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Abstract: Gain-scheduled autopilots have emerged as a dominant strategy to achieve adaptive
control of coupled, non-linear engineering complexities, owing to an ability to adapt to changing
operational conditions and uncertainties. This study focuses on utilizing bilinear interpolation of
gain-scheduled autopilots, emphasizing enhanced system performance and robustness. Through
a comprehensive investigation and comparative analysis using three disparate cases, advantages
over conventional methods are revealed. Strengths and weaknesses of both simple and specialized
variants (such as linear, and real-time gain-scheduling) are introduced. Three missile guidance
case–studies utilize simulation time and miss distance figures of merit. Comparing the performance
of bilinear interpolation and automatic instantiations to index–search, over comparable traveled
distances, missile miss distances were improved 179% and 196% respectively with slightly improved
computational burden.

Keywords: gain-scheduled autopilots; nonlinear control; bilinear interpolation; control and guidance;
control gains; three-dimensional lookup table (3D-LUT)

1. Introduction

Gain-scheduled autopilots hold immense significance in the field of modern missile
technology, as they address critical challenges and elevate the capabilities of guidance
control in missile systems. As the complexity of military operations intensifies, the demand
for highly adaptable countermeasures and precise missile guidance systems have become
paramount. By providing dynamic control gains that cater to varying flight conditions,
gain-scheduled autopilots offer a robust solution for missile defense. This study delves into
the fundamental principles, working mechanisms, and functional advantages of various
designs of gain-scheduled autopilots for missiles, highlighting the effectiveness of bilinear
interpolation in control systems.

As a missile travels over vast distances (Figure 1), it encounters diverse atmospheric
conditions that impact its aircraft stability, experiencing variations in altitude, velocity, and
aerodynamic forces. Traditional fixed-gain autopilots suffer from limitations in adapting to
the constantly changing environment and unexpected disturbances, leading to reduced
accuracy and compromised performance. Accordingly, fixed-gain systems severely lack
the ability to counter agile adversaries. Unmanned aerial systems (UAS), for instance,
can exhibit unpredictable and erratic flight patterns, making them challenging targets for
traditional fixed-gain autopilots.

Gain-scheduled autopilots, on the other hand, provide a dynamic and responsive
solution. A gain-scheduled autopilot can tailor the control gains to suit each phase of
the flight based on the real-time feedback and operational parameters. This adaptability
significantly enhances the missile’s accuracy and maneuverability, increasing the chances of
successful target engagement against evasive threats like UAS. Furthermore, in a mission-
critical scenario where multiple missiles are employed in a salvo attack, gain-scheduled
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autopilots offer a crucial advantage. With the ability to dynamically adjust to surroundings,
the missiles can adapt to the specific requirements of each individual missile, ensuring that
the entire salvo operates cohesively. The ability to coordinate and synchronize multiple
missiles makes gain-scheduled autopilots indispensable tools in modern warfare scenarios.
By intelligently blending discrete control gains through simple algorithms, bilinear interpo-
lation unlocks the full potential of gain-scheduled autopilots, contributing to the overall
efficiency and reliability of missile guidance. The study explores the advantages of bilinear
interpolation of control gains in a three-dimensional lookup table for gain-scheduled au-
topilots, including improved robustness, reduced control effort, and enhanced adaptability
to handle complex, non-linear systems. The difference in this study is the seminal presenta-
tion of results conducted at this level of study. Presentation includes two-dimensional gain
surfaces visualized in three-dimensional lookup table leading to comparison results based
on simulation time (representing computational burden), range traveled, maximal normal
acceleration, and miss distance.
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Figure 1. (a) Original RIM-174 Standard Extended Range Active Missile (ERAM), also known as 
Standard Missile-6 (SM-6) launched off the Hawaiian coast 6–13 April 2017 [1]. (b) guided-missile 
destroyer USS Fitzgerald (DDG 62) launches a Standard Missile-3 (SM-3) [2]. Images credit: U.S. 
Navy in accordance with image use policy [3]. Department of Defense photographs and imagery, 
unless otherwise noted, are in the public domain. 
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believed and suffer from severe limitations [4], particularly in light of recent improve-
ments in decoys [5], where a long list of intercept failures was published in 2021 [6], where 
mitigation by sensor improvements was proposed the following year [7] in a proposal to 
utilize space–based sensors which was reinforced by the U.S. Air Force Association the 
same year in [8].  

1.2. State of the Art Benchmarks 
The following list highlights the current state of the art developments for high–fidel-
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1. In 2020, reference [9] illustrated ubiquitous use of simplified models and probabilistic 

assessments leading to recommendations on the number of interceptors necessary 
using a shoot-look-shoot mode of operations.  

Figure 1. (a) Original RIM-174 Standard Extended Range Active Missile (ERAM), also known as
Standard Missile-6 (SM-6) launched off the Hawaiian coast 6–13 April 2017 [1]. (b) guided-missile
destroyer USS Fitzgerald (DDG 62) launches a Standard Missile-3 (SM-3) [2]. Images credit: U.S.
Navy in accordance with image use policy [3]. Department of Defense photographs and imagery,
unless otherwise noted, are in the public domain.

1.1. Review of the Literature

Current long-range missile defense systems are seemingly much less effective than
believed and suffer from severe limitations [4], particularly in light of recent improvements
in decoys [5], where a long list of intercept failures was published in 2021 [6], where
mitigation by sensor improvements was proposed the following year [7] in a proposal to
utilize space–based sensors which was reinforced by the U.S. Air Force Association the
same year in [8].

1.2. State of the Art Benchmarks

The following list highlights the current state of the art developments for high–fidelity
six degree of freedom simulation:

1. In 2020, reference [9] illustrated ubiquitous use of simplified models and probabilistic
assessments leading to recommendations on the number of interceptors necessary
using a shoot-look-shoot mode of operations.

2. Russian President Putin boasted to have developed missiles traveling at twenty times
the speed of sound [10] necessitating increased confidence in engagement analysis.

3. Tracy, et al. forwarded the notion that “Misperceptions of hypersonic weapon per-
formance have arisen from social processes by which the organizations developing
these weapons construct erroneous technical facts favoring continued investment”,
and recommended rigorous, quantitative analysis [11].
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4. In late 2022, The U.S. Army Combat Capabilities Development Command issued a
technical report [12] elaborating benchmark automated gain–scheduling approach for
three–loop autopilots for high–speed projectiles with supersonic flight envelopes.

These key benchmarks from the years 2020–2022 amplify the novelty of this study,
namely proposal of bilinear interpolation in direct comparison to the current state of the art
in comparisons where all features are held consistent, while only the autopilot technique
is iterated revealing decision–quality advice for procurement (for example). Using a very
recent published benchmark from the U.S. Army rationalizes selection for this study of the
Standard Missile–6.

1.3. Novelties Presented

The following proposals are developed in subsequent pages of this manuscript:

1. Automatic gain scheduling is proposed and compared to index–search as the com-
parative benchmark, where control gains are tailored to suit each phase of the flight
based on the real-time feedback and operational parameters.

2. Bilinear interpolation is proposed and compared to index–search as the comparative
benchmark by intelligently blending discrete controls. Linearized models are trimmed
for each flight condition and control gains are tuned accordingly and stored at lattice
points on partition of linear spaces of angle of attack, velocity, and gain. Actual flight
conditions are located amidst the nearest lattice points and bilinear interpolation
(using angle of attack and velocity) yields new control gain estimates.

2. Materials and Methods
2.1. Specification and Initialization

The missile for the simulation is fictional, a replica of the original RIM-174 Stan-
dard Extended Range Active Missile (ERAM), also known as Standard Missile-6 (SM-6).
SM is the most reliable type of surface-to-air missile, still favored by the United States
Navy [13]. This study employs the aerodynamic fundamentals organized by Raytheon
Missile Systems [14,15], and thus the most accurate simulation was expected by using
SM, whose primary manufacturer is Raytheon. Possibly due to security purpose, some
specifications of SM are not available publicly. While “. . .stabilization dynamics have a
very wide bandwidth, in excess of 100 rad/sec. . .” [16], assumed control bandwidth is
conservatively to be merely three Hertz. The parameters not listed in the table, like total
thrust of the actuators, are instead computed from reference velocity (~Mach 5) using the
drag equation. The final specification of the missile is shown in Table 1:

Table 1. Specifications of the missile for the simulation.

Description Value Unit

Total Missile Mass 160 kg
Initial Missile Velocity 1000 m/s

Maximum Axial Acceleration 400 m/s2

Reference Area 0.050 m2

Reference Length 0.300 m
Pitch Moment of Inertia 180 kgm2

Actuator Bandwidth 3.000 rad/s
Maximum Fin Deflection ±30 deg

The study is focused on the relative performance of different designs of autopilots by
comparing the simulation time and the miss distance. For this purpose, the target object
does not require a complex, realistic geometry and it is simplified to a point mass with
fixed flight coefficients. In contrast, the missile has varying flight coefficients for a more
effective analysis of its aerodynamics. The initial position of the missile is defined as the
origin. The missile initially travels parallel to the ground at a velocity of 1000 m/s. To make
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the iteration process more efficient, the target parameters are initialized relative to those
of the missile. The target is placed 5000 m ahead and 1000 m above the missile’s initial
position, traveling at a speed half of the initial speed of the missile, in the direction parallel
to the surface and towards the missile, as seen in Figure 2.
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Figure 2. Flight simulation of missile and target. The red solid line represents the trajectory of the
missile. The blue dotted line represents the trajectory of the target, cruising horizontally. The red
circle indicates the point of impact.

2.2. Airframe Dynamics: Force and Moment

First, the environmental condition is established. The study utilizes the International
Standard Atmosphere (ISA) model for altitudes between 0 to 20 km. The model takes in
the current altitude of the missile and returns the climatic data elements, such as temper-
ature, speed of sound, air pressure and air density, which are used to compute the full
aerodynamics in the equations of motion.

To enhance the accuracy of the simulation, the force and moment coefficients of the
missile are adjusted in accordance with the current flight condition. The coefficients are
stored in a linearly spaced, three-dimensional partition of angle of attack, Mach number,
and flight coefficients (α,M,C). The coefficients are parametrized as function of incidence
angle and Mach number, represented as lattice points on the partition. When a flight
condition is newly introduced on the grid as a nonlattice point, the simulation computes
the relative position of the nonlattice point to the nearest lattice points. The new coefficient
is estimated by a three-dimensional lookup table (‘3D-LUT’) using bilinear interpolation.
3D-LUT is explained with further detail in [17].

There are two major types of forces acting on the missile: axial force and normal
force. The main axial force is drag acting on the missile body. The axial force coefficient
is assumed to be constant, equal to that of a bullet with a spherical cap [18]. The study
assumes the non–zero drag caused by the fins is negligible. The assumption is valid for
fins with relatively small effective surface area relative to the missile’s frontal area (a mere
0.8 percent). Since the drag Equations (10)–(12) reveal linear scaling with area, drag fin
may be safely approximated to be less than one percent of the missile drag. Table 2 defines
terminology and is placed close to Equations (1)–(3) for convenience of the readership.

Cx f
∼= 0 (1)

Cxα = 0.295 (2)

Cxt= Cxα + Cx f (3)
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Table 2. Table of proximal variables and nomenclature 1.

Variable/Acronym Definition Variable/Acronym Definition

Cx f Drag coefficient of fins Czα Lift coefficient of wings
Cxα Drag coefficient of body Cz f Lift coefficient of fins
Cxt Total drag coefficient Czt Total lift coefficient

1 Such tables are offered throughout the manuscript to aid readability.

The lift force acts in the direction normal to the direction in which the missile travels.
The largest contributors to the lift force are the main wings (or angle of attack) and the
missile fins. The coefficient of the lift force created by the missile fins is estimated in [14].
The lift coefficient of the main wings is estimated using the non-linear equation (α, δ)
introduced by Shamma, et al. [19]. Fin deflection is computed using the angle of attack and
the velocity at the instant, allowing the simulation to compute the actual lift force. The total
lift coefficient is the sum of the two lift coefficients.

Czα = 0.000103α3 − 0.00945α|α| − 0.170α − 0.034δ (4)

Cz f = 1.2713 (5)

Czt = Czα + Cz f (6)

The pitch moment coefficient of the main wings is calcualted in Equation (7) [19]. The
pitch moment coefficient due to fin deflection is provided in [14]. The total pitch moment
coefficient is the sum of the moment coefficients.

Cmα = 0.000215α3 − 0.0195α|α| − 0.051α − 0.206δ (7)

Cm f = 7.5368 (8)

Cmt = Cmα + Cm f (9)

The resulting axial and normal forces are shown in Equations (10) and (11) where ρ and S
are the air density and the reference area, respectively. Since the exact dimension of the
missile elements is not published, the forces are assumed to share the same reference area,
provided by Mracek, et al. [14]. The equation for the moment includes the moment arm l,
equal to the reference length. The resulting forces and the moment are used to compute
the flight metrics, such as position, velocity, acceleration, and attitude of the aircraft, in
3 degrees-of-freedom equations of motion. The metrics are fed into the autopilot, which
determines the behavior of the aircraft. Table 3 defines terminology and is placed close to
Equations (4)–(12) for convenience of the readership.

Fx =
1
2

ρV2CxtS (10)

Fz =
1
2

ρV2CztS (11)

Mq =
1
2

ρV2CmtSl (12)

Up to this point in the manuscript, ubiquitous (not novel), necessary topics have been
introduced: Specification and simulation initialization, and flight dynamics (forces and
moments). Before elaborating the three compared autopilots, one final ubiquitous topic is
presented: the proportional navigation guidance law.
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Table 3. Table of proximal variables and nomenclature 1.

Variable/Acronym Definition Variable/Acronym Definition

Fx Axial force Cmα Moment coefficient of wings
Fz Normal force Cm f Moment coefficient due to fins
Mq Pitch moment Cmt Total moment coefficient

1 Such tables are offered throughout the manuscript to aid readability.

2.3. Proportional Navigation Guidance Law

The study utilizes proportional navigation guidance (‘PN guidance’) for the entire
homing phase [20]. PN guidance is one of the simpler guidance laws to implement. It only
requires rate of change of line-of-sight (LOS) and closing velocity, allowing the missile to
have the minimal sensory technology onboard [20]. The relative ease of implementation,
however, does not signify its lack of performance. In fact, PN guidance has proven to be the
most robust guidance system assuming a no-lag missile: a system that reacts instantly and
exactly as commanded [20]. The conventional PN guidance law is shown in Equation (13).

amc = NVc
.
λ (13)

amc is the commanded missile acceleration normal to the LOS. Vc and
.
λ are the closing

velocity and the rate of change of LOS, respectively. Vc is equal to −
.
R, where R is the range

between the missile and the target. Note that
.
R is a negative value during pursuit. For the

system to be stable, the navigational gain N must be larger than 2.

2.4. Basic Fixed Gain Three-Loop Autopilot

The most basic form of autopilot is fixed gain autopilot (Figure 3). In fixed gain
autopilot, the control gains are unchanged throughout the operation. The strength of
the fixed gain autopilot is the simplicity of its structure. It neglects the change in the
flight conditions and thus does not require the additional adjustments to optimize the
gains during the operation. The key to the design is finding the gains that yield the
desired time constant, ideally less than 0.2 s, and small steady-state error (~3%) prior to the
main simulation.
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The modelling of fixed gain autopilot requires the following steps:

1. Derive the nonlinear missile dynamics.
2. Derive the state representation of the linearized dynamics.
3. Tune the control gains for the nominal flight condition.

Nonlinear missile dynamics is derived from the longitudinal motion of the missile in
the pitch plane. Specifically, the derivation of the nonlinear dynamics involves computation
of the three critical angles in aerodynamics: the angle of attack, the flight-path-angle, and
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the pitch angle. The geometry of the angles is shown in Figure 4, the anatomy of a missile
in longitudinal motion.
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Figure 4. Nomenclature of critical angles in aerodynamics [9]. V is velocity vector; Az is normal
acceleration acting on the missile body; α is angle of attack; θ is pitch angle, γ is flight-path-angle.

1. The velocity of the missile and the required normal acceleration are denoted Vm and
Az, respectively. α is the angle of attack which describes the orientation of the missile
relative to the airflow. γ is the flight-path-angle which describes the attitude of the
missile. θ is the pitch angle which describes the orientation of the missile relative to
the inertial reference frame. Naturally, the angle of attack is the difference between
the pitch angle and the flight-path angle.

α = θ − γ → .
α =

.
θ − .

γ (14)

2. The rate of change in the flight-path-angle,
.
γ, can be expressed as a function of

the vertical component of the normal acceleration, relative to the longitudinal axis,
and the velocity vector. When the angle of attack is sufficiently small, the vertical
component of the normal acceleration is assumed to be equal to the total acceleration.
For maximum accuracy of the results, the estimation is not made.

.
γ =

Azcos(α)
V

(15)

3. According to Newton’s 2nd law, the vertical acceleration of the missile is the vertical
force applied to the missile divided by its mass. The final expression for

.
γ is given in

Equation (16). The nonlinear dynamics are shown in Equations (17) and (18), where
Q is the dynamic pressure, d is the reference diameter, and IYY, J is the moment
of inertia [14,19,20].

.
γ =

Fzcos(α)
mV

(16)

.
α =

.
θ − Fzcos(α)

mV
(17)

..
θ =

Cmt QSd
IYY

→
Mq

J
(18)
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4. With short-period approximation, the speed of the missile is assumed to be constant.
Due to linear systems theory, nonlinear differential equations can be approximated in
a linear form.

..
θ is originally a function of α and δ. The analytical state-space model

solved in the time domain is:[ .
α
..
θ

]
=

[
− ∂Fz

∂α
1

mV 1

− ∂Mq
∂α

1
J 0

][
α
.
θ

]
+

[
− ∂Fz

∂δ
1

mV

− ∂Mq
∂δ

1
J

]
δ (19)

The reader is now free to consider utilization of transfer functions for treating the
nonlinear system by converting the state space form in Equation (19) into a linear, time–
invariant transfer function form. Table 4 defines terminology and is placed close to
Equations (14)–(19) for convenience of the readership.

Table 4. Table of proximal variables and nomenclature 1.

Variable/Acronym Definition Variable/Acronym Definition

IYY Moment of inertia
.
α Rate of change in AOA

J Analytic body inertia
.
γ Rate of change in FPA

m Mass of missile
..
θ Pitch acceleration

1 Such tables are offered throughout the manuscript to aid readability.

5. The state-space model in Equation (19) can be linearized via Taylor series expansion
around the selected flight condition and only keeping the first-order terms. The
final state-space model [14] may then be expressed in standard, linear state space
form, Equation (20). With state, output and control definitions in Equation (21), the
articulated standard state space equation becomes Equations (22)–(24).

.
x = Ax + Bu (20)

x =

[
α
q

]
; y =

[
Az
qm

]
; u = δp (21)

[ .
α
.
q

]
=

 1
V0

[
QSCzα

m − Ax

]
1

QSdCmα
IYY

0

[α
q

]
+

 QSCz f
mV0

QSdCm f
IYY

[δp
]

(22)

y = Cx + Du (23)[
Azm

qm

]
=

[
QSCzα

mg − QSdCmα x
gIYY

0

0 1

][
α
q

]
+

QSCz f
mg −

QSdCm f x
gIYY

0

[δp
]

(24)

6. Raytheon provides a fully linearized model for both stable and unstable systems [14],
well aligned with the purpose of the study. The linearized model for an unstable
system is: [ .

α
.
q

]
=

[
−1.064 1
290.26 0

][
α
q

]
+

[
−0.25
−331.40

][
δp
]

(25)[
Azm

qm

]
=

[
−123.34 0

0 1

][
α
q

]
+

[
−13.51

0

][
δp
]

(26)

7. Refer to Equations (A1)–(A4) in Appendix A for the stable system solution [14]. The
corresponding open loop transfer functions for the actuator model are:

Azm

δp
=

−13.51s2 + 16.29s + 44, 800
s2 + 1.064s − 290.26

(27)
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qm

δp
=

−331.4s − 424.7
s2 + 1.06s − 290.28

(28)

8. For simplicity of the study, the actuator model is often assumed to be a linear system
due to its structural complexity and nonlinear behavior. However, unlike the popular
belief, the discrepancy raised from the assumption is not significant enough to hurt the
validity of a simulation [22]. Hence, the second-order approximation of the actuator
model is:

δ(s)
δc(s)

=
ω2

a
s2 + 2ζaωas + ω2

a
(29)

δ(s)
δc(s)

=
22, 500

s2 + 210s + 22, 500
(30)

Table 5 defines terminology and is placed close to Equations (20)–(30) for convenience
of the readership.

Table 5. Table of proximal variables and nomenclature 1.

Variable/Acronym Definition Variable/Acronym Definition

g Gravitational acceleration δp Fin deflection
ωa Actuator frequency Az Normal acceleration
ζa Actuator damping ratio Ax Axial acceleration

1 Such tables are offered throughout the manuscript to aid readability.

9. Using the linearized dynamics and the simplified actuator model, the control gains
are tuned to yield the time constant less than 0.2 s. The fixed autopilot gains for the
nominal condition are:

KDC = 0.0187; KA = 0.9188; Kω = 0.0168; Kg = 0.6832

Equations (20)–(30) may be input to the simulation whose topology is depicted in
Figure 3 permitting formulation of output–to–input relationships (e.g., transfer functions)
that are tuned to solve for gain values to meet performance specifications. Higher calculated
values of gains lead to faster responding autopilots, where the overall autopilot gain is
labeled KDC and the missile acceleration gain is labeled Ka. The rate loop (including integral
rate) is control by gains Kg and Kω respectively.

2.5. Various Gain-Scheduled Autopilots

Gain-scheduled autopilot is an augmented version of fixed gain autopilot with the
ability to improve flight performance in the middle of operation. Unlike fixed gain au-
topilots which have predetermined, unchanging control gains, gain-scheduled autopilot
swaps out the gain values from an index of previously stored gains, allowing the autopilot
to perform well in the current flight condition. Particularly, the ability to adjust gain val-
ues is most highlighted at the end game of pursuit where the flight conditions are most
rapidly changing.

Due to its effectiveness, gain-scheduled autopilot is widely adopted in modern systems.
It is still being actively studied and thus has many variations in its design.

2.5.1. Index-Search

Index-search is the simplest form of gain-scheduled autopilot. The study considers
a three-loop autopilot with four control gains: KDC, Ka, Kω, and Kg. The control gains
are tuned at each flight condition and stored in their respective indices. When an aircraft
reaches a certain flight condition, the gain values are selected strictly from the stored
gain values. The number of sets of gain values is equal to the number of available flight
conditions. The design process is as following:

1. Trim and linearize the nonlinear plant models for each flight condition.
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2. Tune the control gains for each linear mode.
3. Store the linear controllers into a family of controllers.
4. Swap the control gains based on the current flight condition.

The trimming and linearization process is like the process previously introduced in
Section 2.4. In short, one must find steady-state values of elevator deflection and pitch
rate that yield steady angle of attack at a chosen velocity. The angle of attack and the
velocity are called scheduling variables, used to determine the actual flight condition. Once
a family of linear controllers is established, the autopilot can swap the control gains. As the
scheduling variables shift during the operation, autopilot chooses the gains from one of
the pre-existing flight conditions that is in the closest vicinity to the actual flight condition.
Although the method ensures a more desirable performance than a fixed-gain autopilot, it
is unable to fully describe the plant behavior of controllers that are not linearized in prior
and hence not included in the family.

2.5.2. Bilinear Interpolation in 3D-LUT

Bilinear interpolation allows the autopilot to estimate control gains for plant models
that are unlisted in the family. Unlike index-search, the number of sets of gains is not
limited to the number of linear controllers. Rather, the autopilot can generate control gains
as necessary regardless of the current flight condition. Hence, the transition of control gains
is much smoother in the second method than the first method.

1. Trim and linearize the nonlinear plant models for each flight condition.
2. Tune the control gains for each linear model.
3. Create a 3D-LUT, a linearly spaced partition of α, V, and K (depicted in Figure 5);
4. Store the tuned gains to their respective lattice points (α, V) on the partition.
5. When aircraft enters a new flight condition, determine the relative position of the new

nonlattice point to the nearest lattice points.
6. Perform bilinear interpolation (α, V) to estimate the new control gain.

The center of the design is the estimation of the control gains via bilinear interpolation.
Consider a three-dimensional lookup table (‘3D-LUT’), a partition with control gains as
its lattice points whose coordinates are (α, V). The autopilot determines where the new
condition, represented as a non–lattice point, falls on the partition when an aircraft enters
a new flight condition. Particularly, autopilot checks the position of the new point by
comparing α and V to those of the nearest points. Using the difference in the positions
of the non–lattice point and the nearest points, the new control gains are computed by
performing two consecutive bilinear interpolation. However, it must be noted that the
generated control gains may not work well with nonlinear plant models [23]. Reference [24]
illustrated how controls derived for linearized plants generally do not satisfy optimization
criteria for the nonlinear system and offered amelioration using Pontryagin’s systems
theories. Accordingly, such analysis is recommended for future research. Just last year,
Banginwar [25] offered an initial proposal of such applications (still neglecting nonlinear
coupling terms from the transport theorem), where follow–on efforts should incorporate
the nonlinear coupling terms. Alternatively, a trajectory tracking control approach for
an uncertain surface vessel using the new cascade structure of adaptive reinforcement
learning algorithm and kinematic controller, feed-forward term was offered in [26], while
an adaptive reinforcement learning optimal tracking control algorithm was presented
in [27,28] for an underactuated surface vessel subject to modeling uncertainties and time-
varying external disturbances.
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2.5.3. Automatic Real-Time Tuning

The third method is to parametrize the control gains as first-order polynomials of the
scheduling variables. A conventional method of tuning control gains involves a significant
number of variables. This novel approach, the parametrization of gains, reduces the
number of variables to four, allowing the system to compute the gains instantaneously with
minimal computational burden. Consider a gain parametrized as a polynomial function of
the scheduling variables [25].

K(α, V) = K0 + K1α + K2V + K3αV (31)

The simplest way to tune the polynomial coefficients is to convert the polynomials into
tunable surfaces in MATLAB. The tunable surfaces can be tuned automatically using
MATLAB functions, such as <systune> and <looptune>. The control gains must be initialized
prior to the tuning. The tuning requirements, time constant and steady-state error, are
equal to those introduced in Section 2.4. The detailed tutorial on the automatic tuning of
tunable surfaces is included in [25].

The obvious strength of the method is that the tuned control gains are always best
for their respective flight conditions. Unlike the previous methods, the gains are neither
compromised nor estimated from linear models, allowing the autopilot to perform at
utmost accuracy in nonlinear environments. However, automatic tuning requires the most
computational power which raises the system requirements on board.

3. Results

The relative performance of the three methods of gain-scheduled autopilot is in-
vestigated. Each method is tested in three missile behavioral profiles. Particularly, the
missile is configured to (1) stable-low-velocity profile, (2) stable-high-velocity profile, and
(3) unstable-high-velocity profile. It is expected that an autopilot with a more advanced
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method for obtaining the control gains will deliver finer results. Respectively, a shorter
simulation time and a smaller miss distance signify greater efficiency and higher accuracy.

3.1. Simulation Results
3.1.1. Simulation Time

The simulation time, or the time taken for target acquisition, varies noticeably across
the autopilots. As shown in Table 6, the third autopilot exhibits the shortest simulation
time while the first autopilot requires a significantly longer time on average (~5%). The
second autopilot reaches the target almost simultaneously with the third autopilot, running
nearly equally in efficiency. Initially, the control effort was expected to heavily affect the
simulation time. Rather, it appears the simulation time is dictated by how effectively a
controller commands a missile to pursue the best trajectory. For instance, the third autopilot
has the most fluid transition in its control gains, allowing the controller to give fin demands
that prevent the missile from escaping the trajectory.

Table 6. Simulation time and percent comparison.

Case Method Simulation Time [seconds] Percent Difference

1
Index-search 4.233 0%

Bilinear interpolation 4.071 −3.90%
Automatic 4.063 −4.09%

2
Index-search 4.192 0%

Bilinear interpolation 3.980 −5.19%
Automatic 3.974 −5.34%

3
Index-search 4.300 0%

Bilinear interpolation 4.016 −6.83%
Automatic 4.001 −7.20%

3.1.2. Range Traveled

To help visualize the actual efficiency of each autopilot, the total range traveled by the
target is collected, as shown in Table 7. On the exterior, the longer the range covered by the
target the more imminent the threat becomes. The difference between the range covered by
the targets in the second and the third autopilots is almost negligible. Meanwhile, the first
autopilot (index–search) needed approximately 2% longer distance to intercept the target.

Table 7. Range traveled by target and percent comparison.

Case Method Range Traveled [meters] Percent Difference

1
Index-search 1352.96 0%

Bilinear Interpolation 1341.85 −0.82%
Automatic 1340.88 −0.89%

2
Index-search 1339.31 0%

Bilinear Interpolation 1310.77 −2.15%
Automatic 1310.02 −2.21%

3
Index-search 1362.71 0%

Bilinear Interpolation 1324.90 −2.81%
Automatic 1322.03 −3.03%

3.1.3. Miss Distance

The most important factor in determining the effectiveness of an autopilot is the miss
distance. The study assumes that a missile must denotate near its target within 10 m for
effective blast fragmentation. In other words, the miss distance must be smaller than 10 m
for a reliable hit-to-kill. As shown in Table 8, the miss distance of the first autopilot in
the third case is frighteningly close to the threshold distance. In other words, the first
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autopilot may not be reliable in scenarios with more evasive targets. The miss distance of
the second and the third autopilot is safely within the explosion radius. Particularly, both
the second and third autopilots exhibit minimal miss distance, less than 1m, in all of the
cases provided.

Table 8. Miss distance and percent comparison.

Case Method Miss Distance [meters] Percent Difference

1
Index-search 6.8411 0%

Bilinear Interpolation 0.4684 −174.37%
Automatic 0.0710 −195.89%

2
Index-search 8.1884 0%

Bilinear Interpolation 0.4552 −178.94%
Automatic 0.0702 −196.60%

3
Index-search 9.8919 0%

Bilinear Interpolation 0.4583 −182.29%
Automatic 0.0863 −196.54%

In summary, the second autopilot, which uses bilinear interpolation, demonstrates
capability comparable to the third autopilot in efficiency and accuracy. The simple interpo-
lation algorithm reduces the control effort significantly while maintaining nearly perfect
guidance for interception. Owing to its simple structure, the second autopilot can be easily
fitted to any system and be a compelling candidate for control engineers seeking a robust,
accessible alternative to the conventional autopilots.

3.2. Validation of Results

A particular innovation presented is computational experiments validating relative
performances of the three disparate autopilots in direct comparison. The comparison
illustrates a key impact of this research. One final comparison is consideration of structural
integrity necessitating examination of acceleration forces. It is crucial to examine whether
the second autopilot ensures the structural integrity of the missile while pursuing a target.
Most structural failures occur when the acceleration experienced by the missile is too large
or when the rate of change in the fin angle is too drastic. In particular, the acceleration
in the direction normal to the surface of the missile and the maximum fin demand are
investigated and depicted in Figure 6.

The normal acceleration must be lower than 60 G, the typical maximum acceleration
experienced by an aerobatic missile [29]. As shown in the Table 9, the missile is most
likely to suffer the largest acceleration in Case 2 and Case 3 where the missile maintains
high velocity. Their respective maximum acceleration is 52.055 G and 53.392 G. All of the
maximum accelerations are below the threshold with reasonable margin, implicating the
feasibility of the selected autopilot. Moreover, angle of attack and fin deflection do not
exhibit any cusp or discontinuity in their trends, as seen in Figure 7, meaning the autopilot
is viable for a real mission.

Table 9. Inspection of aerodynamic stress on the structure of the missile.

Case Maximum Normal Acceleration [G] Threshold Margin [G]

1 53.813 6.187
2 52.055 7.945
3 53.392 6.608
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Figure 6. Acceleration acting normal to the surface of the missile. The underscore numbers represent
their respective case numbers.
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Figure 7. (a) Angle of attack; (b) Commanded fin deflection. Any discontinuity signifies the selected
autopilot method may not be applicable to a real system.

4. Discussion

Bilinear interpolation of control gains in 3D-LUT provides a simple and robust solution
to control design of gain-scheduled autopilot. The straightforward interpolation algorithm
makes the autopilot easy to implement, thus reducing control effort and complexity of
the technology onboard. In fact, the overall performance of the autopilot with bilinear
interpolation is comparable to that of the state-of-the-art autopilot with severely higher
computational burden. In conclusion, the study shows that bilinear interpolation of control
gains offers a practical and competent way to enhance control system performance, adapt
to changing conditions, and achieve robustness and stability, making it a valuable tool
in the arsenal for aerospace control. Engineers and researchers can leverage the insights
gained from this study to design highly efficient and robust autonomous control systems
for a wide range of applications not limited to aerial guidance, accelerating advancements
in adaptive control technology, and fostering the development of more sophisticated and
reliable autonomous systems.
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4.1. Multivariate Performance Comparison

A multivariate performance comparison of the three autopilots studied is included in
Table 10.

Table 10. Multivariate performance comparison of three autopilot options: Index–search, bilinear
interpolation, and automatic gain scheduling.

Case Method Miss Distance [meters]
Percent Difference

Range Traveled [meters]
Percent Difference

Simulation Time
Percent Difference

1
Index-search 0% 0% 0%

Bilinear Interpolation −174.37% −0.82% −3.90%
Automatic −195.89% −0.89% −4.09%

2
Index-search 0% 0% 0%

Bilinear Interpolation −178.94% −2.15% −5.19%
Automatic −196.60% −2.21% −5.34%

3
Index-search 0% 0% 0%

Bilinear Interpolation −182.29% −2.81% −6.83%
Automatic −196.54% −3.03% −7.20%

4.2. Recommended Future Research

Future research should explore innovative ways of leveraging big data and machine
learning algorithms to learn and adapt to system dynamics in real-time. By incorporating
data-driven gain-scheduling, gain-scheduled autopilots may better address unforeseen
disturbances and changing system characteristics, ultimately leading to more robust and
resilient autonomous control systems. Furthermore, nonlinear optimization [23] seemingly
holds promise for future improvements.
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Appendix A

Raytheon provides the solution to the short period dynamics of a lightly damped, fast,
stable system [2]. The state space representation of a stable system is[ .

α
.
q

]
=

[
−1.064 1
−290.26 0

][
α
q

]
+

[
−0.25
−331.39

][
δp
]

(A1)

[
Azm

qm

]
=

[
−101.71 0

0 1

][
α
q

]
+

[
−13.51

0

][
δp
]

(A2)

and the corresponding open loop transfer functions are as follows:

Azm

δp
=

−13.51s2 + 10.91s + 29, 780
s2 + 1.064s + 290.26

(A3)
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qm

δp
=

−331.4s − 280.3
s2 + 1.064s + 290.26

(A4)
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