
Citation: Jeon, S.; Seo, J.T. A Synthetic

Time-Series Generation Using a

Variational Recurrent Autoencoder

with an Attention Mechanism in an

Industrial Control System. Sensors

2024, 24, 128. https://doi.org/

10.3390/s24010128

Academic Editors: Zhongyun Hua

and Yushu Zhang

Received: 9 November 2023

Revised: 14 December 2023

Accepted: 22 December 2023

Published: 26 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Synthetic Time-Series Generation Using a Variational
Recurrent Autoencoder with an Attention Mechanism in an
Industrial Control System
Seungho Jeon 1 and Jung Taek Seo 2,*

1 Department of Computer Engineering (Smart Security), Gachon University,
Seongnam-si 1342, Republic of Korea; shjeon90@gachon.ac.kr

2 Department of Computer Engineering, Gachon University, Seongnam-si 1342, Republic of Korea
* Correspondence: seojt@gachon.ac.kr; Tel.: +82-031-750-4775

Abstract: Data scarcity is a significant obstacle for modern data science and artificial intelligence
research communities. The fact that abundant data are a key element of a powerful prediction model
is well known through various past studies. However, industrial control systems (ICS) are operated in
a closed environment due to security and privacy issues, so collected data are generally not disclosed.
In this environment, synthetic data generation can be a good alternative. However, ICS datasets have
time-series characteristics and include features with short- and long-term temporal dependencies. In
this paper, we propose the attention-based variational recurrent autoencoder (AVRAE) for generating
time-series ICS data. We first extend the evidence lower bound of the variational inference to time-
series data. Then, a recurrent neural-network-based autoencoder is designed to take this as the
objective. AVRAE employs the attention mechanism to effectively learn the long-term and short-term
temporal dependencies ICS data implies. Finally, we present an algorithm for generating synthetic
ICS time-series data using learned AVRAE. In a comprehensive evaluation using the ICS dataset
HAI and various performance indicators, AVRAE successfully generated visually and statistically
plausible synthetic ICS data.

Keywords: synthetic data generation; time-series data; variational recurrent autoencoder; attention
mechanism; industrial control system

1. Introduction

Data scarcity is a significant obstacle for modern data science and artificial intelligence
research communities. The fact that abundant data are a key element of powerful prediction
models has now become generally recognized through transformer [1] and generative
pre-training [2,3]. However, publishing high-quality datasets is very laborious and time-
consuming. Even if data are collected, they are often difficult to disclose. Unfortunately,
this is especially true for data from industrial control systems (ICS). Industrial control
systems are computerized systems for operating and controlling industrial facilities and
infrastructure, and are an essential element of manufacturing automation. Researchers put
a lot of effort into acquiring ICS datasets to understand the dynamics of ICS or improve
security. However, in general, only a few samples of the ICS dataset are released, or access
from outside is restricted for organizational security reasons. Additionally, it is difficult to
develop a robust prediction model due to data scale issues. In this environment, synthetic
data generation is an excellent means to secure the diversity of datasets.

Dataset generation is one of the most important research topics in modern artificial
intelligence research based on deep learning. The variational autoencoder (VAE) [4] sta-
tistically learns the representation of the latent variables and provides a powerful data
generation method based on statistics. The generative adversarial network (GAN) [5]
is currently one of the most powerful generative models and presents a framework for

Sensors 2024, 24, 128. https://doi.org/10.3390/s24010128 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24010128
https://doi.org/10.3390/s24010128
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7116-6062
https://orcid.org/0000-0003-0971-8548
https://doi.org/10.3390/s24010128
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24010128?type=check_update&version=1

Sensors 2024, 24, 128 2 of 20

competitively learning the generator and the discriminator. VAE and GAN have different
approaches to data generation, and several derivative models have been proposed since
these models were introduced. Z. Wan et al. [6] proposed a VAE-based data generation al-
gorithm for imbalanced learning. TimeGAN [7] presented a novel GAN-based architecture
and learning algorithm for generating time-series data. CTGAN [8] uses the conditional
generator to model continuous data included in the tabular data.

Unfortunately, generating synthetic ICS datasets has several challenges. First, in
most cases, data collected in an ICS environment have time-series characteristics. In
comparison, many synthetic data generation studies [9–11] are not suitable for time-series
data generation because they assume the independently and identically distributed (i.i.d)
data. Second, the ICS environment includes various devices like sensors, and the data
collected here are naturally multivariate. Therefore, the generative model should be able
to learn the dynamics of multiple devices jointly. Lastly, the time-series multivariate data
like this include both short- and long-term temporal dependencies. For example, because
equipment such as boilers should maintain a constant temperature, the data collected also
have long-term patterns. In comparison, devices such as flow sensors often have relatively
short-term patterns because they detect information about the environment in real time.
These complex data characteristics make it difficult to learn generative models.

Our insights to overcome the above challenges were largely three-fold. First, we
employed the recurrent neural network (RNN) to generate time-series data. RNN is a
type of neural network with an internal cyclic structure to process patterns in sequential
data. RNN has been successfully applied to various applications such as natural language
processing [12,13], speech recognition [14,15], or video analysis [16,17]. However, RNN
exhibits some problems, such as long-term dependency problems and a vanishing gradient
as the length of the sequence increases. The long short-term memory (LSTM) [18] and the
gated recurrent unit (GRU) [19] have solved some of these problems. However, due to
the structural nature of processing data sequentially, past data are hard to maintain in the
present or future. Our second insight, the attention mechanism, was employed to handle
this issue. The attention mechanism allowed the model to utilize information effectively
by paying attention to important parts of the given data when performing prediction
tasks [20,21]. Third, we adopted the variational method to learn the generative model.
The variational method is an approach adopted in VAE and an optimization technique for
approximating complex probability distributions or functions. We approximated the ICS
data’s distribution through the variational method. Most of the recent generative models
have been designed based on GAN, but the learning progress of GAN is extremely unstable
due to its nature. In comparison, the variational method enables more stable learning
progress by learning the probability distribution of the data’s latent representation.

In this paper, we combined the above insights to propose the attention-based vari-
ational recurrent autoencoder (AVRAE) to generate time-series ICS data. AVRAE was
designed with a similar structure to the variational recurrent autoencoder (VRAE) [22]
proposed in 2015. This model was trained to maximize the evidence lower bound of
the variational inference. However, the basic form of the evidence lower bound did not
assume the sequential data. Therefore, we first extended the evidence lower bound to the
sequential data. AVRAE basically had the same encoder and the decoder structure as the
sequence-to-sequence (Seq2Seq) [23] mapping method. The encoder processed the input
sequence to generate the latent vectors, and the decoder generated the same output as the
input sequence from these latent vectors. While VRAE successfully mapped the sequential
data to the latent space, it still failed to capture the complex dynamics of time-series data.
We combined VRAE with the attention mechanism to calculate the relative importance be-
tween input sequences, allowing the model to reconstruct or generate sequences effectively.
AVRAE’s attention layers were inspired by the transformer’s scaled-dot attention [1]. In
other words, the attention weights were calculated using the hidden state at each timestep
produced by AVRAE’s encoder and the hidden states produced by the decoder, and these
weights multiplied by the hidden states of the encoder to become the output of AVRAE.

Sensors 2024, 24, 128 3 of 20

AVRAE successfully generated synthetic data visually and statistically similar to the real
data in an evaluation using the ICS dataset HAI and various indicators. The contributions
of the paper are as follows:

• We extend the evidence lower bound of the variational inference to the time-series domain.
• We propose the attention-based variational recurrent autoencoder with the sequential

evidence lower bound as the objective.
• We propose an algorithm for generating synthetic ICS time-series data using

learned AVRAE.
• We comprehensively evaluate the quality of synthetic ICS time-series data generated

by AVRAE in experiments using the HAI dataset.

The remainder of this paper is organized as follows. In Section 2, we present existing
studies to generate synthetic data. Section 3 proposes the structure and learning algorithm
of our proposal, AVRAE. Section 4 comprehensively evaluates AVRAE using an HAI [24],
a widely used dataset collected from the HIL-based augmented ICS environment. In
Section 5, some limitations of AVRAE are discussed. Finally, in Section 6, we describe
future research along with conclusions.

2. Related Work

Many studies have been presented in machine learning and deep learning to generate
data synthetically. This section presents data generation methods recently adopted in
various fields, categorized into three categories. Section 2.1 introduces the variational-
method-based data generation, closely related to our proposal. Sections 2.2 and 2.3 present
GAN and graph-based methods, respectively.

2.1. Variational Method-Based Generative Models

VAE [4] is a monumental model combining the variational method with the traditional
autoencoder and allows for learning a powerful generative model (the decoder part). VAE
learns the latent vectors’ probability distribution, representing the input data. Therefore,
one can randomly generate the latent vectors that follow this probability distribution and
generate realistic data through the decoder. VRAE [22] is a model combining the RNN with
the variational method. This model successfully generated acoustic data through a dataset
consisting of eight MIDI files. Yoo et al. [25] proposed a general variational-based generative
architecture for augmenting datasets for understanding spoken language. Additionally,
it was shown that the language understanding performance of the model was improved
using the augmented dataset. The composed variational natural language generator
(CLANG) [26] is a transformer-based conditional variational autoencoder that learns the
latent representations of two properties (domain and action) of the intent. Through this,
CLANG improved the performance of few-shot intent detection tasks. The variational
transformer network (VTN) [27] was proposed to generate layouts, which are abstract
locations between objects. This model has the ability to generate properties of the layout,
such as margins and alignment, using the attention layer, which captures the relationships
between objects within the layout as the building block.

2.2. GAN-Based Generative Models

GAN [5] is a framework for learning generative models proposed around the same
time as VAE. GAN consists of the generator and the discriminator, and they learn compet-
itively. VAE directly learns the distribution of the data (more precisely, the distribution
of the latent variable), but due to its approximate approach, it cannot perfectly learn the
data distribution. GAN [5] indirectly but sharply learns the data distribution. Chi et al. [28]
presented a GAN model for generating time-series data in a smart grid. This model
reparametrizes the energy consumption data to capture level information, and allows GAN
to learn a conditional probability distribution to reflect pattern information. TimeGAN [7] is
a variant of GAN specialized in generating time-series data and consists of the embedding
function, the recovery function, the sequence generator, and the sequence discriminator.

Sensors 2024, 24, 128 4 of 20

TimeGAN is flexible for multiple types of time-series data by simultaneously learning the
static and dynamic characteristics of time-series data. CTGAN [8] successfully modeled the
discrete and continuous columns in the tabular data and generated synthetic data. CTGAN
performed better than the baseline (Bayesian network) on several benchmark datasets. TS-
GAN [29], like TimeGAN, was also proposed to generate time-series data. However, unlike
TimeGAN, TSGAN focuses on one-dimensional data and adopts a few-shot approach.

2.3. Graph-Based Generative Models

A graph neural network (GNN) is a type of neural network designed to learn complex
graph data structures. Recently, a graph convolutional network (GCN) has been adopted
in many applications considering computational efficiency rather than naive GNN. D.
Marcheggiani et al. [30] proposed a model generating text by processing graph data. This
model consists of the graph convolutional encoder to process the graph structure of the
input data and the LSTM-based decoder to generate text. The neural relational inference
(NRI) [31] implicitly learns the graph structure underlying the data and predicts new data.
While a typical GCN requires the adjacent matrix to process the graph structure of the data,
NRI infers the graph structure solely from the observations. The spatio-temporal graph
convolutional networks (STGCN) [32] considere both spatial and temporal dependency of
data to predict mid- to long-term traffic volume. As a result, a competitive performance
was shown compared with the baselines on various real-world traffic datasets.

3. Attention-Based Variational Recurrent Autoencoder

In this section, we propose the attention-based variational recurrent autoencoder for
generating time-series ICS data. Figure 1 shows the overall architecture of ARVAE. AVRAE
consists of an RNN-based encoder and a decoder to process time-series data. Of course,
RNN can receive input data at timestep t and immediately produce corresponding output
data. However, through many studies in the past, it has been pointed out that such an
architecture is disadvantageous when designing a prediction model for the sequential
data [23]. Therefore, we adopted the encoder–decoder architecture, which creates a context
that reflects the entire input sequence and can generate an output of variable length.
As proposed in VRAE [22], the variational method is employed to learn the probability
distribution over the context (the latent vector) in which the input sequence is summarized.
Although this structure allows for learning a powerful generative model for time-series
data, our preliminary experiments revealed that it cannot fully learn the characteristics of
ICS time-series data. Variables in ICS time-series data include both discrete and continuous
types. In addition, some variables have periodic short-term patterns, while others involve
long-term dependencies. The preliminary experiments confirmed that VRAE is difficult
to learn on such diverse data jointly. Therefore, we introduce the attention mechanism in
VRAE to reflect both short- and long-term temporal patterns.

<START>

Reconstructec data

...

Dense

...

......

Self Attention

Cross Attention

zh
e
T-1h

e
2h

e
1

h
d
T-1h

d
2h

d
1

Input data

q z|h
e
1:T

p z|he
1:T

Figure 1. An architecture of the attention-based variational recurrent autoencoder.

Sensors 2024, 24, 128 5 of 20

We formulate the sequential evidence lower bound to justify AVRAE in Section 3.1;
In Section 3.2, the inference process in AVRAE is defined; Section 3.3 formulates the
attention mechanism of AVRAE; Section 3.4 presents a learning algorithm for AVRAE;
Finally, Section 3.5 presents the algorithm for generating synthetic ICS data.

3.1. Evidence Lower Bound

ARVAE is based on the variational inference seen in VAE [4], but unlike the original
VAE, it deals with sequential data. Therefore, we first extend the variational inference’s
basic evidence lower bound (ELBO) to the sequential data. The variational inference begins
with approximating the true probability distribution p(z|x) of the latent variables z to the
empirical probability distribution q(z), given the observations x.

KL(q(z)||p(z|x)) = Eq(z)[log q(z)]−Eq(z)[log p(z, x)] + log p(x) (1)

Equation (1) is the Kullback–Leibler divergence (KLD) between q(z) and p(z|x). The
variational inference aims to find q(z), which minimizes Equation (1). However, in many
cases, it is impossible to calculate p(z|x), so instead of directly minimizing it, KLD minimiza-
tion is reduced to the problem of maximizing ELBO as follows, through further organizing.

log p(x) ≥ Eq(z)[log p(z, x)]−Eq(z)[log q(z)]

= ELBO(q)
(2)

Deriving Equation (2) from Equation (1) is fairly simple. We move KL(q(z)||p(z|x))
of Equation (1) to the right-hand side and log p(x) to the left-hand side. As KLD has a
value greater than 0, log p(x) is always equal to ELBO(q). Basic ELBO does not address the
sequentiality of the observations. Additionally, considering the latent variables between
the observations in the time series, we extend ELBO as follows.

ELBO(q) = Eq(z,h1:T |x1:T)
[log p(z, h1:T , x1:T)]−Eq(z,h1:T |x1:T)

[log q(z, h1:T |x1:T)]

= Eq(z,h1:T |x1:T)
[log p(x1:T |z)] +Eq(z,h1:T |x1:T)

[log p(z|h1:T)]

+Eq(z,h1:T |x1:T)
[log p(h1:T)]−Eq(z,h1:T |x1:T)

[log q(z, h1:T |x1:T)]

= Eq(z,h1:T |x1:T)
[log p(x1:T |z)] +Eq(z,h1:T |x1:T)

[log p(z|h1:T)]

+Eq(z,h1:T |x1:T)
[log p(h1:T)]−Eq(z,h1:T |x1:T)

[log q(z|h1:T)]

−Eq(z,h1:T |x1:T)
[log q(h1:T |x1:T)]

= Eq(z,h1:T |x1:T)
[log p(x1:T |z)]

− KL(q(z|h1:T)||p(z|h1:T))− KL(q(h1:T |x1:T)||p(h1:T))

(3)

Equation (3) is an extension of Equation (2) for the sequential data. To do this, we
replace i.i.d observations x with the sequential observations x1:T . Also, instead of adopting
only a single latent variable z, which implies the semantics of all observations, we introduce
the latent variable h1:T , representing the sequentiality of the hidden states. Simplifying
Equation (3) with Bayes rule and chain rule, ELBO consists of the expectation for the
generation process, KLD for z, and KLD for h1:T (Hereafter, the word ELBO refers to
Equation (3)). Therefore, to maximize ELBO, the two KLDs should be minimized while
maximizing the expectation of the generation process. From this, we can derive the
following facts:

• The probability distribution of the latent variables (or the hidden states) ht of each
timestep t and the latent variables z of all xt and ht should be matched.

• The reconstruction objective as a generated model should be maximized.

These two conditions exactly match the process of encoder–decoder architecture, such
as Seq2Seq. More specifically, the above ELBO can be optimized by learning the probability
distribution for ht and the context passed from the encoder to the decoder at each timestep

Sensors 2024, 24, 128 6 of 20

of the RNN and training the entire model with the autoencoder. We use this ELBO as the
objective to learn AVRAE.

3.2. Inference Process

The inference of AVRAE combines the encoder–decoder model and VAE. More specifically,
the encoder and the decoder follow general RNN operations, but two modifications are applied.
First, the hidden state ht of each timestep should follow a stochastic process. Because general
RNN operations are deterministic, they cannot satisfy ELBO. Therefore, we sample the hidden
state ht from a probability distribution instead of computing it deterministically. From this, the
feedforward of the encoder and the decoder is defined as Equation (4).

ht ∼ qθ(ht|h<t−1, x<t) (4)

where h<t−1 and x<t refer to all the hidden states up to the timestep t − 1 and all the
observations up to the timestep t. qθ is a probability distribution parameterized by θ.
We adopt the Markov property in Equation (4) to assume that the hidden state ht at the
timestep t depends only on the hidden state of the previous timestep and the observation
of that timestep.

ht ∼ qθ(ht|ht−1, xt) (5)

where xt ∈ Rp and ht ∈ Rp are the observation and the hidden state, respectively, at
timestep t, although various probability distributions can be employed as qθ , in this paper
we simply adopt a standard Gaussian distribution as qθ . Through this sampling, a non-
differential operation can be easily replaced through the reparameterization trick [4,22,33].

ht ∼ N (µht , diag(σ2
ht
)), where [µht , σht] = ϕ(ht−1, xt) (6)

Similarly, the latent variable z (or the context) is passed from the encoder to the decoder
and is sampled according to the variational inference. However, the context depends on
the hidden state generated at the last timestep of the encoder.

z ∼ qw(hT) (7)

where z ∈ Rr is the context in which all sequence information is summarized. qw is a
probability distribution parameterized by w, and various probability distributions can be
considered for this. But, like qθ , we use a standard Gaussian distribution as qw.

z ∼ N (µz, diag(σ2
z)), where [µz, σz] = ψ(hT) (8)

Finally, the decoder uses the context z as the initial hidden state and the same feedfor-
ward operation as the encoder. The only difference from the encoder is that the decoder
does not use the actual observations as the input data because it should be trained as a
generative model but it always adopts the output of the previous timestep as the input
data. Also, the decoder output should be the same as the encoder’s input.

3.3. Attention Layer

It is well known through various studies [1,20] that the attention mechanism brings
benefits to the prediction performance of models handling time-series data. In particular,
the attention mechanism exerts a significant effect on the encoder–decoder model. In the
traditional Seq2Seq, the most representative model of the encoder-decoder structure, the
decoder produces an output using only a fixed-size vector (the context) generated by the
encoder. In this structure, the last output is extremely far from the first input, making it
difficult to completely convey the input information to the decoder with only the context.
Therefore, in this paper, we introduce the attention layer to allow the decoder part of
AVRAE to focus on the necessary parts of the input sequence when generating the output
sequence. AVRAE employs two types of attention layers: cross-attention and self-attention.

Sensors 2024, 24, 128 7 of 20

Cross-attention. The cross-attention models the correlation between the encoder’s
output sequence and the decoder’s output sequence. This allows us to learn which parts
of the input sequence the decoder’s output should depend on (strictly speaking, we
utilize the hidden states of the encoder and the decoder to calculate the attention weights).
Additionally, we used a look-ahead mask to ensure that the decoder is not influenced by
the preceding sequence when generating the output.

Wc = softmax(
HdecHT

enc√
d

+ (1−M)×−∞)

Oc = LN(MLP(Wc Henc) + Henc)

(9)

where Henc ∈ RT×d and Hdec ∈ RTd are the hidden states of all timesteps of the encoder
and the decoder, respectively. M ∈ {0, 1}T×T is a look-ahead mask. Oc ∈ RT×d is the
output of the cross-attention. The attention weights Wc are calculated through the softmax
function after applying a mask to the normalized attention score. The value multiplied by
Wc and Henc is transformed through multi-layer feedforward perceptron (MLP) and added
to Henc through a skip connection. Then, the output Oc of the cross-attention is produced
by applying the layer normalization (LN) [34].

Self-attention. Oc produced through the cross-attention layer is further emphasized
by the self-attention layer. The self-attention layer has similar computations to the cross-
attention layer.

Ws = softmax(
OcOT

c√
d

)

Os = LN(MLP(WsOc) + Oc)

(10)

where Os ∈ RT×d is the output of the self-attention layer. As shown in Equation (10),
the self-attention layer, unlike the cross-attention layer, does not use masking and only
calculates using the same type of input Oc.

Finally, the output Os of the self-attention layer is converted to the same shape as the
encoder’s input through the dense layer and becomes the decoder output.

3.4. Learning Process

In this Section, we present the learning process of AVRAE, combining all previously
presented components. AVRAE has an encoder-decoder architecture similar to Seq2Seq.
Therefore, the inference procedures of the encoder and the decoder are presented first, and
then we combine them to present the learning algorithm.

Algorithm 1 is the feedforward process of the encoder. This algorithm takes a mini-
batch x1:T of size m as the input and returns Henc and Λ, z, [µz, σz]. Where Λ is the set of
all parameters of the Gaussian distribution of hidden states. This algorithm is extremely
simple. The recurrent operation ϕe is performed with the input data xt of every timestep t
and he

t−1, the hidden state of the previous timestep. ϕe produces [µe
ht

, σe
ht
], and these are

employed as parameters of the Gaussian distribution to sample the hidden state he
t of the

next timestep. After performing a recurrent operation on the input xt of all timesteps, the
parameters [µz, σz] of the Gaussian distribution for sampling the latent variable z from the
hidden state he

T of the last timestep T are produced.
Algorithm 2 is the feedforward procedure of the decoder. To perform the decoding

operation of AVRAE, this algorithm receives all the hidden states Henc and the latent
variable z generated by the encoder as the input. It returns the reconstructed data x̂1:T . The
initial hidden state of the decoder is initialized with the latent variable z. As described
in Section 3.3, the decoder should be trained as a generative model. Therefore, rather
than using the actual observations as the input, the decoder takes the output xd

t−1 of the
previous timestep generated by the recurrent operations as the input. For this purpose, the
decoder simply adopts a symbol indicating the <START> of the sequence as the input of
the first timestep, and, in this paper, a zero vector is used. Like the encoder, the decoder

Sensors 2024, 24, 128 8 of 20

repeats the same calculation using the recurrent operation ϕd and collects the hidden state
at each timestep t to create Hdec. Then, Os is produced by sequentially calculating the
cross-attention and self-attention using the encoder’s hidden states Henc and the decoder’s
Hdec. Finally, the reconstructed data x̂1:T are generated from Os through the dense layer.

Algorithm 1: A procedure for the encoder

Input: a minibatch x1:T ;
Output: all hidden states Henc, The parameters of the Gaussian distribution for all
hidden states Λ, the latent variable z, The parameters of the Gaussian
distribution for the latent variable [µz, σz];

he
0 ←initialize the encoder’s hidden state with a zero vector;

Λ←empty set;
Henc ←empty set;
for t=1 to T do

[µe
ht

, σe
ht
]← ϕe(he

t−1, xt);
he

t ∼ N (µe
ht

, diag((σe
ht
)2));

Λ← Λ ∪ [µe
ht

, σe
ht
];

Henc ←append he
t to Henc;

end
[µz, σz]← ψ(he

T);
z ∼ N (µz, diag(σ2

z));

Algorithm 2: A procedure for the decoder

Input: all hidden states of the encoder Henc, the latent variable z;
Output: the reconstructed data x̂1:T ;
M←make a look-ahead mask;
hd

0 ←initialize the decoder’s hidden state with z;
xd

1 ←initialize the decoder’s first input with a zero vector;
Henc ←emptyset;
for t=1 to T do

[µd
ht

, σd
ht
]← ϕd(hd

t−1, xd
t);

hd
t ∼ N (µd

ht
, diag((σd

ht
)2));

xd
t+1 ← Dense(hd

t);
Hdec ←append hd

t to Hdec;
end
// cross-attention
Wc ← softmax(Hdec HT

enc√
d

+ (1−M)×−∞);

Oc ← LN(MLP(WcHenc) + Henc);
// self-attention
Ws ← softmax(OcOT

c√
d
);

Os ← LN(MLP(WsOc) + Oc);
// reconstruction
x̂1:T ← Dense(Os);

Algorithm 3 trains AVRAE by combining the encoder and decoder procedures
presented previously. First, the algorithm samples a minibatch x1:T of size m from a training
dataset D. The encoder procedure processes this x1:T to produce Henc and Λ, z, [µz, σz].
The decoder reconstructs x̂1:T using Henc and z. Finally, this algorithm calculates the loss
according to the ELBO formulated in Equation (3), calculates the gradients from this, and
updates the parameters of AVRAE. To compute the loss function on a minibatch basis,

Sensors 2024, 24, 128 9 of 20

we slightly abuse the notation for ELBO in this algorithm. Where ELBO(qi) is the ELBO
calculated for the i-th observation included in the minibatch.

Algorithm 3: A learning algorithm for AVRAE.

Input: a training dataset D, a size of minibatch m;
while not converged do

x1:T ←take a sized m minibatch from dataset D;
// feedforward
Henc, Λ, z, [µz, σz]← encode(x1:T);
x̂1:T ← decode(Henc, z);
// optimize the model parameters
L ← − 1

m ∑m
i=1 ELBO(qi);

update the parameters of both the encoder and decoder with ∇L;
end

3.5. Generation Process

As a general VAE learns only the distribution of the latent variables, which are the
output of the encoder, only the decoder can be used to generate data if only this distribution
is known. However, because AVRAE proposed in this paper deals with sequential data
and uses two latent variables, it is difficult to generate synthetic data simply using the
decoder (in particular, even if the hidden state ht is trained to follow a standard Gaussian
distribution, sampling is difficult because it is influenced by the observations and hidden
states of past timesteps). Therefore, instead of generating data using only the learned
decoder, we utilize both the encoder and the decoder. Additionally, instead of generating
entirely new data, we adopt a strategy that utilizes the seed input.

Algorithm 4 is an algorithm for generating synthetic time-series ICS data using AVRAE.
This algorithm is straightforward but effective in generating synthetic data. The algorithm’s
inputs are the learned ARVAE (the encoder and the decoder), the number of data to be generated
N, and a real dataset D. A real dataset D does not matter whether it is a training dataset or
not. As demonstrated in VAE [4], the variational lower bound allows for learning an unbiased
estimator. First, one sequential observation is taken from dataset D as a seed. The encoder
produces the mean µht and standard deviation σht for the hidden states at all timesteps for the
observation and the mean µz and standard deviation σz for the context. Then, Hi

enc and zi are
sampled from the Gaussian distribution. The decoder uses the sampled Hi

enc and zi to generate
synthetic ICS data x̂i

1:T. The generated data are collected in ∆. We can repeat the above process N
times to generate as much synthetic data as desired. This algorithm is a stochastic process that
introduces uncertainty while sampling Henc and zi. Therefore, the generated synthetic data all
have different values but have a modality similar to the seed due to the structural characteristics
of the encoder–decoder.

Algorithm 4: Synthetic ICS time-series data generation using AVRAE.

Input: AVRAE, the number of data to generate N, a real dataset D;
Output: a synthetic time-series ICS data ∆;
∆← empty set;
x1:T ← take a seed from dataset D;
Henc, Λ, z, [µz, σz]← encode(x1:T);
for i=1 to N do

Hi
enc ∼ ∏[µe

ht
,σe

ht
]∈ΛN (µe

ht
, diag((σe

ht
)2));

zi ∼ N (µz, diag(σ2
z));

x̂i
1:T ← decode(Hi

enc, zi);
∆← ∆ ∪ {x̂i

1:T};
end

Sensors 2024, 24, 128 10 of 20

4. Evaluation

In this section, we evaluate AVRAE proposed in Section 3 using a benchmark dataset.
Section 4.1 describes the ICS dataset used in the experiment; Section 4.2 covers the experi-
mental environment, model structure, and preprocessing; Section 4.3 evaluates the quality
of data generated by AVRAE through various performance indicators; Section 4.4 assesses
the roles of the AVRAE’s components; Section 4.5 compares AVRAE with several baselines.

4.1. Dataset Description

Because ICS systems are generally operated in a closed environment due to security
and privacy issues, datasets collected from actual ICS environments are scarce. However,
in several studies, the data collected by building an ICS testbed were made public, and we
conducted experiments with the HAI dataset [24]. This dataset was collected from a water
treatment testbed. The testbed consists of a turbine, boiler, and water treatment system
integrated into the hardware-in-the-loop (HIL) simulator. As the HAI testbed is regularly
updated, datasets are periodically published. HAI 23.05 has been released, and this dataset
consists of a training dataset collected for 249 h and a test dataset collected for 79 h. The
training dataset contains only normal data, and the test data contain 52 attacks.

4.2. Implementation Details

Computational environment. We performed all experiments in the same computa-
tional environment: Intel(R) Core(TM) i9-11900 2.50 GHz, 32 GB RAM, and Ubuntu 20.04
LTS 64-bit. Additionally, NVIDIA GTX 3080 Titan was used for efficient model learning as
VGA hardware acceleration.

Hyper-parameter settings. AVRAE in the experiment was implemented as a stacked
LSTM-based RNN [18]. AVRAE’s encoder and decoder are each built with two layers, and
p, the size of the observation xt at timestep t, is 48. The number of features included in the
original HAI dataset is over 80. Among these, we used only 48 features as the input data,
excluding some features with constant values and features with missing values during
preprocessing). Additionally, d, the size of the hidden state ht, was set to 1024, and r, the
size of the context z, was set to 64. The layer normalization [34] was applied between each
layer of the stacked RNN. AVRAE was learned with the Adam optimizer [35], and 5× 10−4

was used as the learning rate.
Preprocessing. Each feature in the HAI dataset has a different value range. Because

this type of data are detrimental to model learning, we made the scale of the data consistent.
Generally, min–max scaling and standardization are used. Because the features of the
HAI dataset often have unclear or meaningless upper and lower bounds for features, we
adopted standardization. Additionally, the HAI dataset contain data collected over a long
period of time. However, because data should be expressed in shorter units for input to
AVRAE, we used 100 data at a time as input to AVRAE (i.e., T = 100).

4.3. Quality Assessment

In this section, we measure the quality of ICS time-series data produced by AVRAE
through various figures and indicators. More specifically, this experiment employed
plotting of original and generated data, manifold, dynamic time warping (DTW) [36], mean
absolute percentage error (MAPE), and kernel density estimation (KDE).

Figure 2 visualizes real HAI data and synthetic data generated by AVRAE. In this
figure, only six features showing long-term and short-term temporal patterns are ex-
pressed instead of all features (P1_B2016, P1_B4005, P1_B400B, P1_B4022). In the figure,
the blue lines represent the real data and the red lines represent synthetic data. In addition,
10 synthetic data were generated for each single seed according to Algorithm 4. Overall,
synthetic data are clustered in a similar pattern near the real data used as seed. Additionally,
synthetic data exhibit uncertainty because AVRAE follows the stochastic process described
in Section 3. One thing to note is that the position of the point of the first timestep of the
synthetic data is somewhat different from that of the seed. This is because we used the zero

Sensors 2024, 24, 128 11 of 20

vector as the ‘<START>’ symbol as the input of the first timestep of the decoder. Excluding
these minor errors, it was confirmed that AVRAE successfully jointly learned long-term
and short-term time-series patterns overall.

Timestep

P1
_B

20
16

P1
_B

40
05

P1
_B

40
0B

P1
_B

40
22

Figure 2. A visualization for real and synthetic data.

The plausibility of the synthetic data was confirmed through visualization in Figure 2.
At this time, we checked whether this data show a similar distribution to the real data in a
manifold space. Figure 3 is a visualization using principal component analysis (PCA) and t-
distributed stochastic neighbor embedding (t-SNE) [37] for the real data and synthetic data.
PCA reduced the dimensionality while preserving the variance of high-dimensional data.
On the other hand, t-SNE preserved the topology of high-dimensional data while empha-
sizing spatial separation between data clusters. In other words, data in high-dimensional
space were located close to the manifold. In the figure, blue dots represent the real data
and red dots represent the synthetic data. Of course, PCA is not a suitable algorithm for
visualizing high-dimensional data, but it allows for identifying patterns and variability
(i.e., variance) in the data. Through experiments with PCA, we confirmed that the real and
synthetic data have similar variances. The same result was confirmed in experiments with
t-SNE. Considering that the real data and the synthetic data were embedded in the same
space, it can be said that it was difficult to distinguish between the two data.

y-
PC

A

y-
tS
N
E

PCA t-SNE

x-PCA x-tSNE

Figure 3. A visualization for PCA (left) and t-SNE (right).

Figure 4 shows the similarity between the real and synthetic data using DTW. DTW is
an algorithm that measures the similarity between two time-series data. This algorithm
searches for the optimal matching path between two-time-series data. We selected two
features and compared them with DTW to show that AVRAE learned both short- and

Sensors 2024, 24, 128 12 of 20

long-term temporal patterns well. P1_2016 was chosen as a feature showing a long-term
pattern, and P1_B400B was selected as a feature showing a short-term pattern. In Figure 4,
the blue line on the left is the real data, the red line on the top is the synthetic data, and
the matrix in the center is the similarity matrix. The white line in the similarity matrix is
the so-called warping path. The warping path is a set of points that represents the optimal
match between two time-series data. In other words, the closer this white line is to the
diagonal line running from the bottom left to the top right of the similarity matrix, the more
similar the data being compared are. As shown in Figure 4, it can be seen that both the data
with short- and long-term patterns generated by AVRAE are quite similar to the real data.

Synthetic Synthetic

O
rig

in
al

O
rig

in
al

P1_2016 P1_B400B

Figure 4. A visualization for dynamic time warping between the real and synthetic data. (left): P1_2016,
(right): P1_B400B.

Figure 5 shows the MAPE between the real data and the data generated by AVRAE.
MAPE represents the average absolute percent error between the predicted and actual
values. MAPE is not affected by the scale of the data, and because it expresses the error as a
percentage, it is easy and intuitive to interpret. As can be seen from the experimental results,
the MAPE for most features is less than 1%, and the feature with the largest difference does
not exceed 5%. In other words, AVRAE generates data with sufficient uncertainty while
the generated data do not deviate significantly from the seed.

P1_B
2016

P1_B
4005

P1_B
400B

P1_B
4022

P1_FC
V
01D

P1_FC
V
01Z

P1_FC
V
02Z

P1_FC
V
03D

P1_FC
V
03Z

P1_FT01
P1_FT01Z
P1_FT02
P1_FT02Z
P1_FT03
P1_FT03Z
P1_LC

V
01D

P1_LC
V
01Z

P1_LIT01
P1_PC

V
01D

P1_PC
V
01Z

P1_PIT01
P1_PIT02
P1_PP04
P1_TIT01
P1_TIT02
P1_TIT03
P2_24V

dc
P2_S

C
S
T

P2_S
IT01

P2_V
IBTR

01
P2_V

IBTR
02

P2_V
IBTR

03
P2_V

IBTR
04

P2_V
T01

P3_FIT01
P3_LC

P01D
P3_LC

V
01D

P3_LIT01
P3_PIT01
P4_H

T_FD
P4_H

T_PO
P4_LD
P4_S

T_FD
P4_S

T_G
O
V

P4_S
T_LD

P4_S
T_PO

P4_S
T_PT01

P4_S
T_TT01

0

2

4

M
A
PE

Figure 5. Mean absolute percentage error for every feature between the real and synthetic data.

Finally, we checked the distribution of values for each feature in the real and synthetic
data. Figure 6 visualizes the distribution of values of the real and synthetic data using
KDE. In the figure, the blue area is the distribution of the real data and the red area is the
area of the synthetic data. Because we adopted standardization as preprocessing, most
feature values were centered around 0 (average). As shown in the figure, most features of
the real data have multi-modal characteristics. Traditionally, the Gaussian mixture model
(GMM) is used to model such data. However, GMM requires pre-specifying the number
of Gaussian distributions to be modeled, and the computational complexity increases as

Sensors 2024, 24, 128 13 of 20

the number of data increase. In comparison, AVRAE excellently approximated the multi-
modal distribution of the real data without explicitly specifying the number of distributions
to be modeled.

P1_B2016 P1_B4005 P1_B400B P1_B4022

P1_FCV01D P1_FCV01Z P1_FCV02Z P1_FCV03D

P1_FCV01Z P1_FT01 P1_FT01Z P1_FT02

P1_FT02Z P1_FT03 P1_FT03Z P1_LCV01D

Figure 6. Kernel density estimation between the real and synthetic data.

4.4. Ablation Study

We performed an ablation study to analyze the role of each component of AVRAE,
such as the hidden state sequence h1:T , the latent variable z, and the attention mechanism.

Figures 7 and 8 are comparisons of the synthetic ICS data according to the sizes of the
hidden states and the latent variables (p and r, respectively). The first three columns in
Figure 7 show the modality of the synthetic data according to p when r is 64. Clearly, for
smaller p, AVRAE generated the pure stationary data. In other words, if the capacity of
the hidden state was not sufficient, AVRAE could not fully learn the characteristics of the
time-series data. Next, the two right columns of Figure 7 show the difference in synthetic
data according to r when p is 1024. In both settings, AVRAE learned the short-/long-term
patterns of the ICS data well. However, when r was small, it was observed that the variance
of the generated data was somewhat large.

Timestep

P1
_B

40
0B

P1
_B

40
22

p = 64, r = 64 p = 256, r = 64 p = 512, r = 64 p = 1024, r = 16 p = 1024, r = 64

Figure 7. Visual comparison according to the sizes of the hidden states and the latent variable.

Sensors 2024, 24, 128 14 of 20

P1
_F
C
V0
1Z

P1
_F
T0
2Z

p = 64, r = 64 p = 256, r = 64 p = 512, r = 64 p = 1024, r = 16 p = 1024, r = 64

Figure 8. KDE comparison according to the sizes of the hidden states and the latent variables.

The above observation was confirmed once again through Figure 8. In Figure 7, the
smaller p, the data were close to the stationary distribution. In Figure 7, it was confirmed
that the values of the features actually formed a Gaussian distribution. This is the effect of
ELBO, which used the same Gaussian distribution as the true distribution, although the
dynamics of the ICS data could not be learned because the capacity of the hidden state
was not sufficient. In fact, as p increased, AVRAE learned the distribution of the actual
data more precisely. On the other hand, when p was large enough, the difference by r was
not noticeable.

Figure 9 is a visual comparison of AVRAE’s time-series data generation according
to the attention mechanism. In the figure, the three left columns are data generated by
AVRAE with the attention mechanism enabled. The three columns on the right are data
generated by AVRAE with the attention mechanism disabled (technically, a model that
disables the attention mechanism cannot be called AVRAE. However, for convenience of
explanation, we refer to this setting as ‘AVRAE without the attention’). The experimental
results showed that the attention layers had a significant impact on data generation. First,
the most notable feature of AVRAE without the attention was that the generated data
only learned the long-term trends. P1_B400B of the HAI dataset contained time-series
patterns with short periods. However, when the attention was disabled, the model had
difficulty learning such short-term dependency. This means that, according to our design,
the attention layers effectively reflected the characteristics of the encoder’s input time
series x1:T to the decoder’s output. Another interesting fact about the attention layers is
the uncertainty of the generated data. Intuitively, the data generated by AVRAE with the
attention have a higher variance. This is related not only to the attention, but also to the
data generation algorithm presented in Section 3.5. Algorithm 4 generates new Hi

enc and zi

each time using Λ and [µz, σz] from the encoder processing the seed. In other words, the
uncertainty derived from the sampling process for the hidden states and the latent variable
was better reflected in the decoder’s output by the attention layers. The observations imply
that AVRAE is a suitable model for generating ICS time-series data.

Timestep

P1
_B

40
0B

P1
_B

40
22

with Attention without Attention

Figure 9. Visual comparison of the synthetic ICS data according to the attention mechanism.

Sensors 2024, 24, 128 15 of 20

4.5. Comparative Study

In this section, we compare AVRAE with the baseline models. TimeGAN [7] and
VRAE [22] were selected as baselines for the comparative study. The reasons these two
models were selected as baselines were as follows: TimeGAN is a representative time-series
generation model designed based on GAN; VRAE is the variational inference-based sequential
autoencoder and is the direct parent of AVRAE. We built TimeGAN and VRAE with a similar
complexity to AVRAE in Section 4.3 for comparative experiments. TimeGAN’s hidden state
size was set to 1024 and optimized by the Adam optimizer (with learning rate 5× 10−4. In
VRAE, the size of the hidden state was set to 1024 and the size of the latent variable between
the encoder and the decoder was set to 64. VRAE was also trained by the Adam optimizer
(with a learning rate 5× 10−4. For comparison between models, visualization between the
synthetic data and real data, manifold space, and KDE were used.

Figure 10 shows the synthetic ICS data and the real data generated by AVRAE and
baselines. The meaning of the line colors is the same as in Figure 2. AVRAE and VRAE
generated the synthetic data basically following Algorithm 4. Because VRAE has a similar
structure to AVRAE, it can generate data almost the same way, with the only differences
being in the attention mechanism and the sampling process for the hidden states. As shown
in the figure, TimeGAN failed to generate intuitively meaningful time-series data. More
specifically, TimeGAN did not sufficiently capture the long short-term dependencies or
dynamics inherent in ICS data. VRAE learned the dynamics of ICS data well compared
with TimeGAN, but it was not accurate. The data generated by VRAE are also quite distant
from the seed input. AVRAE simultaneously learned the time dependency and dynamics
of ICS data compared with the baselines.

Figure 11 compares the synthetic time-series and the real data generated by AVRAE,
TimeGAN, and VRAE in the manifold space. In experiments using PCA, it was confirmed
that TimeGAN did not sufficiently represent the variance of the real data. VRAE was
better than TimeGAN, but it could not represent some data. This is also clearly evident in
comparison through t-SNE. TimeGAN failed to represent the real data overall. VRAE had a
similar distribution to the real data, but was analyzed to be somewhat overfitted. Compared
with other models, the synthetic data generated by AVRAE were almost identical to the
real data in terms of data distribution in manifold space.

Figure 12 compares the synthetic and real data generated by AVRAE, TimeGAN,
and VRAE at the feature level. The color code is the same as in Figure 6. Although the
distribution of data generated by TimeGAN was very sharp, it represented only a portion
of the real data. This is a typical phenomenon observed in GAN-based generative models.
GAN tends to implicitly but very sharply learn the real data distribution. On the other
hand, VRAE learned the distribution of the real data better than TimeGAN overall, but
showed a tendency to be overfitted. More specifically, the data generated by VRAE were
concentrated near the mode of the real data distribution. The data generated by AVRAE
followed the distribution of the real data well without bias.

Timestep

P1
_B

40
0B

P1
_B

40
22

AVRAE TimeGAN VRAE

Figure 10. Visual comparison between generative models. The first two columns belong to AVRAE.
The middle two columns’ data are generated by TimeGAN. The last two columns’ data are produced
by VRAE.

Sensors 2024, 24, 128 16 of 20

PC
A

t-S
N
E

AVRAE TimeGAN VRAE

Figure 11. Comparison in the manifold space between the generative models.

P1_FCV01Z P1_FT01

P1_FT02Z P1_FT03

P1_FCV01Z P1_FT01

P1_FT02Z P1_FT03

P1_FCV01Z P1_FT01

P1_FT02Z P1_FT03

AVRAE TimeGAN VRAE

Figure 12. Comparison in KDE between the generative models.

There are two main reasons AVRAE can generate better-quality data than other base-
lines. First, compared with VRAE, which uses a single latent variable for the entire obser-
vations, AVRAE adopts sequential latent variables for the hidden states. This allows the
dynamics contained in ICS data to be expressed more flexibly. Second, using the atten-
tion mechanism, AVRAE captures ICS data’s time dependency better and learns the data
distribution without bias.

5. Limitations

Although AVRAE proposed in this paper successfully generates synthetic ICS time-
series data, it still has some limitations. This section discusses these limitations and presents
potential insights to address them.

• The AVRAE-based data generation algorithm proposed in this paper uses real data as
a seed. The data generated as a result show a pattern similar to the seed. As a result,
the generated data are seed-dependent and lack diversity. Of course, the diversity
of data can be secured by controlling the variance when sampling the hidden states
and the context in the inference process. However, the data generated this way are
closer to anomaly than normal. One alternative is to learn a sequential probability
distribution of the hidden states. The hidden markov model (HMM) is one of the most
suitable models for this task. However, as the dimensionality of HMM increases, the
computational complexity increases significantly. Conversely, if the dimensionality of
the hidden states in AVRAE is set small to keep the computational complexity low, the
hidden states may not fully reflect the dynamics of the observations. The seed issue is
a problem that cannot be easily solved, and approaches from various aspects other
than HMM are required.

Sensors 2024, 24, 128 17 of 20

• Another cause of the lack of diversity in the generated data is that AVRAE is learned
using an autoencoder method. We can overcome this limitation by training AVRAE
as a forecasting model. In other words, AVRAE’s decoder learns to predict data a
few steps later than the observations that are input to the encoder. Through this, the
constraint of the autoencoder that input–output must be the same is resolved, allowing
AVRAE to generate more diverse data.

• The generated data contain noise resulting from the sampling of the latent variables.
Because of this, the synthetic data are somewhat messy compared with the real data.
This can be overcome through smoothing methods such as moving averages. This can
be overcome mainly in two ways. First, use a smoothing technique such as the moving
average. Simply, a moving average slides a window and calculates the average of
several observations. The second method is to adopt the expected value by generating
multiple independent time-series samples. The above techniques basically remove the
uncertainty of a single observation.

6. Conclusions

In this paper, we extend the evidence lower bound of the variational inference to time-
series data. We also proposed the variational recurrent autoencoder, which learns this as an
objective. This model uses an attention mechanism to jointly learn ICS time-series data’s
short- and long-term temporal dependencies. Additionally, a synthetic data generation
algorithm using learned AVRAE was proposed. In comprehensive experiments using HAI,
a well-known ICS dataset, we confirmed that ARVAE can successfully generate synthetic
ICS time-series data. The quality of the generated data was checked visually through
manifold, DTW, MAPE, and KDE. Finally, some limitations of AVRAE were discussed.

This study was conducted to resolve data scarcity and can be utilized in the ICS
environment in various aspects. First, AVRAE can contribute to checking the stability of the
control system by generating synthetic time-series data. Control systems contain complex
control logic. Verifying the soundness of this control logic is an essential safety-related issue,
but there are limits to verifying the logic with limited data. Therefore, the reliability of the
control system can be improved by generating various data through AVRAE and using it
for verification. Second, AVRAE can be used to generate abnormal data. Anomaly detection
is an open problem in the security domain. Recently, research on machine-learning-based
anomaly detection systems has been actively conducted. However, due to the nature of
the ICS environment, where it is difficult to obtain abnormal data, it is difficult to learn
a robust detection model. By introducing AVRAE into anomaly data generation, a more
reliable detection model can be learned, which is also our future work.

AVRAE has successfully generated synthetic data, but the diversity of the generated
data are somewhat low due to limitations arising from autoencoder learning. However, this
research has laid the foundation for learning more powerful generative models for time-
series data. In the future, we will conduct research to overcome the limitations discussed
here. More specifically, we will study a complete generative model and its process so
that the synthetic data generated do not depend on the seed. Secondary research, such as
abnormal data generation, will also be performed.

Author Contributions: Conceptualization, S.J.; methodology, S.J.; software, S.J.; validation, S.J. and
J.T.S.; investigation, S.J.; resources, J.T.S.; data curation, S.J.; writing—original draft preparation, S.J.;
writing—review and editing, J.T.S.; visualization, S.J.; supervision, J.T.S.; project administration, J.T.S.;
funding acquisition, J.T.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-01806,
Development of security by design and security management technology in smart factory); and this
work was also supported by the Korea Institute of Energy Technology Evaluation and Planning
(KETEP) grant funded by the Korea government (MOTIE) (20224B10100140).

Institutional Review Board Statement: Not applicable.

Sensors 2024, 24, 128 18 of 20

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ICS Industrial Control System
AVRAE Attention-based variational recurrent autoencoder
VAE Variational autoencoder
GAN Generative adversarial networks
i.i.d Independently-and-identically distributed
RNN Recurrent neural network
LSTM Long short-term memory
GRU Gated recurrent unit
VRAE Variational recurrent autoencoder
Seq2Seq Sequence to Sequence
CLANG Composed variational natural language generator
VTN Variational transformer network
GNN Graph neural network
GCN Graph convolutional network
STGCN Spatio-temporal graph convolutional network
ELBO Evidence lower bound
KLD Kullback-Leibler divergence
MLP Multi-layer perceptron
LN Layer normalization
HIL Hardware-in-the-loop
DTW Dynamic time warping
MAPE Mean absolute percentage error
KDE Kernel density estimation
PCA Pincipal component analysis
t-SNE t-distributed stochastic neighbor embedding
GMM Gaussian mixture model
HMM Hidden markov model

References
1. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

arXiv 2017, arXiv:1706.03762.
2. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training.

OpenAI.Com. 2018. Available online: https://openai.com/research/language-unsupervised (accessed on 25 December 2023).
3. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Language Models Are Unsupervised Multitask Learners. OpenAI

Blog. 2019. Available online: https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_
learners.pdf (accessed on 25 December 2023).

4. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. In Proceedings of the 2nd International Conference on Learning
Representations, ICLR 2014—Conference Track Proceedings, Banff, AB, Canada, 14–16 April 2014.

5. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014.

6. Wan, Z.; Zhang, T.; He, H. Variational Autoencoder Based Synthetic Data Generation for Imbalanced Learning. In Proceedings of
the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017;
pp. 1–7. [CrossRef]

7. Yoon, J.; Jarrett, D.; van der Schaar, M. Time-series generative adversarial networks. In Proceedings of the 33rd Conference on
Neural Information Processing Systems (NeurIPS 2019), Vancouver, QC, Canada, 8–14 December 2019; Volume 32.

8. Xu, L.; Skoularidou, M.; Cuesta-Infante, A.; Veeramachaneni, K. Modeling tabular data using conditional GAN. In Proceedings of
the Advances in Neural Information Processing Systems, Vancouver, Canada, 8–14 December 2019; Volume 32.

9. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232.

https://openai.com/research/language-unsupervised
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://doi.org/10.1109/SSCI.2017.8285168

Sensors 2024, 24, 128 19 of 20

10. Rebuffi, S.A.; Gowal, S.; Calian, D.; Stimberg, F.; Wiles, O.; Mann, T. Data Augmentation Can Improve Robustness. arXiv 2021,
arXiv:2111.05328.

11. Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random Erasing Data Augmentation. In Proceedings of the AAAI Conference on
Artificial Intelligence, New York, NY, USA, 7–12 February 2020.

12. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the NAACL HLT 2019—2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies-Proceedings of the Conference, Minneapolis, MN, USA, 2–7 June 2019; Volume 1.

13. Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.L.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.; et al. Training
language models to follow instructions with human feedback. In Proceedings of the Advances in Neural Information Processing
Systems, New Orleans, LA, USA, 28 November–9 December 2022; Volume 35.

14. Hannun, A.; Case, C.; Casper, J.; Catanzaro, B.; Diamos, G.; Elsen, E.; Prenger, R.; Satheesh, S.; Sengupta, S.; Coates, A.; et al. Deep
Speech: Scaling up end-to-end speech recognition. arXiv 2014, arXiv:1412.5567.

15. Chorowski, J.; Bahdanau, D.; Serdyuk, D.; Cho, K.; Bengio, Y. Attention-based models for speech recognition. In Proceedings of
the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 10–16 December 2015.

16. Donahue, J.; Hendricks, L.A.; Rohrbach, M.; Venugopalan, S.; Guadarrama, S.; Saenko, K.; Darrell, T. Long-Term Recurrent
Convolutional Networks for Visual Recognition and Description. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 677–691.
[CrossRef] [PubMed]

17. Ng, J.Y.-H.; Hausknecht, M.; Vijayanarasimhan, S.; Vinyals, O.; Monga, R.; Toderici, G. Beyond short snippets: Deep networks
for video classification. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Boston, MA, USA, 7–12 June 2015. [CrossRef]

18. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
19. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations

Using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734. [CrossRef]

20. Luong, M.; Pham, H.; Manning, C.D. Effective Approaches to Attention-based Neural Machine Translation. In Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), Lisbon, Portugal, 17–21 September 2015;
pp. 1412–1421. [CrossRef]

21. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [CrossRef]

22. Fabius, O.; van Amersfoort, J.R. Variational recurrent auto-encoders. In Proceedings of the 3rd International Conference on
Learning Representations, ICLR 2015-Workshop Track Proceedings, San Diego, CA, USA, 7–9 May 2015.

23. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the Advances in Neural
Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014.

24. Shin, H.K.; Lee, W.; Yun, J.H.; Kim, H.C. HAI 1.0: HIL-based augmented ICS security dataset. In Proceedings of the CSET
2020—13th USENIX Workshop on Cyber Security Experimentation and Test, Co-Located with USENIX Security, Online,
10 August 2020.

25. Yoo, K.M.; Shin, Y.; Lee, S.G. Data augmentation for spoken language understanding via joint variational generation. Proc. AAAI
Conf. Artif. Intell. 2019, 33, 7402–7409. [CrossRef]

26. Xia, C.; Xiong, C.; Yu, P.; Socher, R. Composed variational natural language generation for few-shot intents. In Proceedings of the
Findings of the Association for Computational Linguistics: EMNLP 2020, Online, 16–20 November 2020. [CrossRef]

27. Arroyo, D.M.; Postels, J.; Tombari, F. Variational transformer networks for layout generation. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021. [CrossRef]

28. Zhang, C.; Kuppannagari, S.R.; Kannan, R.; Prasanna, V.K. Generative Adversarial Network for Synthetic Time Series Data
Generation in Smart Grids. In Proceedings of the 2018 IEEE International Conference on Communications, Control, and
Computing Technologies for Smart Grids, SmartGridComm, Aalborg, Denmark, 29–31 October 2018. [CrossRef]

29. Smith, K.; Smith, A.O. Conditional GAN for Timeseries Generation. arXiv 2020, arXiv:2006.16477.
30. Marcheggiani, D.; Perez-Beltrachini, L. Deep graph convolutional encoders for structured data to text generation. In Proceedings

of the 11th International Natural Language Generation Conference, Tilburg, The Netherlands, 5–8 November 2018. [CrossRef]
31. Kipf, T.; Fetaya, E.; Wang, K.C.; Welling, M.; Zemel, R. Neural relational inference for Interacting systems. In Proceedings of the

35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Volume 6.
32. Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In

Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018. [CrossRef]
33. Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A.; Bengio, Y. A recurrent latent variable model for sequential data. In

Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015.
34. Ba, J.L.; Kiros, J.R.; Hiton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450.
35. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on

Learning Representations, ICLR 2015-Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015.

http://dx.doi.org/10.1109/TPAMI.2016.2599174
http://www.ncbi.nlm.nih.gov/pubmed/27608449
http://dx.doi.org/10.1109/CVPR.2015.7299101
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.3115/v1/d14-1179
http://dx.doi.org/10.18653/v1/d15-1166
http://dx.doi.org/10.1007/978-3-030-01234-2_1
http://dx.doi.org/10.1609/aaai.v33i01.33017402
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.303.
http://dx.doi.org/10.1109/CVPR46437.2021.01343
http://dx.doi.org/10.1109/SmartGridComm.2018.8587464.
http://dx.doi.org/10.18653/v1/w18-6501
http://dx.doi.org/10.24963/ijcai.2018/505

Sensors 2024, 24, 128 20 of 20

36. Sakoe, H.; Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. In IEEE Transactions on Acoustics,
Speech, and Signal Processing; IEEE: New York, NY, USA, 1978; Volume 26, pp. 43–49. [CrossRef]

37. van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TASSP.1978.1163055

	Introduction
	Related Work
	Variational Method-Based Generative Models
	GAN-Based Generative Models
	Graph-Based Generative Models

	Attention-Based Variational Recurrent Autoencoder
	Evidence Lower Bound
	Inference Process
	Attention Layer
	Learning Process
	Generation Process

	Evaluation
	Dataset Description
	Implementation Details
	Quality Assessment
	Ablation Study
	Comparative Study

	Limitations
	Conclusions
	References

