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Abstract: Underdetermined blind source separation (UBSS) has garnered significant attention in
recent years due to its ability to separate source signals without prior knowledge, even when sensors
are limited. To accurately estimate the mixed matrix, various clustering algorithms are typically
employed to enhance the sparsity of the mixed matrix. Traditional clustering methods require prior
knowledge of the number of direct signal sources, while modern artificial intelligence optimization
algorithms are sensitive to outliers, which can affect accuracy. To address these challenges, we
propose a novel approach called the Genetic Simulated Annealing Optimization (GASA) method
with Adaptive Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering
as initialization, named the CYYM method. This approach incorporates two key components: an
Adaptive DBSCAN to discard noise points and identify the number of source signals and GASA
optimization for automatic cluster center determination. GASA combines the global spatial search
capabilities of a genetic algorithm (GA) with the local search abilities of a simulated annealing
algorithm (SA). Signal simulations and experimental analysis of compressor fault signals demonstrate
that the CYYM method can accurately calculate the mixing matrix, facilitating successful source signal
recovery. Subsequently, we analyze the recovered signals using the Refined Composite Multiscale
Fuzzy Entropy (RCMFE), which, in turn, enables effective compressor connecting rod fault diagnosis.
This research provides a promising approach for underdetermined source separation and offers
practical applications in fault diagnosis and other fields.

Keywords: underdetermined blind source separation; genetic simulation annealing algorithm;
DBSCAN; reciprocating compressor

1. Introduction

Machinery fault diagnosis plays a pivotal role in the industrial sector, particularly in
high-temperature and high-pressure working environments, where early fault detection
can prevent catastrophic accidents resulting from component failures [1]. Signal processing
is a key tool for achieving early fault detection, with a specific focus on vibration signals.
However, field-collected signals often comprise a mixture of multiple sources, and the
unpredictable nature of fault locations complicates the acquisition of clean data due to
insufficient sensor coverage [2]. To address this challenge, the primary task at hand is to
separate and reconstruct signals in cases where the number of signal sources is unknown,
and the propagation channels are uncertain.

Blind Source Separation (BSS) is a signal separation technology inspired by the “cock-
tail party problem”. Depending on the number of source signals (n) and sensors (m), BSS
models are categorized as overdetermined BSS (m > n), positive definite BSS (m = n),
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and underdetermined BSS (m < n). In recent years, underdetermined blind source separa-
tion (UBSS) has garnered significant attention due to its capacity to successfully separate
source signals, even in cases where sensors are insufficient. Consequently, UBSS has found
applications in diverse fields such as speech recognition [3,4], image processing [5], and
biomedical engineering [6].

Sparse Component Analysis (SCA) is a classic underdetermined blind source separa-
tion technique that has undergone significant evolution within the field of signal processing.
Initially rooted in the “source disjointness” assumption (WDO) [7], SCA operated under the
premise that each observed point in the time–frequency domain corresponded exclusively
to a single source. However, as research progressed, the source sparsity assumption was
relaxed, enabling the simultaneous activity of multiple sources at the same time–frequency
points [8–10]. This transition expanded the flexibility of SCA, making it more suitable
for real-world scenarios where strict source disjointness may not apply. Furthermore,
SCA has been extended to accommodate cases with more than two observations, broaden-
ing its applicability to situations involving a variety of observations and sources [11,12].
This adaptation enabled the application of SCA in situations involving a broader array of
observations and sources. A noteworthy refinement was the transition from identifying
single-source zone work s to pinpointing single-source points, and the present paper adopts
this single-source point assumption [13]. SCA has found application not only in the realm
of instantaneously mixed signals but also in scenarios such as anechoic environments,
convolutive mixtures [14], and even (post-)nonlinear mixtures, e.g., [15–17]. SCA has also
been integrated successfully with source localization techniques, enabling more accurate
estimations of source numbers and locations. Some ad hoc clustering methods have been
proposed to count and locate sources effectively [18]. Additionally, SCA methods bear sim-
ilarities with Convex Non-Negative Matrix Factorization (NMF) and Volume-Constrained
NMF, with ongoing efforts to extend their applicability to hyperspectral unmixing and
audio domains [19,20]. Certain SCA methods have been adapted to address scenarios with
missing data entries [21].

In addition to its signal processing applications, SCA methods have found utility
in machinery and equipment fault diagnosis. Although the research in this area began
relatively late, the collaborative efforts of experts have introduced SCA methods to the
field of diagnosis [22]. For instance, Hu et al. [23] effectively employed sparse component
analysis for underdetermined blind source separation in diagnosing wind turbine gearbox
bearing faults. Hao et al. [24] introduced the use of the wavelet mode maximum and
the potential function method, resulting in higher fault diagnosis accuracy compared to
traditional SCA methods. He et al. [25] proposed pre-processing and whitening of observed
signals based on traditional Sparse Component Analysis (SCA) to attenuate interference
components, effectively using it for feature extraction in compressor blade fault detection.
Wang et al. [26] introduced Refined Composite Multiscale Fuzzy Entropy (RCMFE) to
explore hidden fault information in vibration signals and successfully realized fault feature
extraction in reciprocating compressors.

The evolution of SCA continues to drive innovation in the field, making it a valuable
and versatile tool in signal processing applications. It only requires the source signal to
satisfy sparsity to separate it from the mixed signal [27–30]. Under the assumption of sparse
signals, the estimation of the mixing matrix can be transformed into a clustering problem
that is solved by a clustering algorithm. Traditional clustering algorithms, such as Fuzzy
C-Means (FCM), require prior knowledge of the number of sources, making it less suitable
for underdetermined scenarios [31,32]. To address this limitation, the DBSCAN method
has been introduced to estimate the number of clustering centers, thereby overcoming
the dependency on pre-determined source counts. However, setting initial parameters in
DBSCAN can be challenging, requiring experience and affecting result accuracy [33,34].

Nonetheless, the Fuzzy C-Means (FCM) algorithm is a local search optimization
method and can converge to local minima when initial values are not selected optimally. In
response to this issue, researchers have integrated intelligent algorithms, such as simulated
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annealing and genetic algorithms, to enhance clustering performance [35–37]. Simulated
annealing offers robust mathematical properties but suffers from slow convergence and
parameter sensitivity. On the other hand, genetic algorithms provide a novel, evolution-
based approach for solving complex problems. Integrating these algorithms with Fuzzy
C-Means has been proposed to improve clustering performance [38–40].

In this context, our paper introduces the CYYM method, which leverages an adap-
tive DBSCAN algorithm and an improved GASA optimization algorithm to address the
challenges associated with unknown source counts and noisy environments [41,42]. This
method comprises two key steps: the adaptive DBSCAN method filters out noise points
and determines the number of sources, while the GASA optimization algorithm automates
clustering center identification and enhances matrix estimation accuracy with speed.

Our proposed algorithm offers several key advantages:

1. The adaptive DBSCAN method effectively filters noise and accurately identifies source
numbers, facilitating precise matrix estimation.

2. The integration of the GASA optimization algorithm combines global exploration
capabilities with local search, avoiding local optima and improving clustering center
identification.

3. The optimized GASA algorithm provides sensible control parameter settings, enhanc-
ing search capabilities and evolution speed.

4. Leveraging the k-dist curve improves denoising and clustering, which are adaptively
integrated into the adaptive DBSCAN algorithm.

In summary, our algorithm enhances clustering accuracy, automates center identifi-
cation, provides sensible parameter settings, and significantly improves denoising and
clustering. The rest of the paper is divided into five parts. Section 1 presents the basic theory.
Section 2 introduces the adaptive DBSCAN, the GASA optimization, and the proposed
method. The simulation analysis and the compression application are provided in Section 3.
Section 4 contains the conclusion.

2. Basic Theory of Blind Source Separation
2.1. The Mathematical Model

Blind source separation applied to fault diagnosis needs to cope with the challenge
of a large number of source signals S(t) (fault signals) passing through an unknown
transmission system A, initially getting mixed, and subsequently, being received alongside
noise signals N(t) by a limited number of sensors, resulting in observation signals X(t).
Based on the above analysis, the mathematical model of the basic technique of blind source
separation can be expressed as follows:

X(t) = A × S(t) + N(t) (1)

where X(t)= [x1(t), x2(t), . . . , xm(t)]T represents m observation signals collected by m
sensors; S(t)= [s1(t), s2(t), . . . , sn(t)]T represents n statistically independent source signals,
A represents the mixing matrix of the unknown m × n(m < n), and N(t) denotes a noise
signal. Neglecting noise, writing (1) in matrix form, the model can be rewritten as follows:

x1(t)
x2(t)

...
xm(t)

 =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




s1(t)
s2(t)

...
sn(t)

 (2)

In general, mechanical vibration signals are not sparse in the time domain. In this
paper, the sparse representation is realized by the STFT, and the equation is as follows:

X(t, ω) =
∫ ∞

−∞
x(τ)ω∗(τ − t)e−jωτd(τ) (3)
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where w(τ − t) is a window function, ∗ denotes complex conjugation, and x(τ) is an
observation signal.

Transform the mixed signal into the sparse domain. In Figure 1, the real part of
the time–frequency transforms is presented. It is evident that the transform in the time–
frequency domain exhibits a certain sparsity, and its scatter plot reveals prominent linear
characteristics.
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Figure 1. Mixed-signal scatter plot: (a) in the time domain; (b) in the time–frequency domain.

2.2. Single-Source Point Detection

In Equation (2), assume that signal X(t) and signal S(t) are independent of each other.
The sparsity of source signals means that only a few sources are active at a sampling time,
and the amplitude of the rest of the sources approaches or equals zero. Suppose that, at
the moment i, the source signal si is activated, Equation (2) is expressed by selecting the
single-source point of the signal at a certain time frequency as follows:

x1(tk, fk)
x2(tk, fk)

...
xm((tk, fk)

 =


a1i
a2i
...

ami

[si(tk, fk)
]

(4)

Furthermore, if Equation (4) is deformed, then Equation (5) is valid:

x1(k)
a1i

=
x2(k)

a2i
. . .

xm(k)
ami

= si(k) (5)

Accordingly, the single-source point in the signal has a linear clustering characteristic.
The general principle of single-source point is: in the time–frequency domain, the criterion
is whether the difference is zero or not, which is between the ratio of the imaginary part
and the real part of the observed signal xi(tk, fk) , xj(tk, fk) at the same time–frequency
point.

I(xi(tk, fk))

R(xi(tk, fk))
−

I(xj(tk, fk))

R(xj(tk, fk))
= 0 (6)

Considering the noise, the threshold λ is relaxed; in general, λ is between 0 and 1:∥∥∥∥∥ I(xi(tk, fk))

R(xi(tk, fk))
−

I(xj(tk, fk))

R(xj(tk, fk))

∥∥∥∥∥ < λ (7)

The single-source point vector is obtained, low-energy points (<0.1 times the average
value) are excluded, and some low-energy noise points are eliminated for the accuracy
of the mixture matrix estimation as shown in Figure 2a; the linear feature information of
the mixed signal is retained. After removing the multisource points, the linear clustering
property is further enhanced, as shown in Figure 2b.
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Hence, the column vectors in the mixed matrix are deduced by the above two aspects,
i.e., the direction of the linear clustering and the number of projective clusters. Namely,
the number of projection clusters is the number of columns in the mixed matrix, and the
direction of the column vector can be derived from the direction of the linear clusters.
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Figure 2. Time–frequency scatter plot: (a) After the elimination of low energy points. (b) After the
detection of single-source points.

3. Adaptive DBSCAN Clustering and GASA Optimization

The CYYM algorithm is based on adaptive DBSCAN and GASA algorithms. Each of
the following will be described.

3.1. Adaptive DBSCAN Clustering
3.1.1. DBSCAN

Density-based spatial noise clustering (DBSCAN) is a representative clustering algo-
rithm in noisy data points. The core idea of DBSCAN is to find high-density data points
in the data heap, search for nearby high-density data points using proximity search, and
then connect the high-density data points into pieces to generate various shapes of data
clusters [43]. The DBSCAN algorithm contains the following definition:

Definition 1. Eps is the neighborhood radius of the P data point: the distance between the point P
and the collection of data points is less than Eps;

Definition 2. The density of points P: the number of points in the Eps radius of the point P;

Definition 3. Core Point: point P is defined as a core point (the MinPts threshold) with a density
greater than that of MinPts; otherwise, marked as a non-core point;

Definition 4. Boundary Point: when Q is not a core point, it is defined as a boundary point, but it
belongs to the Eps neighborhood of the core point P;

Definition 5. Noise Point: neither core point nor boundary point in the dataset;

Definition 6. Direct Density Reachability: when P is the core point, the data Q are in the radius of
the neighborhood P, and Q is the direct density reachable point of P.

Definition 7. Density Reachable: point P1, P2, in the dataset {P1, P2...Pn}, let P1 = P, Pn = Q; if
Pi and Pi+1 both are directly density reachable, then P and Q are density reachable points.

Definition 8. Density-Connected: if the O point allows P and Q density-reached, then P and Q
are density-connected points, and it is clear that density-linked is symmetric.
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In the clustering process of the DBSCAN algorithm, first select any data point P in the
data D. If P is the core point and the Eps neighbor of P is not less than MinPts, then the
Eps neighbor of P is chosen as the seed point, it is taken as the new core point, and the Eps
neighbor of P is pulled in; thus, the clustering is extended until a set is generated. If P is a
boundary point, the Eps neighbor of P has fewer data points than MinPts, and DBSCAN
selects the next point in D. Noise points do not belong to any cluster of data points.

The effect of clustering using DBSCAN with an arbitrary input of initial parameters is
shown in Figure 3a. After adjusting the parameters, we use DBSCAN to cluster the data, as
is evident in Figure 3b. The clustering results are as we expected: compact between similar
classes and distinct between dissimilar classes, with no noise points visible at all.

0.5 0.6 0.7 0.8 0.9
-1

-0.5

0

0.5

noise points

(a)

0.5 0.6 0.7 0.8 0.9
-1

-0.5

0

0.5

(b)

Figure 3. Clustering effect: (a) clustering by DBSCAN; (b) clustering by adaptive DBSCAN.

3.1.2. ADBSCAN

Users without prior knowledge are unable to identify the DBSCAN parameter setting
regarding Eps and MinPts [44–48]. If the clustering radius (Eps) is too large, all the points
will converge into one class, and the noise points cannot be eliminated effectively. If
the clustering radius (Eps) is too small and the clusters increase enormously, then the
computation of the whole process increases. The k-distribution (k − dist) curve is employed
to establish the location of the inflection point and extract the parameter Eps. To illustrate
the process, let us consider a hypothetical scenario with 20 data points. The procedure of
adaptive DBSCAN (ADBSCAN) clustering is elaborated in Figure 4 under this illustrative
example. Let k represent the value of MinPts, which signifies the number of points within
the cluster. In practical applications, the value of k can be adjusted continuously until the
desired result is achieved. It is recommended to set the initial value of k to be greater than
or equal to the number of dimensions plus one [49–51].

Specific steps are as follows (see Algorithm 1):

Algorithm 1 Adaptive DBSCAN Clustering
Input: Noise Threshold, Initial k
1. k_dist_sequence [xi] = calculate_k_dist(xi, k)
2. sorted_k_dist = sort(k_dist_sequence)
Eps = max(sorted_k_dist)
3. inflection_point = find_inflection_point(sorted_k_dist)
optimal_radius = sorted_k_dist[inflection_point]
4. clusters = DBSCAN(data, Eps = optimal_radius, MinPts = k)
num_noise_points = count_noise_points(clusters)
5.If num_noise_points ≤ noise_threshold:
end_calculation
else:
k = k + 1
return step 1
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Figure 4. Process of adaptive DBSCAN clustering.

3.2. Genetic Simulated Annealing Optimization

The purpose of genetic simulated annealing optimization is to obtain an initial solution
by a genetic process, and then perform a simulated annealing search, so the local search
and global search are completed alternately.

3.2.1. Encoding Method

The target of clustering is to aggregate disorganized data according to their similarity.
Each cluster center is a table head with an arrow pointing to data belonging to that class. A
tree structure is shown in Figure 5.
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Individual

Gene Gene

Data Data Data Data

Figure 5. Tree coding structure.

3.2.2. Fitness Function

The search strategy of the genetic algorithm is to find the optimal solution using the
fitness function as a criterion to evaluate the merits and demerits of individuals. Equations
based on fuzzy clustering are as follows:

Jb(U, v) =
n

∑
k=1

c

∑
i=1

(uik)
b(dik)

2 (8)

(dik) = d(xk − vi) = [
m

∑
j=1

(xkj − vij)
2]1/2 (9)

uik =
1

∑c
j=1(

dik
djk

)
2

b−1
(10)

vik =
∑n

k=1(uik)
bxkj

∑n
k=1(uik)b (11)

where U is the similarity classification matrix, dik is the Euclidean distance, X = {x1, x2, . . . , xn}
refers to the data samples, uik is the degree of membership in the class Ak, {v1, v2, . . . , vn} are
cluster centers in each category, b (1 < b < ∞) is the weight coefficient, c(2 ≤ c ≤ n) is the
number of cluster centers, n is the number of samples, m is the number of feature samples, fi
is the fitness, and Jb = 1/ fi is the lower the value of the function Jb, where the smaller the sum
of the intraclass dispersion, the better the adaptability of the individual in the corresponding
population.

3.2.3. Select Operation

The fitness values are counted and sorted. The top 10% of the elite population is
reproduced and inherited by future generations, while the rest is generated by roulette.
Thus, the next generation can inherit good genes. The selection procedure is as follows.

Calculate the fitness function of individuals and the fitness of groups. F = ∑n
i=1 fi,

pi is the probability of selection of the individual, Equation (12), and qi is the cumulative
value of the probability of selection, Equation (13). Randomly generate a number r in the
range [0, 1]. If the condition q1 > r is satisfied, v1 is the first generation; otherwise, vi
(2 < i < m) is the next generation on the condition of qi > r > qi−1 .

pi =
fi
F
(i = 1, 2. . . . , n) (12)

qi =
i

∑
j=1

pj(i = 1, 2. . . . , n) (13)
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3.2.4. Crossover Operator

New offspring are produced by replacing parts of the parent’s structure. In this process,
the children choose their parents with equal probability. There are two kinds of crossover
operators based on tree coding: one is to exchange two different leaf nodes with the same
number of samples; the other is to exchange the leaf nodes from different trees. Figure 6a,b
show the two crossover methods, respectively.

1

a b c

2 3 4 51

1

a b c

25 4 31... ...

(a)

1

a b c

6 3 41

m

x y z

25 7... ...

1

a b c

2 3 41

m

x y z

65 7... ...

(b)

Figure 6. Two leaf nodes of a tree mutually exchanged: (a) same tree exchange; (b) different tree
exchange.

3.2.5. Mutation Operation

To prevent premature convergence of the algorithm, the mutation operator is used to
change the information in the leaf node, which maintains the diversity of genetics. The
following procedure has been adopted: decimal numbers are generated randomly to select
the tree for mutation, supposing the decimal number is less than the mutation rate, then
leaf nodes are chosen randomly for conversion, and random numbers are generated which
replace the leaf nodes.

3.2.6. Individuals’ Simulated Annealing Operation

For newly created individuals, calculate the degree of membership using Equation (10),
and calculate the cluster center using Equation (11). Simulated annealing algorithm to
replace the old individual: if fi > f ′i , the new individual becomes the optimal solution,
otherwise, it is accepted with a certain probability P:

P = exp(
fi − f ′i

T
) (14)
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where T is the control parameter and corresponds to temperature in thermodynamics, f ′i is
the newly generated individual fitness, and fi is the old individual fitness.

3.2.7. Conditions of Termination

Successive optimization is performed in step Q to achieve the final goal of the best
individual in the population, with gen as the counting variable. If optimal, terminate and
set gen = 0, otherwise constantly optimize the index and change the cumulative count
variable gen = gen + 1. When gen = Q occurs, the updated population undergoes a new
round of genetic and simulated annealing operations. When Ti < Tend, the calculation is
terminated and the global optimal solution is obtained.

3.3. CYYM Algorithm Steps and Processes

For better clustering performance, the time–frequency points are transformed into
compact clusters by normalization and assigned to the hypersphere in the upper right
corner by mirror processing, as shown in Equation (15):

X̃(t, f ) =
X(t, f )

∥X(t, f )∥2
×sign (x1(t, f )) (15)

where the sign function is utilized to determine the sign of a number. It returns a value of 1
for positive numbers, 0 for zero, and −1 for negative numbers.

However, the specific number of clusters is not available on the time–frequency scatter
plot at this point, and further cluster analysis is required. To identify the parameter setting
of DBSCAN, we drew a k-dist curve and determined the position of the inflection point.
The vertical scale of it (Eps) is the best value for the radius of the cluster, and the point
whose distance exceeds Eps is regarded as the noise point. Based on it, the empirical
parameters of DBSCAN are derived. Through the adaptive DBSCAN algorithm, the noise
points are removed, and the number of clusters is obtained.

According to the steps of the genetic algorithm (GA), run the selection operator, select
the crossover method for crossover operation, perform mutation operation, establish the
evaluation mechanism, and select the advantage population to form the new species. Con-
sidering premature convergence, the periodic annealing process is added to GA, calling out
the Metropolis sampling algorithm, and receiving poor individuals with a certain probabil-
ity. When the genetic operation reaches a predetermined algebra, the optimal individual in
the current population is taken as the initial solution of SA. With a decrease in temperature,
the material energy tends to be stable. By reasonably setting the cooling schedule, the
updated population undergoes a new round of genetic and simulated annealing operations.
When Ti < Tend, the optimal global solution can be obtained.

The selection of the improved GASA parameters is shown below: population size
ps = 10, genetic algebra g = 10, cross probability pc = 0.7, mutation probability pm = 0.01,
initial annealing temperature T0 = 100, terminal temperature Tend = 1, and temperature
cooling coefficient β = 0.8. It is noteworthy that the choice of the weight coefficient b in
fuzzy clustering using c-means is set to 6. The weight coefficient decision chart is illustrated
in Figure 7. As the weight coefficient increases, Jb decreases, leading to more desirable
outcomes. Although there may be slight variations in computation time on each run, data
collected according to statistical trends reveal that computation time tends to increase with
a rising power index. Taking these trade-offs into consideration, setting the coefficient to
6 ensures excellent computational results with a relatively fast processing time. The flow
diagram is depicted in Figure 8.
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Specific steps of the CYYM are as follows (see Algorithm 2):

Algorithm 2 CYYM Algorithm
1.def signal_preprocessing(data):
data = perform_STFT_conversion(data)
data = perform_single_source_detection(data)
data = remove_low_energy_points(data)
data = normalize_spatial_mapping(data)
return data
2.def draw_k_dist_curve(data):
k_dist_curve = calculate_k_dist_curve(data)
inflection_point = locate_inflection_point(k_dist_curve)
dbscan_params = derive_dbscan_parameters(inflection_point)
return dbscan_params
3.def dbscan_clustering(data, dbscan_params):
clusters = run_dbscan(data, dbscan_params)
return clusters
4.Initialize Parameters for SA
pop_size = 10
max_generations = 10
crossover_prob = 0.7
mutation_prob = 0.01
initial_temperature = 100
cooling_coefficient = 0.8
termination_temperature =1
5.Initialize SA Algorithm
cluster_centers = get_cluster_centers(clusters)
population = initialize_population(pop_size, cluster_centers)
compute_membership_and_fitness(population, data)
6.Initialize Loop Count
generation = 0
7.Genetic Operations
while generation < max_generations:
selected_population = select_population(population)
offspring = crossover_and_mutation(selected_population
crossover_prob, mutation_prob)
new_population = form_new_population(population, offspring)
compute_membership_and_fitness(new_population, data)
8.Update Generation
generation += 1
9.SimulatedAnnealing
update_with_simulated_annealing(new_population, population, temperature)
10.Check Termination
If temperature < termination_temperature:
return global_optimal_solution
else repeat Genetic Operations
11. mixing_matrix = estimate_mixing_matrix(cluster_centers)
12. recovered_signals = recover_source_signals(data, mixing_matrix)
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Figure 7. Weight coefficient decision diagram. (a) the trend graph of the fitness function as the power
exponent increases; (b) the trend graph of computation time with an increasing power exponent.
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4. The Simulation Analysis and Compression Application
4.1. Evaluation of Indicators

The accuracy of the estimated mixed matrix is evaluated using normalized mean
square error (NMSE) and deviation angle as criteria of interest. The NMSE expression is as
follows:

NMSE = 10 lg(
∑m

i=1 ∑n
j=1(âij − aij)

2

∑m
i=1 ∑n

j=1 a2
ij)

) (16)

where m and n denote, respectively, the rows and columns of the mixed matrix number,
while âij and aij represent, respectively, the elements in the i-th row and the j-th column of
the estimated mixed matrix and the original mixed matrix. The NMSE value is used as a
metric to assess the accuracy of the estimated matrix, where the smaller value indicates a
more accurate estimation.

The expression of the deviation is the following:

ang(a, â) =
180
π

arccos(
⟨a, â⟩

∥a∥ · ∥â∥ ) (17)

where the deviation angle between the column vectors of Â and A is represented, where
â and a represent the column vector of Â and A, respectively. A smaller deviation angle
indicates a higher accuracy of the estimation matrix.

To further evaluate the similarity of the separated and source signals, the correlation
coefficient is introduced. The larger the correlation coefficient, the more similar the recov-
ered signal is to the source signal. The SIR serves as an indicator of the quality of a received
signal. A higher SIR value signifies a more favorable signal quality, as it implies that the
desired signal is significantly stronger in comparison to interference. Conversely, a lower
SIR indicates that the received signal may be heavily affected by interference, which are
calculated as follows:

C =
∑K

k=1|si(k)ŝi(k)|√
∑K

k=1s2
i (k)∑

K
k=1 ŝ2

i (k))
(18)

SIR = 10lg[
∑K

k=1s2
i (k)√

∑K
k=1(si(k)− ŝi(k))2

] (19)

where si(k) and ŝi(k) represent the actual value and the estimated value of the second
source signal, respectively, and K represents the length of time of the source signal on path
i, that is, the number of sampling points of the source signal.

4.2. Experiment 1: Comparative Analysis of Accuracy in Mixed Matrix Estimation

To verify the feasibility of the CYYM method, three different mechanical vibration
signals S = [s1, s2, s3]T are mixed and then separated by the CYYM method through
simulation experiments. To be specific, s1 is a sine signal, s2 is a cosine signal, and s3
is a frequency-modulated signal, shown in Equation (20). The sampling frequency is
f = 1000 Hz, and N = 1024, which is the number of sample points. The time and frequency
domain diagrams are depicted in Figure 9.

s1 = sin(2π f1t)
s2 = 0.7 cos(2π f2t + 10)
s3 = sin[(2π f3t) + 0.2 ∗ cos(2π fmt)]

(20)

where f1 = 100 Hz, f2 = 220 Hz, f3 = 300 Hz, and fm = 20 Hz. In MATLAB, a random
matrix A is generated by the function generator, and the matrix is normalized as shown in
Equation (21):

A =

[
0.6986 0.5575 0.9295
0.7155 −0.8301 −0.3688

]
(21)
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Gaussian white noise with a mean of 0 and a variance of 0.1 is added to the mixed
signal X(t) to simulate real environmental noise, as shown in Equation (22):

X(t) = A × S(t) + N(t) (22)
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(a) (b)

Figure 9. Waveforms of source signals: (a) in the time domain. (b) in the frequency domain.

The mixing waveforms are shown in Figure 10. It is discovered that the time–domain
waveform features of the source signal are entirely submerged in the mixed signal. Mean-
while, in the corresponding spectrum, the characteristic frequencies of each source signal
interfere with each other, and the characteristic frequencies of 280 Hz and 320 Hz are
swamped by different frequencies, which demonstrates that the traditional frequency do-
main analysis method has some defects in dealing with mixed signals from multiple sources.
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Figure 10. Mixed signals: (a) time domain waveforms; (b) envelope spectra.

Second, after signal pre-processing, three simulations were performed in Figure 11,
specifically displaying the real part of the time–frequency transforms using different algo-
rithms to validate the effectiveness of the proposed method. The scatter plot in Figure 11b
represents the results clustered by GASA. The identification of the classification effect is
observed to be low due to the presence of a significant number of outliers, greatly reducing
the clustering accuracy of the clustering center. Our comparison of the GASA and CYYM
algorithms for clustering revealed that the GASA algorithm is exceptionally sensitive to
outliers. Consequently, the accurate estimation of the mixture matrix cannot be achieved
by relying solely on the GASA method calculation.
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Figure 11. (a) Normalized time–frequency scatterplots. (b) Clusted by GASA. (c) Clusted by improved
DBSCAN. (d) Clusted by CYYM.

As indicated in Figure 11c, three data stacks correspond to three source signals; more-
over, with the help of adaptive DBSCAN preprocessing, the clustering in the first step
provides a clear distinction between different groups and the expected effect of compactness
in the same dataset, which provides a solid basis for further calculation of the location of
the center of the cluster in the second step. The CYYM clustering is illustrated in Figure 11d.
A GASA optimization algorithm was used based on Figure 11c to calculate the location of
the cluster centers for each dataset and accurately label them to achieve the estimation of
the UMM. There is a substantial increase in the speed of operation and a higher degree of
computational accuracy.

The estimated value of Â1 after applying the K-means algorithm to the normalized TF
points is:

Â1 =

[
0.6930 0.5714 0.9261
0.7200 −0.8177 −0.3735

]
(23)

The estimated value of Â2 after applying the DBSCAN algorithm to the normalized
TF points is:

Â2 =

[
0.6889 0.5598 0.9284
0.7142 −0.8284 −0.3715

]
(24)

The estimated value of Â3 after applying the GASA algorithm to the normalized TF
points is:

Â3 =

[
0.6984 0.5575 0.9295
0.7155 −0.8297 −0.3684

]
(25)

The estimated value of Â4 after applying the ADBSCAN algorithm to the normalized
TF points is:

Â4 =

[
0.6984 0.5558 0.9293
0.7155 −0.8310 −0.3689

]
(26)
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The estimated value of Â5 after applying the FCM algorithm to the normalized TF
points is:

Â5 =

[
0.6949 0.5614 0.9272
0.7183 −0.8264 −0.3721

]
(27)

The estimated value of Â6 after applying the proposed method to the normalized TF
points is:

Â6 =

[
0.6985 0.5574 0.9294
0.7154 −0.8299 −0.3687

]
(28)

To analyze and compare the estimation accuracy of the mixing matrices, the results
of 100 simulation experiments using six different methods (K-means, FCM, DBSCAN,
ADBSCAN, GASA, CYYM) were compared and analyzed based on the mean values of
two metrics, NMSE (Normalized Mean Squared Error) and angular deviation, as shown
in Table 1. The NMSE of the K-means algorithm is −38.4103 dB, indicating a relatively
low accuracy, which may be attributed to a random selection of initial clustering centers.
The GASA algorithm shows only a small enhancement compared to FCM, with an NMSE
of −48.57108 dB. The NMSE obtained using the DBSCAN algorithm is −51.7364 dB,
indicating a relatively good performance, though not yet reaching an optimal level. In
contrast, ADBSCAN demonstrates a notable improvement in terms of the NMSE metric,
achieving a value of −59.125, surpassing the performance of DBSCAN. The proposed
CYYM method achieves an NMSE of −74.104 dB, which is the smallest value among all
the methods. These results demonstrate that the clustering effect is more apparent and the
precision is the highest when using the proposed CYYM method.

Table 1. Comparisons of angular differences and NMSE metrics.

Method
Angular Difference NMSE

(dB)ang(a1, â1) ang(a2, â2) ang(a3, â3)

Kmeans 0.4100 1.1868 0.3226 −38.4100
FCM 0.2639 0.3040 0.2246 −46.4680
GASA 0.3170 0.1234 0.1347 −48.5710
DBSCAN 0.1039 0.1661 0.1659 −51.7364
ADBSCAN 0.0093 0.1074 0.0093 −59.1250
CYYM 0.0001 0.0016 0.0032 −74.1040

According to Table 1, the proposed method exhibits the smallest deviation angle,
indicating the highest precision, followed by ADBSCAN, DBSCAN, GASA, FCM, and
K-means. To verify the operational efficiency of the proposed method, the computation
times are calculated and compared. All simulations were conducted in MATLAB R2021b,
using an Intel Core i7-7500U CPU of 2.70 GHz and 8 GB of 2133 MHz DDR4 RAM. As
shown in Table 2, the computation time for GASA was 14.96 s, while the computation time
for the CYYM algorithm was 4.5392 s, indicating that the computational time is one-third
of the original. In the CYYM algorithm, Jb is the objective function used to search for
the fitness value, and Jb = 0.1244. This approach greatly improves the precision of the
estimated matrix.

Table 2. Running time of different methods.

Method GASA The Proposed Method

Running time 14.96 s 4.539 s

After obtaining the estimated matrix, the shortest path method is used to recover the
source signal [29]. For the length limitation, only the source signal and the signal recovered
by the CYYM method are given. To better show the superiority, the source signals and the
separated signals are shown in Figure 12. Moreover, their Fourier spectrums are shown in
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Figure 13. For comparison, we find that the three separated signals are consistent with the
source signal graph, which indicates that the source signal can be recovered well by the
proposed method.
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Figure 12. Time− domain signal comparison diagram: (a) source signals; (b) recovery Signal.
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Figure 13. Frequency domain signal comparison diagram: (a) source signals; (b) recovery signal.

4.3. Simulation Experiment 2: Comparative Evaluation of Signal Recovery

To achieve the estimation of the mixing matrix and the recovery of source signals,
we employed the TIFROM and DEMIX methods, along with the traditional clustering
approach DBSCAN, in conjunction with the method proposed in this paper. Through
simulated experiments, we mixed four distinct mechanical vibration signals, denoted
as S = [s1, s2, s3, s4]

T , into three composite signals. The source signals are depicted
in Figure 14. Specifically, s1 represents a low-frequency signal and s2 corresponds to a
frequency-modulated (FM) signal with a carrier frequency of f2 and a modulation frequency
of fm. Similarly, s3 denotes an amplitude-modulated (AM) signal with a carrier frequency
of f3 and a modulation frequency of fm. Lastly, s4 is characterized as a high-frequency
signal, shown in Equation (29). The sampling frequency is f = 1024 Hz and a sampling time
of 1 s. The mixed signals are depicted in Figure 15.

s1 = cos(2π f1t);

s2 = sin(2π f2t) + cos(2π fmt);

s3 = (cos(2π fmt) + 1) sin(2π f3t);

s4 = sin(2π f4t).

(29)
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where f1 = 110 Hz, f2 = 170 Hz, f3 = 220 Hz, f4 = 300 Hz, and fm = 30 Hz. In MATLAB, a
random matrix A is generated by the function generator, as shown in Equation (30):

A =

0.3874 0.3090 0.4388 0.2040
0.8951 0.8103 0.8687 0.7744
0.1948 0.4952 0.1883 0.5487

 (30)

Gaussian white noise with a mean of 0 and a variance of 0.1 is added to the mixed
signal X(t) to simulate real environmental noise, as shown in Equation (31):

X(t) = A × S(t) + 0.1 × randn(3, N) (31)

The TIFROM algorithm (Time–Frequency Ratio of Mixtures) is designed for blind
source separation, aiming to enhance the extraction of independent components through a
temporal recurrent structure and an orthogonalization mechanism. However, in simulation
experiments, the algorithm exhibits notable shortcomings, as shown in Figures 16–19.

Firstly, the TIFROM algorithm demonstrates a significant issue of severe amplitude
distortion in signal recovery. This may be attributed to the algorithm’s inability to effec-
tively preserve the amplitude information of the original signals, resulting in noticeable
differences in amplitude between the separated signals and the actual signals.

Secondly, a lack of matching in graphical representation is another issue affecting the
performance in simulation experiments. The TIFROM algorithm might introduce errors
during the operations of the temporal recurrent structure and orthogonalization mechanism,
causing the separated signals to deviate from the actual signals in terms of shape. This
can hinder the accurate reflection of the original signals’ temporal characteristics in the
separated signals.

Additionally, the low precision of the generated mixing matrix by the TIFROM al-
gorithm, as evidenced by the first column angle deviations of 18.5564 and 18.3191, as
shown in Table 3, can impact the accuracy of estimating the mixing process during blind
source separation.

Table 3. Comparisons of angular differences and NMSE metrics.

Method
Angular Difference NMSE

(dB)ang(a1, â1) ang(a2, â2) ang(a3, â3) ang(a4, â4)

TIFROM 18.5564 18.3191 0.0587 0.0167 −7.9891
DEMIX 0.0023 4.3438 0.0041 0.0021 −36.1021
DBSCAN 0.5555 0.8192 0.4062 1.0298 −33.9479
CYYM 0.0530 0.0043 0.0228 0.5943 −44.1980

DEMIX (Direction Estimation of Mixing matrix) employs a clustering algorithm
that prioritizes reliable time–frequency regions, leveraging a local confidence measure.
In Table 3, despite a larger angle deviation in the second column (4.3438), DEMIX excels
in signal recovery, showcasing its effectiveness in extracting source signals from complex
mixtures. The algorithm demonstrates precision in estimating the mixing matrix, forming
a robust foundation for separation. In Figures 20–23, a notable limitation is the potential
inaccuracy in amplitude reconstruction, leading to distortions in signal strength. The
graphical representation of separated signals may slightly deviate, impacting accurate
signal shape representation. Despite strengths, DEMIX encounters challenges in estimating
cluster numbers, illustrated in Figure 24. The graphical representation, while informative,
poses challenges in precisely discerning cluster counts due to the convergence of lines.

The signals recovered by the CYYM method are illustrated in Figure 25. The wave-
forms exhibit similarity, and the amplitudes are accurately reproduced. As shown in Table 3,
the minimum NMSE value is −44.1980, and the angular deviations in each column are
relatively small. There is no prominent issue of excessively large angle deviations in any
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column, as observed in the DEMIX method. Through in-depth comparisons with other
advanced methods such as TIFROM and DEMIX, we aim to gain a more comprehensive
understanding of the strengths and limitations of various approaches, driving progress in
the field of blind source separation.
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Figure 14. Source signals: (a) Waveforms. (b) Fourier spectrums.
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Figure 15. Mixed signals: (a) waveforms; (b) Fourier spectra.
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Figure 16. Time-domain signal: (a) Source signal s1. (b) s1 obtained by TIFROM method.
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Figure 17. Time-domain signal: (a) Source signal s2. (b) s2 obtained by TIFROM method.
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Figure 18. Time-domain signal: (a) Source signal s3. (b) s3 obtained by TIFROM method.
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Figure 19. Time -domain signal: (a) Source signal s4. (b) s4 obtained by TIFROM method.
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Figure 20. Time-domain signal: (a) Source signal s1. (b) s1 obtained by DEMIX method.
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Figure 21. Time -domain signal: (a) Source signal s2. (b) s2 obtained by DEMIX method.
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Figure 22. Time-domain signal: (a) Source signal s3. (b) s3 obtained by DEMIX method.
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Figure 23. Time-domain signal: (a) Source signal s4. (b) s4 obtained by DEMIX method.
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Figure 24. Number of clusters performance map.

0 0.2 0.4 0.6 0.8 1
-2

0

2

A
m

p
li

tu
d

e 
(V

)

0 0.2 0.4 0.6 0.8 1
-2

0

2

A
m

p
li

tu
d

e 
(V

)

0 0.2 0.4 0.6 0.8 1
-4

-2

0

2

4

A
m

p
li

tu
d

e 
(V

)

0 0.2 0.4 0.6 0.8 1
-4

-2

0

2

4

A
m

p
li

tu
d

e 
(V

)

0 0.2 0.4 0.6 0.8 1
-4

-2

0

2

4

A
m

p
li

tu
d

e 
(V

)

0 0.2 0.4 0.6 0.8 1
-4

-2

0

2

4

A
m

p
li

tu
d

e 
(V

)

0 0.2 0.4 0.6 0.8 1

Time (s)

-2

0

2

A
m

p
li

tu
d

e 
(V

)

0 0.2 0.4 0.6 0.8 1

Time (s)

-2

0

2

A
m

p
li

tu
d

e 
(V

)

(a) (b)

Figure 25. Time-domain signal: (a) Source signals . (b) Estimated signals obtained by CYYM method.

4.4. Experiment 3: Compression Machine Trials and Comparative Analysis of
Anti-Noise Performance

The two-stage double-acting reciprocating compressor is illustrated in Figure 26. The
structural parameters are listed in Table 4, and its model number is DW-10/12-27-Xlll.
The driving schematic of the reciprocating compressor mechanism is shown in Figure 27.
The connecting rod becomes more fragile and operates under alternating stress. The
composition of the reciprocating compressor connecting rod is shown in Figure 28.
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Sensor

Figure 26. DW-10/12-27-Xlll type two-stage double-acting reciprocating compressor.

Table 4. The structural parameters of the reciprocating compressor.

Shaft Power Piston Stroke Crankshaft Speed

500 kW 240 mm 496 rpm

To obtain the vibration state information of the connecting rod, the sensor is fixed on
the surface of the compressor shell close to the first cross head in Figure 28 using magnetic
suction. The corresponding vibration data of three states (normal state s1, big end fault state
s2, and small end fault state s3) are collected. In this experiment, we used a multichannel
intelligent data acquisition instrument and an ICP accelerometer for the data acquisition
system. The sensitivity is 100 mpg, the range is −50∼+50 g, and the frequency range is
0.5∼5 kHz. The reciprocating compressor motor’s characteristic frequency is 8.27 Hz. The
sampling frequency is set to 50 kHz. Each state’s signal acquisition time lasts four seconds.
To reduce the computation, this paper only selects the first 0.2 s vibration signal for analysis,
the corresponding data length of 10,000 points.

The three sampled source signals S = [s1, s2, s3]
T are thoroughly mixed using a random

matrix A of 2 × 3, and the mixed signal X = [x1, x2]
T is obtained in Figure 29. A random

mixing matrix is generated randomly by the MATLAB command, shown in Equation (32):

A =

[
0.9695 0.3235 0.3948
0.2452 −0.9462 0.9188

]
(32)

The three signal mixing systems measured are shown in Equation (33):

X(t) = A × S(t) (33)

The source signals are recovered by the shortest path method [14]. When the source
signals are compared with the recovered compressor signals in the time domain, as shown
in Figure 30, it is apparent that the result is satisfactory. The frequency distributions are
almost identical in Figure 31. The critical information of dual frequency is accurately
displayed, and the separation effect is ideal.

In the context of Compression Algorithm Validation Experiments, the accuracy of
estimating the mixed matrix is evaluated using the Normalized Mean Squared Error
(NMSE). To further assess the similarity between the separated signals and the source
signals, we have introduced the correlation coefficient. The comparison of mean results
from 100 compression experiments, conducted using six different methods (k-means,
FCM, DBSCAN, ADBSCAN, GASA, CYYM), is presented in Table 5. It is evident that
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the K-means algorithm exhibits the poorest performance in terms of both correlation
coefficients and NMSE. On the other hand, FCM, GASAN, DBSCAN, and ADBSCAN
yield comparable results. The CYYM method stands out with the lowest NMSE value,
recording an impressive −38.962, demonstrating its clear superiority over other algorithms.
Additionally, the adaptive DBSCAN algorithm excels in two specific correlation coefficient
aspects when compared to other algorithms, with NMSE results slightly favoring DBSCAN.
Furthermore, to validate the operational efficiency of the proposed method, running times
are calculated and compared. Table 6 indicates that GASA took 22.8614 s, whereas CYYM
only took 8.3911 s, which is nearly a third of SAGA’s time. These findings suggest that the
improved GASA algorithm enhances the calculation efficiency by appropriately setting
the parameters.

Table 5. Correlation coefficients and NMSE.

Methods
Correlation Coefficient R NMSE

(dB)⟨s1, ŝ1⟩ ⟨s2, ŝ2⟩ ⟨s3, ŝ3⟩
Kmeans 0.8519 0.9770 0.8881 −23.8561

DBSCAN 0.8560 0.9766 0.8879 −26.4720
ADBSCAN 0.8540 0.9768 0.8878 −28.2293

FCM 0.8544 0.9769 0.8878 −28.7745
GASA 0.8758 0.9698 0.8207 −30.5559
CYYM 0.8809 0.9706 0.8976 −38.9623

Figure 27. The driving schematic of the compressor mechanism.

(a) (b) (c) (d)

Figure 28. Composition of the reciprocating compressor connecting rod: (a) connecting rod; (b) big
head of the connecting rod; (c) bearing bush; (d) failure bearing bush.
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Figure 29. Mixed signals: (a) time−domain waveforms; (b) envelope spectra.
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Figure 30. Time-domain contrast diagram of compressor signals: (a) source signals; (b) recovery
signals by the CYYM method.
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Figure 31. Frequency domain contrast diagram of compressor signals: (a) source signals; (b) recovery
signals by the CYYM method.

Table 6. Running time of comparison.

Method GASA Proposed Method

Running time 28.8614 s 8.3911 s
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4.5. Comparative Performance Analysis: NMSE, Correlation Coefficient, and SIR under Varying
Signal-to-Noise Ratios

To simulate the noise, we employed a Gaussian noise generation method. The root
mean square (RMS) standard deviation of the noise was controlled by the signal-to-noise
ratios (SNRs) of 10 dB, 15 dB, 20 dB, 25 dB, and 30 dB to the compressed signals within the
compressor. This approach allowed us to introduce noise of varying intensity under differ-
ent SNR conditions. Specifically, the RMS standard deviation of the noise was calculated
as follows:

σnoise =

√√√√ ∑ ∑(A × S)2

(2 × N)× 10
SNRdB

10

(34)

where SNRdB represents the signal-to-noise ratio in decibels, A is the signal matrix, S is the
source signal, and N is the signal length. This noise generation method played a pivotal
role in facilitating the simulation of signal interference and noise across a range of SNR con-
ditions during our three experiments. In each of these three experiments, we meticulously
calculated essential metrics, encompassing the Normalized Mean Squared Error (NMSE),
correlation coefficients, and Signal-to-Interference Ratio (SIR). It is noteworthy that each
experiment maintained a consistent mixed system configuration, and this setup was sub-
jected to 100 repetitions as part of our Monte Carlo analysis. Subsequently, we computed
the mean values of these metrics. This stringent methodology afforded us a comprehensive
evaluation of matrix estimation accuracy and the precision of signal recovery, spanning a
diverse array of noise levels.

From the comparative analysis of correlation coefficients at varying signal-to-noise
ratios (SNRs), in Figure 32, it is evident that all methods consistently exhibit correlation
coefficients exceeding 0.84, indicating a high level of signal recovery accuracy. However, it
is noteworthy that the correlation coefficients of the other five methods exhibit erratic fluc-
tuations as SNR increases, demonstrating their instability under changing noise conditions.
In contrast, the method employed in this study demonstrates a stable and consistently
increasing correlation coefficient with the increment of SNR, underscoring its robustness in
noisy environments.
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Figure 32. Comparison diagram of correlation coefficients.

In terms of the accuracy of mixed matrix estimation in Figure 33, the other five methods
exhibit relatively similar performance. In contrast, the method employed in this study
demonstrates improved performance with decreasing NMSE values as SNR increases.
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This observation underscores the method’s strong adaptability to noise conditions and its
enhanced precision in mixed matrix estimation.
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Figure 33. Comparison diagram of NMSE.

SIR is employed to assess the relative strength between the target vibration signal and
noise. Higher SIR values facilitate the extraction of fault signals from complex compressor
vibration data. Observing the SIR comparison across different signal-to-noise ratios in
Figure 34, it becomes evident that the mean SIR values for all six methods exhibit a robust
increase, although they remain below 10. Notably, Table 7 highlights that the SIR indicator
for the detection of major crankshaft faults exceeds the threshold of 11, indicating the
superior performance of the method employed in this study in extracting major fault
signals. This outcome further underscores the significance of parameter selection and
adjustment in enhancing the separability of major fault signals.
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Figure 34. Comparison diagram of SIR.
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Table 7. SIR indicator for the detection of major crankshaft faults.

SNR 10 db 15 db 20 db 25 db 30 db

SIR 11.4748 12.9818 13.6118 13.9570 14.0181

4.6. Compressor Fault Detection

In the context of rolling bearings, fault diagnosis primarily relies on signal spectrum
analysis. However, when it comes to compressors, achieving fault type and location
determination through simple spectrum analysis is often challenging. This challenge arises
from the fact that faults occurring at different locations within the compressor generate
signals with identical frequencies, as illustrated in Figure 31. Consequently, using recovered
signals alone to identify faults poses a significant challenge. To address this, efforts have
been dedicated to utilizing entropy as a quantitative measure for further characterizing the
vibration signal’s fault-related attributes.

Superior to most nonlinear dynamic measures such as Sample entropy and Multi-scale
fuzzy entropy, Refined composite multiscale fuzzy entropy (RCMFE) has higher accuracy
of entropy estimation and can reflect the fault state characteristics more comprehensively.
The regularity of signal entropy varies when different faults occur in the compressor, and
can, thus, be used as a characteristic feature of compressor signals for the faults. After
long-term monitoring, our laboratory obtained a library of compressor fault characteristics
and recorded the corresponding characteristic shape curves. The better the distinguishing
result of different faults is, the more effective the method is for fault classification. The
higher the similarity between the estimated signal and the entropy curve of the fault library,
the more efficient the method is in determining faults.

RCMFE has excellent characteristic results, as shown in Figure 35. The three states’ en-
tropy characteristic curves are blue, green, and pink dashed lines, which can be completely
distinguished by the naked eye due to the vast difference in shape characteristics, and the
three states are normal state, first-stage connecting rod large head failure, and first-stage
connecting rod small head failure.

0 4 8 12

Scale factor

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
C

M
F

E

Normal state

Estimated signal s
1

0 4 8 12

Scale factor

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
C

M
F

E

Big end failure

Estimated signal s
2

0 4 8 12

Scale factor

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
C

M
F

E

Small end failure

Estimated signal s
3

(a)

0 4 8 12

Scale factor

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
C

M
F

E

Normal state

Estimated signal s
1

0 4 8 12

Scale factor

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
C

M
F

E

Big end failure

Estimated signal s
2

0 4 8 12

Scale factor

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
C

M
F

E

Small end failure

Estimated signal s
3

(b)

0 4 8 12

Scale factor

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
C

M
F

E

Normal state

Estimated signal s
1

0 4 8 12

Scale factor

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
C

M
F

E

Big end failure

Estimated signal s
2

0 4 8 12

Scale factor

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
C

M
F

E

Small end failure

Estimated signal s
3

(c)

Figure 35. RCMFE characterization curve vs. fault library identification plot: (a) normal state; (b) big
end failure; (c) small end failure.

The graph of the signal estimated by the CYYM method is shown in Figure 18a with
a dark blue solid line. From the graph, it can be found that as the scale factor increases,
the dashed line and the solid line change in a highly consistent trend, and the recovered
signal has better stability because of the filtered noise. Thus, the overall entropy value
decreases, indicating that the dark blue solid line signal is the normal state compressor
signal. Meanwhile, the dark green solid line after the restoration with CYYM is shown in
Figure 18b. The two green curved lines are highly similar in shape, from which it can be
determined that the signal fault is a first-level connecting rod large head fault; in Figure 18c,
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the light pink dashed line is the graph of the entropy value of the first-level connecting rod
small head fault in the fault library, while the entropy value of the restored signal is shown
in Figure 18c with a dark pink solid line. Despite the two graphs being slightly different,
the huge decline of the entropy value from the highest point to the lowest point and the
appearance of the wave after the scale factor being greater than 7 indicate that the two fault
characteristics are identical.

5. Conclusions

In this study, our goal was to address the limitations of the traditional clustering
algorithm FCM, which requires prior knowledge to determine the number of signal sources
and is prone to getting stuck in local optima. To overcome these challenges, we introduced
the GASA optimization method with adaptive DBSCAN clustering initialization as a novel
approach for accurately estimating underdetermined mixing matrices. The implemented
CYYM method in this research demonstrated significant capabilities. It not only auto-
matically predicted the number of sources by adaptively adjusting DBSCAN parameters,
but also achieved precise localization of clustering centers. Furthermore, the application
of the CYYM method in diagnosing compressor connecting rod faults significantly im-
proved search and evolution speeds compared to the GASA algorithm. The combination of
the CYYM method with Refined Composite Multiscale Fuzzy Entropy (RCMFE) analysis
successfully achieved fault diagnosis, identifying fault types and their locations.

In this study, our focus shifted to improving the estimation of mixing matrices in the
case of instantaneous mixtures. Despite making substantial progress in fault diagnosis, it is
crucial to acknowledge that this method is not suitable for estimating mixing matrices in
situations involving delays.

Additionally, the current fault feature classification involves a relatively limited sam-
ple size of single faults. Future work should concentrate on expanding the RCMFE fault
dataset by collecting field measurements of more typical faults. Moreover, exploring the ap-
plication of intelligent algorithms, such as neural networks, can enhance fault classification
capabilities [52].

This study lays the groundwork for further research in the field, with the potential to
enhance fault detection and classification methodologies.
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