSE = 10.774 for the test set). The discrete performance of the FF model for the SWIR
system may be due to the reasons indicated for the VisNIR calibration. However, compared
to the latter, the SWIR model for firmness was better. This can be explained by the fact
that the SWIR spectral region considered the O-H vibrational modes of all NIR spectrum
overtones. These modes are related to the fruit structure, and therefore to the firmness.
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In order to explain the performances of the models in predicting the pomological traits
using the two hyperspectral systems, a sensitivity analysis was carried out. This analysis
highlighted the relative importance of the input variables to ANN model predictions. The
normalized relative variable importance of the projection (VIP) across the spectral region
for each of the ANN model was reported in Tables 6 and 7.

Regarding the firmness model, the spectra bands, which strongly contributed to
the prediction capability, ranged from 450–880 nm (Table 6). As previously reported by
Merzlyak and Solovchenko (2002) [47], the VIS region (450–700 nm) is strongly related to
the absorption of pigment (such as chlorophylls, carotenoids, anthocyanins, etc.), whose
concentration depends on the fruit ripening stage. Moreover, the spectral region around
800–950 nm also contributed to the firmness prediction: this region is an indicator of the
probable sugar and water absorption, which varies during fruit softening, as reported by
Pu et al. (2016) [39]. Similarly to what was found for FF, the spectral regions that most
influenced the predictive capacity of the TSS model were those related to pigments and
carbohydrates (C–H third overtone). For example, the absorption bands between 570
and 590 nm are related to carotenoids, and those between 680 and 710 nm to chlorophyll-
α [39,48,49]. In fact, many authors highlighted a close relationship between fruit pigment



Sensors 2024, 24, 174 13 of 18

variation, soluble solid content, and ripening stage [48–50]. The bands from 800 to 1000 nm
contributed to the TSS model. This band is associated with the water absorption peak [36,37].
The bands from 800 to 1000 nm are strongly related to the O–H water overtone and second
overtone and the O–H bonds’ combination band and C–H third overtone [41]. For TA
model, the Vis region had great importance because fruit acidity is strongly related to the
maturation stage [49]. In addition, absorbance contribution at 950 nm is due to the O–H
overtone of organic acids. For DM model, the absorbances from 760 to 970 nm were among
the most important predictive variables because they are related to the O–H vibration
of water.

Table 6. Normalized relative importance (%) of the most significative input variables (wavelengths λ)
to ANN model predictions for VisNIR system.

FF TSS TA DM

λ (nm) % λ (nm) % λ (nm) % λ (nm) %

951 100.0 820 100.0 951 100.0 914 100.0
516 98.1 664 99.8 441 98.4 939 99.8
706 97.9 878 99.6 566 98.1 799 99.4
637 97.7 616 99.1 505 98.0 679 99.4
905 97.7 781 97.9 799 97.9 551 99.3
826 9.6 449 97.1 670 97.6 432 98.9
581 97.3 619 97.0 679 97.4 655 98.8
670 97.2 513 96.7 513 97.4 528 97.9
569 97.2 1000 96.6 930 97.3 455 97.7
784 96.8 887 96.3 418 97.3 634 97.7

Legend: FF = firmness; TSS = total soluble solid content; TA = titratable acidity; DM = dry matter.

Table 7. Normalized relative importance (%) of the most significative input variables (wavelengths λ)
to ANN model predictions for SWIR system.

FF TSS TA DM

λ (nm) % λ (nm) % λ (nm) % λ (nm) %

1123 100.0 1379 100.0 1344 100.0 1588 100.0
1120 98.4 1134 100.0 1588 99.6 1263 99.9
1361 98.0 1567 99.9 1210 97.9 1404 99.2
1649 97.7 1291 99.7 1365 97.3 981 99.1
1071 97.7 1288 98.2 1186 97.3 974 98.9
1270 97.3 1464 97.9 1535 97.3 977 98.8
991 96.9 1404 97.8 1081 97.0 938 98.5
1249 96.7 1295 97.6 998 96.9 1471 98.5
1602 96.6 1556 97.4 1266 96.5 1379 98.2
1383 96.6 1228 97.4 1193 96.3 1088 98.2

Legend: FF = firmness; TSS = total soluble solid content; TA = titratable acidity; DM = dry matter.

For the SWIR system, VIP spectral regions are reported in Table 8. Firmness was
strongly related to the spectral regions between 1123 and 1361 nm, which could be ascribed
by the O–H second overtone O–H bonds’ combination band, and the C–H second and
third overtones. These functional groups are characteristic to the water and carbohydrates,
which are strongly associated with the fruit softness. However, other spectral bands near
1200 nm, 1300 nm, 1400 nm, and 1700 nm, characteristic of the C–H stretching second
overtone and O–H functional groups [46], were predictive for FF. These spectral regions
were the most predictive also for the TSS model, because they are characteristic of sugar
functional groups, the main constituent of soluble solid content. The absorption peak near
1344 nm was considered the most important spectral band in the TA model, because it is
related to the C–H and O–H functional groups of organic acids. Moreover, the spectral
bands near 1300 and 1600 nm, characteristic of O–H overlapping with the first overtones of
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the O–H stretching and water-bonded O–H functional groups, also contributed to the TA
model. As for VisNIR, the bands characteristic of the O–H group of the water at around
1400 nm [46] were the main predictors of the DM model.

Table 8. Visible–near-infrared and Short-wave infrared and spectrometers. Neural network architec-
tures, regression metrics for the highest training and test set predictions, goodness of fit, and residual
analysis for the developed ANN models.

Neural Network
Topologies

(Input–Hidden–
Output)

Activation Function Training Set Test Set

Hidden
Neurons

Output
Neurons R2 RMSE MAE RSE R2 RMSE MAE RSE

FF MLP (406–13–1) Tanh Logistic 0.936 1.609 0.180 6.495 0.951 1.554 0.343 6.602
TSS MLP (406–17–1) Exp Identity 0.994 0.134 0.003 1.996 0.981 0.309 0.132 4.353
TA MLP (406–15–1) Identity Logistic 0.974 3.896 0.027 3.933 0.976 4.018 0.426 3.643
DM MLP (406–11–1) Logistic Identity 0.952 0.399 0.125 5.420 0.942 0.415 0.108 5.361

Legend: MLP = multilayer perceptron; Tanh = hyperbolic tangent function; Exp = exponential function;
FF = firmness (N); TSS = total soluble solid content (g 100 g−1 FW); TA = titratable acidity (mEq L−1);
DM = dry matter (g 100 g−1 FW).

Regarding the fused dataset, the best model for firmness was carried out with 13 neu-
rons in the hidden layer, a hyperbolic tangent activation function for the hidden neurons,
and a logistic activation function for the output neurons (Table 8). The optimal model for
total soluble solid content was obtained with 17 neurons in the hidden layer, an exponential
activation function for the hidden neurons, and an identity activation function for the
output neurons. The best model of titratable acidity had 15 neurons in the hidden layer, an
identity activation function for the hidden neurons, and a logistic activation function for
the output neurons. Finally, the best model for dry matter was characterized by 11 neurons
in the hidden layer, a logistic activation function for hidden neurons, and an identity
activation function for output neurons.

The predictive performances of all models built by the fusion band spectral features
were better than that of the single-band spectral features (Table 8 and Figure 9), espe-
cially for the firmness, whose model showed higher metrics (R2 = 0.951, RMSE = 1.554,
MAE = 0.343 and RSE = 6.602 for the test set). This result demonstrated that the infor-
mation obtained from the two his systems can have a synergistic effect, improving the
model’s predictiveness.

Our study showed how the two HSI systems can predict the internal quality of
strawberries. However, the predictive capacity may also depend on the quality of the
hyperspectral data, as well as on the algorithms used for prediction. In particular, a high
imaging speed can reduce spectral and spatial resolution. The optimal calibration of
these parameters is strictly linked to the structure of the instrument. To monitor real-time
dynamic biological samples with high spectral and spatial resolution, it is possible to
use a stand-down video-rate high-throughput HSI, equipped with a high-speed galvo
mirror, that allows one to scan spatial light, obtaining a spectral resolution of 3–5 nm and
accelerating the collection rate of hyperspectral cubes to the video level, as described by Li
et al. [51].
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neurons in the hidden layer, a hyperbolic tangent activation function for the hidden neu-
rons, and a logistic activation function for the output neurons (Table 8). The optimal model 
for total soluble solid content was obtained with 17 neurons in the hidden layer, an expo-
nential activation function for the hidden neurons, and an identity activation function for 
the output neurons. The best model of titratable acidity had 15 neurons in the hidden 
layer, an identity activation function for the hidden neurons, and a logistic activation func-
tion for the output neurons. Finally, the best model for dry matter was characterized by 
11 neurons in the hidden layer, a logistic activation function for hidden neurons, and an 
identity activation function for output neurons. 

The predictive performances of all models built by the fusion band spectral features 
were better than that of the single-band spectral features (Table 8 and Figure 9), especially 
for the firmness, whose model showed higher metrics (R2 = 0.951, RMSE = 1.554, MAE = 
0.343 and RSE = 6.602 for the test set). This result demonstrated that the information ob-
tained from the two his systems can have a synergistic effect, improving the model’s pre-
dictiveness. 

 
Figure 9. Predicted vs. experimental values of the firmness (FF), total soluble solid content (TSS),
titratable acidity (TA), dry matter (DM) using the optimal ANN topologies and spectra from data
fusion. The coefficients of determination (R2) for training and test sets are reported.

4. Conclusions

In this study, the potential of hyperspectral imaging in both VisNIR and SWIR regions
for predicting the strawberries’ pomological traits was investigated. We demonstrated
that the hyperspectral information obtained using the two systems on different cultivars
of strawberries exhibited potential for the prediction of the firmness, total soluble solids
content, titratable acidity, and dry matter of strawberries. Comparing the performances
of the two systems, our results indicated similar predictive power of models for total
soluble solid content, titratable acidity, and dry matter, while the model from SWIR system
showed a better performance for firmness. Finally, data fusion improved performances of
all models, especially for firmness.

The overall results showed that the HSI technique represents a rapid, nondestructive
alternative for the quality assessment of strawberries, which would benefit the fresh market
and food industry. Further research may be aimed toward the use of this kind of system for
the real-time prediction and classification of the strawberries in a sorting line.
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developed ANN models.
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