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Abstract: Unattended intelligent cargo handling is an important means to improve the efficiency
and safety of port cargo trans-shipment, where high-precision carton detection is an unquestioned
prerequisite. Therefore, this paper introduces an adaptive image augmentation method for high-
precision carton detection. First, the imaging parameters of the images are clustered into various
scenarios, and the imaging parameters and perspectives are adaptively adjusted to achieve the
automatic augmenting and balancing of the carton dataset in each scenario, which reduces the
interference of the scenarios on the carton detection precision. Then, the carton boundary features
are extracted and stochastically sampled to synthesize new images, thus enhancing the detection
performance of the trained model for dense cargo boundaries. Moreover, the weight function of the
hyperparameters of the trained model is constructed to achieve their preferential crossover during
genetic evolution to ensure the training efficiency of the augmented dataset. Finally, an intelligent
cargo handling platform is developed and field experiments are conducted. The outcomes of the
experiments reveal that the method attains a detection precision of 0.828. This technique significantly
enhances the detection precision by 18.1% and 4.4% when compared to the baseline and other
methods, which provides a reliable guarantee for intelligent cargo handling processes.

Keywords: cargo handling; data augmentation; target detection; YOLO

1. Introduction

The port is an important channel for import–export trade and economic growth. Cargo
handling is the most time-consuming task during cargo trans-shipment and is a key factor
leading to cargo backlogs and reduced port throughput. In addition, the virus can be
easily transmitted during port operations. Therefore, unattended and intelligent cargo
handling is key to improving the efficiency of port operations and reducing the rate of virus
transmission. Since cargo is often packed in cartons, carton detection has become one of
the core technologies in the intelligent cargo handling process [1,2].

In the process of cargo handling, the intelligent cargo handling system needs to detect
each carton in advance and generate corresponding grab instructions. Bulk cargo are
characterized by high density, random placement and different scales, as shown in Figure 1,
which seriously aggravates the difficulty of carton detection. In view of the high density
and poor boundary discrimination of stacked cartons and the serious interference of other
rectangular objects to carton detection, traditional image processing methods that are
sensitive to environment have poor generalization and are not suitable for carton detection
in intelligent cargo handling, while the object detection method based on deep learning has
a strong generalization ability by relying on a large amount of data training and is widely
used in carton detection. Therefore, this paper focuses on the deep-learning-based carton
detection method and optimizes its performance in the carton detection process.
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high density

different scales

random placement

Figure 1. Samples of bulk cargo.

In this paper, a large-scale carton dataset is first presented to train the carton detection
model, which includes the logistics cartons, containers and bulk cargo under various
interference environments. Traditional deep learning algorithms, such as regions with
convolutional neural network (R-CNN) [3] and You Only Look Once (YOLO) [4,5], need
to be trained and learned on the basis of a wide range of datasets to improve model
precision and generalization. However, in port operations scenarios, where the carton
angle and imaging parameters have strong randomness, it is difficult for the presented
carton dataset to cover all the cases. Combined with the high density and poor boundary
discrimination of the stacked cartons, the trained model generalization ability is sharply
reduced, resulting in a precision reduction of carton detection, multiple cartons being
detected as one or even cartons not being detected. Therefore, it is particularly important
to improve the generalization ability of the carton detection model based on the presented
limited carton dataset.

It is time-consuming and impossible to collect the targets to be detected in all scenarios
to solve the problem of a poor model generalization ability. Therefore, traditional deep
learning methods augment the training sample set from the aspects of imaging parameters
and perspective of a single image or synthesis of multiple images. Single image augmenta-
tion methods generate new images through style transfer [6,7], motion blur [8], perspective
transformation [9], rotation [10], cropping [11], etc., while multi-image synthesis augmen-
tation methods generate new images by pasting cropped foreground objects onto a new
background [12–14]. However, there are still two main disadvantages of the traditional
data augmentation methods when adopting them in carton detection: (1) traditional data
augmentation methods only transform the images on the training set, but ignore the im-
pacts of the actual environment on target detection, resulting in limited improvement in
the model generalization ability; (2) for dense targets such as a carton stack, there are no
purposeful augmentations on the indistinguishable target boundaries in traditional data
augmentation methods, which still leads to a low precision of target detection.

To overcome the disadvantages of traditional deep learning methods in carton de-
tection, this paper proposes a data augmentation method that takes into account the
interferences of both the multiple scenarios and indistinguishable target boundaries. Firstly,
since it is difficult for the presented training set to cover all the scenarios, an adaptive
augmentation method for complementary scenarios is proposed, which transforms the
background and perspective of the carton dataset to adapt to various practical scenarios.
Then, aiming at the problem of the poor boundary discrimination of stacked cartons, a
stochastic synthesis method of multiple boundary features is proposed to enhance the
detection ability of deep learning methods to the boundary features. Finally, a hyperpa-
rameters optimization method of detection model based on an modified genetic algorithm
(GA) is proposed to further improve the detection precision. Extensive experimental results
on YOLO [15] demonstrate the effectiveness of the proposed method in improving the
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generalization ability of the carton detection model, and this method can better guide the
intelligent cargo handling system to generate grab instructions.

The remainder of this paper is organized as follows. Section 2 reviews the previous
work related to this paper. Section 3 details the proposed data augmentation method and
the model hyperparameters optimization method. Experiments are presented in Section 4
and discussed in Section 5. Finally, the paper is concluded in Section 6.

2. Related Work

This paper is devoted to solving the problem of the generalization ability of a detection
model. At present, there are two main approaches. (1) Deep learning networks are
optimized to enhance the learning ability of the detection model. (2) Data augmentation
strategies are proposed to realize the volume expansion of the limited data samples.

2.1. Deep Learning Models

According to the number of stages in the object recognition process, deep = learning-
based methods for object recognition fall into two categories: two-stage series and one-stage
series [16]. The two-stage series are first proposed, and the representative methods are R-
CNN [17], Faster R-CNN, etc. Subsequently, to improve the efficiency of object recognition,
one-stage series are proposed, which are represented by YOLO [18].

For the two-stage series, a Faster R-CNN model was proposed based on the R-CNN
model with a precision of 45–79%, in which selective search was carried out first to deter-
mine the candidate area, and then target detection was performed to enhance the pertinence
of detection [19]. Subsequently, a target feature extraction and detection model was pro-
posed based on a Mask R-CNN, which improved the precision by 2.64% compared with the
Faster R-CNN [20]. To overcome the problem of training set insufficiency, a Global Mask
R-CNN detection algorithm based on a small training set was also presented by precisely
composing the target feature region and saving the target semantic information in the deep
learning backbone, and the precision could reach 66.45% [21]. For the one-stage series, the
YOLOs are progressively proposed to improve the network structure, such as YOLO9000 [22],
YOLOv3 [15] and YOLOv5 [23]. In one YOLOv3-based ship detection case, the detection
precision could reach 55.3% [24]. By combining the CenterNet and YOLOv3 and introducing
the spatial shuffle-group enhance (SSE) attention module, more advanced semantic features
were integrated, avoiding the problem of detection omissions, and the precision was further
improved to 90.6% [4]. On this basis, an extra detection head was added to the YOLOv5
model to improve the multi-scale detection and small target, experiencing an 11.6% rise [23].
In view of the better performance of YOLO series, this paper used YOLOv5 as the baseline to
demonstrate the effectiveness of the proposed method.

2.2. Data Augmentations

There are two different approaches to data augmentation: transforming a single image
and synthesizing multiple images. For the transformation of a single image, augmentation
strategies such as color jittering [25], auto or rand augment [26,27], motion blur [8], perspec-
tive transformation [9,28], stochastic cropping [11,25,29] and rotation [10] can effectively
improve the learning ability on the training set. However, these methods do not gain
much regarding the generalization ability of the detection model because the training
set is randomly transformed rather than according to the actual scenarios that can occur.
In the aspect of multi-image synthesis, the cut-and-paste methods [12,30] are adopted.
However, in synthetic images, the contextual semantic relationship between the target and
the background is too stiff to effectively improve the precision of the detection model. The
literature [12,14,31] hopes to improve the detection precision by ignoring the subtle pixel
artifacts in the synthesized image, but the pixel artifacts are unavoidable [32].
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2.3. Discussion

For the optimized deep learning networks, the precision of training sets is indeed
greatly improved; however, the improvement effects on the prediction sets are not particu-
larly evident, especially in the carton stack detection process, and there will still be a large
number of detection omissions or errors. In comparison, data augmentation methods can
effectively expand the training sets and improve the generalization ability of the detection
models on the prediction sets. However, the interference of actual scenarios is not taken
into account in the existing data enhancement method, which limits the precision of target
detection in the actual scenarios. Therefore, a data augmentation method allowing for
multiple scenarios and indistinguishable target boundaries is proposed in this paper.

3. Methodology

The goal of the present study is three-fold. First, this study seeks to investigate the
distribution law of imaging parameters in multiple scenarios and to construct matrices of
imaging parameters in complementary scenarios for each specific scenario, thus enabling
adaptive augmentation of complementary scenarios. Second, for problems where dense
boundaries are indistinguishable, this study attempts to propose a stochastic synthesis method
for multi-boundary features to enable boundary enhancement during training. Third, the
correlation between model hyperparameters and model fitness is explored to improve the
crossover probability function in GA, and the optimization of the model hyperparameters is
achieved by the modified GA. The complete process of our method is shown in Figure 2.
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Figure 2. The complete process of our method.

3.1. Adaptive Augmentation for Complementary Scenarios

The size of the training set and its coverage of the various scenarios determine to some
extent the precision and generalization ability of the carton detection model. Since it is
time-consuming and impossible to artificially collect carton samples in all the scenarios,
this paper proposes an adaptive augmentation method for complementary scenarios based
on carton samples in limited scenarios, which significantly reduces sample collection
and labeling efforts. This approach involves three steps. (1) Calculation of imaging
parameters: The imaging parameters in multiple scenarios, such as lightness, saturation
and contrast, are calculated according to a large number of easily collected images in
daytime, night, fog, etc. (2) Adaptive augmentation: New images are derived by converting
the imaging parameters of each carton sample into the imaging parameters calculated
above. (3) Perspective augmentation: Perspective augmentation is also applied to take into
account the differences in the perspective of the cartons during the actual image acquisition.
The architecture of this approach is shown in Figure 3.

The adaptive augmentation approach for complementary scenarios is detailed as follows.
First, the imaging parameters in multiple scenarios need to be calculated. Images

from multiple scenarios are collected stochastically for imaging parameter calculation. For
illustrative purposes, the scenarios are roughly classified as “day”, “night” and “fog”, and
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the imaging parameters of lightness, saturation and contrast are taken into account in this
paper. Lightness L, saturation S and contrast C can be calculated through Equation (1).

L =
1
2
(MAX + MIN)

S =
MAX − MIN
1 − |2L − 1|

C = ∑
δ

δ(u, v)2Prδ(u, v)

(1)

where MAX and MIN are the maximum and minimum values of (R̄, Ḡ, B̄). (R̄, Ḡ, B̄) are
the average values of the red (R), green (G) and blue (B) channels of an image, respectively.
(u, v) represents the horizontal and vertical coordinates of a given pixel on an image,
δ(u, v) is the gray level difference between the adjacent pixels and (u, v) and Prδ(u, v) is
the distribution probability of the pixels with the gray level difference of δ.

Rand Augment
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②Brightness/Contrast/Sharpness/Color
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Figure 3. Architecture of the adaptive complementary augmentation approach.

The average value of the imaging parameters of the images from each scenario will be
taken to represent the imaging parameters of the scenario, which can be expressed as:

P̄sc = (L̄sc, S̄sc, C̄sc) (2)

where P̄sc is the imaging parameter representing the sc scenario (sc for day, night and fog),
and L̄sc, S̄sc, C̄sc, respectively, stand for the lightness, saturation and contrast in P̄sc.

Then, for the ith image in the training set, the imaging parameter Pi can also be
calculated through Equation (1), which is denoted as:

Pi = (Li, Si, Ci), i = (1, 2, . . . ) (3)

Proceeding to the next step, the new image will be generated by converting Pi to P̄sc.
Li and Ci are converted by Equation (4).

f ′i_sc(u, v) = αf i(u, v) + β (4)

where f i(u, v) and f ′i_sc(u, v), respectively, represent (R, G, B) on (u, v) of the ith image in
the training set and its derived image. α is the contrast coefficient and β is the lightness
gain coefficient.

After that, S̄sc will be converted by Equation (5).

s′i_sc(u, v) = (1 + γ)si_sc(u, v) (5)
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where si_sc(u, v) =
max(f ′)− min(f ′)

1 − |max(f ′) + min(f ′)− 1|
, f ′ is short for f ′i_sc(u, v), s′i_sc(u, v) is the

saturation of the newly derived image and γ is the saturation adjustment coefficient.
Thus, the ith image in the training set can be converted to a new image with the

imaging parameters of P̄sc through a set of appropriate coefficients of α, β and γ.
Finally, considering the effect of imaging perspective, perspective augmentation is

implemented by translating, rotating and shearing an image according to Equations (6)–(8).

(u′, v′)T = (u, v)T + (ut, vt)
T (6)

(u′, v′)T =

[
cosθr sinθr
sinθr cosθr

]
(u, v)T (7)

(u′, v′)T =

[
cosϕu 0
sinϕu 1

][
1 sinϕv
0 cosϕv

]
(u, v)T (8)

where (u′, v′) represents the transformed pixel coordinates after the original (u, v) trans-
formation, ut and vt are the translations of (u, v) along the horizontal and vertical axes,
respectively, θr is the rotation angle and ϕu and ϕv represent the shear angles along the
horizontal and vertical axes.

The algorithm flow is shown in Algorithm 1.

Algorithm 1 Adaptive Complementary Augmentation Algorithm
Input: image sets of multiple scenarios Imsc, sc = (day, night, f og);

original training set Im;
allowable deviation of imaging parameters ϵ

Output: augmented training set Imaug

1: Initialize: allowable error ϵ, α = 1, β = 0, γ = 0, αr = [αrl , αru], βr = [βrl , βru],γr = [γrl , γru] are
the searching range of α, β,γ

2: # Imaging Parameters of Scenarios:
3: for sc in (day, night, f og) do
4: for image in Imsc do
5: Calculate L, S, C for each image by Equation (1)
6: Calculate P̄sc = (L̄sc, S̄sc, C̄sc) by Equation (2)
7: # Appropriate Coefficients of α, β, γ:
8: for ith image in Im do
9: Calculate Pi = (Li, Si, Ci) by Equation (3)

10: for sc in (day, night, f og) do
11: err = P̄sc − Pi
12: while |err| > ϵP̄sc do
13: (boL, boS, boC) = BOOL(err > 0)

14: α =
α + αr[boC]

2

15: β =
β + βr[boL]

2

16: γ =
γ + γr[boS]

2
17: Generate a new image by Equations (4) and (5)
18: Calculate P′

i by Equation (3)
19: err = P̄sc − P′

i

20: Save the new image in Imaug

21: # Perspective Augmentation:
22: for image in Imaug do
23: Random generation of (ut, vt), θr, ϕu, ϕv
24: Augment by Equations (6)–(8) and save to Imaug

25: Return Imaug
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3.2. Stochastic Synthesis of Multi-Boundary Features

After the adaptive augmentation for complementary scenarios of the training set, the
enhancement of boundary features is also considered to improve the recognition precision
for dense targets. A stochastic synthesis approach of multi-boundary features is proposed in
this paper, which can improve the weight of boundary features without greatly expanding
the training set.

The flow of the proposed approach is depicted in Figure 4. First, four images are
selected stochastically from the training set to serve as metadata for a synthesized image.
The targets in each image are then selected stochastically and cropped. To facilitate synthe-
sis, cropped slices are resized to the size of the synthesized image. Meanwhile, a random
center is generated to determine the configuration of the synthesized image. Then, a corner
is chosen stochastically from the top left, top right, bottom left and bottom right in each
resized cropped slice. Finally, the synthesized image is formed by image mosaics.

Mosaic

（多特征融合）

多边界特征随机融合方法 货物边界不清，多图货物边界拼接，降低训练样本量，增强边界特征训练
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selecting 4 images
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cropping
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to M×N
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corners and cropping

configuration of synthesized image

generating 

synthesized image

u

v

selected corners and cropped piecessynthesized image
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S1 = x×y S2 = (M−x)×y

S3 =

x×(N − y) S4 = 
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stochastic 
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Figure 4. Flow of the stochastic synthesis approach.

3.3. Hyperparameters Optimization Based on Modified GA

Based on adaptive complementary augmentation and boundary augmentation, the
influence of model hyperparameters on the detection precision is also considered in this
paper; thus, the GA is introduced to optimize the hyperparameters. However, in the
existing GA, the stochastic crossover principle is employed in the gene crossover process
with relatively low efficiency. As a result, a crossover probability function is developed to
perform the optimal crossover of the genes and hence improve the optimization efficiency
of the model hyperparameters. The hyperparameters optimization process is shown
in Figure 5.

For illustrative purposes, population of model hyperparameters is generated stochas-
tically in the hyperparameters ranges as follows.

Par = [Par1, . . . , Parp, . . . , ParP]
T (9)

where Parp = [Parp1, . . . , Parpq, . . . , ParpQ] represents the pth set of hyperparameters in
the hyperparameters population Par, p = (1, 2, . . . , P), where P is the amount of the
sets of hyperparameters, and q = (1, 2, . . . , Q), where Q is the quantity of components
in a set of hyperparameters; thus, Parpq represents the qth component in the pth set
of hyperparameters.

To evaluate the model performance, four typical evaluation metrics are employed:
(1) the precision Pr, (2) the recall Re, (3) the average precision AP for a specific value of the
intersection over union (IoU) threshold to determine true positives (TPs) and false positives
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(FPs) and (4) the AP, which averages AP across the different value of IoU thresholds from
0.5 to 0.95 with a step size of 0.05.

Start
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hyperparameter I ′

hyperparameter II ′

hyperparameter I

hyperparameter II

Pr ,Re , ,
T

pp p p pfn AP AP  =   

fitness function

Figure 5. Hyperparameters optimization process based on the modified GA.

Then, a metric weight is set and a fitness function is established to simplify the
evaluation process of the model performance, as shown in Equation (10).

f np = ω × [Prp, Rep, APp, APp]
T (10)

where ω is the metric weight and f np is the fitness of the model based on Parp. Thus, the
fitness vector fn of the hyperparameter population Par can be expressed as:

fn = ( f n1, . . . , f np, . . . , f nP)
T (11)

For a couple of selected hyperparameters from Par, component crossover will be
performed to obtain a new set of hyperparameters. However, to achieve optimal crossover
of hyperparameter components, the correlation of the model fitness with each component
in the hyperparameters should be determined first, in which the statistical distributions of
fn and Par with respect to their respective medians are employed. Thus, the correlation
function is described as Equation (12).

cq = (Par∼q − ˇPar∼q)
T × (fn − f̌n) (12)

where Par∼q consists of the qth components in each Parp, ˇ(·) represents the median value
of (·) and cq is the correlation of the model fitness with the qth component, of which the
positivity and negativity indicate the positive and negative correlations, respectively, and
the absolute value reflects the correlation degree. Thus, the correlation vector c can be
further expressed as:

c = (c1, . . . , cq, . . . , cQ) (13)

Furthermore, for a couple of hyperparameters, such as Parj and Park, j, k ∈ (1, 2, . . . , P),
the crossover probability function is established as:

Pcjk = sgn(( f nj − f nk)× (Parj − Park))⊙ c (14)

where Pcjk is the crossover probability vector of each component in Parj and Park, sgn(·)
represents the signum function, which is equal to +1 or −1, respectively, when (·) > 0
or (·) < 0, and ⊙ represents the bitwise multiplication of two vectors. Thus, new sets of
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hyperparameters can be obtained by crossover of Parj and Park according to Pcjk. Finally,
the optimal set of hyperparameters can be efficiently solved by the modified GA based on
the introduced crossover probabilities. The algorithm flow is shown in Algorithm 2.

Algorithm 2 Hyperparameters Optimization Algorithm
Input: hyperparameters population Par
Output: the optimal set of hyperparameters Parop

1: Initialize: allowable error ϵ, the metric weight ω
2: # Fitness Calculation:
3: Calculate metrics [Pr, Re, AP, AP]
4: Calculate fitness based on each Parp in Par by Equation (10), and work out fitness vector fn by

Equation (11)
5: # Selection, Crossover and Mutation:
6: while max(fn)− min(fn) > ϵ do
7: Select: Parj, Park in Par
8: for Par∼q in Par do
9: Calculate cq by Equation (12)

10: Calculate Pcjk by Equation (14)
11: Crossover: Parj, Park ⇒ Parjn, Parkn
12: Mutation: stochastics and low probability
13: Calculate f n based on Parjn and Parkn
14: if f njn or f nkn > min(fn) then
15: Remove min(fn), Parmin
16: Add f njn or f nkn, Parjn or Parkn

17: Return Parop in Par with the maximum fitness

4. Experiments

This chapter mainly explores the application of adaptive complementary augmentation
and stochastic synthesis approaches in the domain of carton training set expansion, as well
as the role of the hyperparameters optimization method in improving the generalization
ability of trained models. The effectiveness of our approaches is explored on YOLOv5,
while the experiments are based on PyTorch 3.10 and performed on RTX3090.

4.1. Experimental Settings

Multiple scenarios dataset Since the imaging parameters of images in various sce-
narios are necessary for the adaptive complementary augmentation method, 200 images
of ports or waters were collected for each scenario. Some samples are shown in Figure 6.
Thus, the imaging parameters of each scenario can be calculated by Equations (1) and (2).

Carton dataset The carton dataset in this paper refers to the stacked carton dataset
(SCD) [33]. However, as a direct application of the proposed method on SCD is too time-
consuming due to the large scale of the SCD, a portion of the sample is drawn from the
SCD to form our carton dataset. The distribution of our carton dataset is given in Table 1.
Due to the different difficulties in image collection under various scenarios, the images in
the carton dataset are mainly collected under the “day” scenario, accounting for 81.7%,
while the images collected under the “night” scenario and “fog” scenario only account for
8.2% and 10.1% respectively, resulting in a great reduction in the generalization ability of
the trained model. Moreover, Figure 7 shows that cartons of different sizes are densely
stacked and suffer from poor boundary discrimination, which severely affects the detection
precision of cartons. Therefore, during the experiments, the carton dataset was split into
a training set of 850 images and a testing set of 150 images, and the training set was
augmented using the methods described in Sections 3.1 and 3.2.



Sensors 2024, 24, 12 10 of 17
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Figure 6. Samples of multiple-scenarios dataset.

Table 1. Distribution of the carton dataset.

Scenario Carton Dataset Training Set Testing Set

“day” 817 (81.7%) 694 123
“night” 82 (8.2%) 70 12
“fog” 101 (10.1%) 86 15
ALL 1000 850 150
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Evaluation metric Same as in Section 3.3, four typical evaluation metrics are employed:
the precision Pr, the recall Re, the average precision AP when the IoU threshold is equal to
0.5 (denoted as AP@0.5) and the AP, which averages AP across the different values of IoU
thresholds from 0.5 to 0.95 with a step size of 0.05.

4.2. Adaptive Complementary Augmentation

Before performing augmentation for the training set, the imaging parameters were first
calculated based on the multiple-scenarios dataset. The distribution of imaging parameters
of each image in multiple scenarios is shown in Figure 8.
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Figure 8. Distribution of imaging parameters.

Figure 8 shows that the imaging parameters are obviously differentiated for different
scenarios. Therefore, the average value of the imaging parameters in each scenario was
taken to represent the imaging parameters in this scenario as follows.

P̄day = (0.562, 409.447, 39.678)

P̄night = (0.274, 254.860, 46.044)

P̄ f og = (0.536, 195.848, 16.624)

(15)

Then, the imaging parameters of each image in the training set were calculated,
based on which the images were classified into their corresponding scenarios. Then,
following the adaptive complementary augmentation approach in Section 3.1, the imaging
parameters of each image in the original training set were adjusted to those representing
other scenarios. Further, two perspective augmentation methods were randomly selected
from the translation, rotation and shear with two random conversion amplitudes. In this
way, new images were generated as shown in Figure 9 and the training set was augmented.

Finally, the precision of the trained models based on the original training set and the
augmented training set are compared in Figure 10. It can be seen that the adaptive com-
plementary augmentation approach can effectively improve the model average precision
AP@0.5 by 8.99% from the original 0.701 to 0.764.
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Figure 9. Samples of augmented images in training set.

Figure 10. Precision–recall curve based on the original training set (Baseline) and the adaptive
complementary augmented training set (ComAug).

4.3. Stochastic Synthesis

When using a model trained on a dataset without the synthesized images for detection,
multiple cartons are easily identified as one due to the poor boundary discrimination of
dense cartons, as shown in Figure 11a,c.
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Figure 11. False detection of carton stack.

Therefore, the stochastic synthesis method in Section 3.2 was employed, and some
of the stochastic-synthesized images are shown in Figure 12. The synthesized images
enhanced the detection capability of the newly trained model on dense cartons, as shown in
Figure 11b,d. It can be seen that, after the introduction of stochastic synthesis, cartons with
indistinguishable boundaries can be detected separately, and previously undetectable ones
can also be detected. At the same time, the detection box of each carton is more accurate
due to the enhanced boundary features. Thus, the model average precision AP@0.5 is
further improved by 3.80%, from 0.764 to 0.793.

Figure 12. Some of the stochastic-synthesized images.

4.4. Hyperparameters Optimization

Since model hyperparameters have an important impact on the precision of the trained
model, it is necessary to perform a hyperparameters optimization process. However, due to
the large expansion of the training set by the augmentation approaches proposed in this pa-
per, even a single training procedure takes a long time. The hyperparameters optimization
process based on the conventional GA can be time-consuming and requires a large number
of iterations. Therefore, the modified GA in Section 3.3 is used to reduce the number of
training iterations and significantly shorten the hyperparameters optimization time.

With the FN = max(fn) in Equation (11) as the simplified evaluation of the trained
model, Figure 13 shows the variation trend of fn during hyperparameters optimization
when conventional and modified GAs are adopted. We observed that the hyperparameters
optimization process based on the modified GA requires fewer iterations, resulting in an
8.9% reduction in time consumption.
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Figure 13. Hyperparameters optimization process based on conventional and modified GA.

4.5. Analysis of Carton Detection Precision

To illustrate the effectiveness of the proposed approach, an intelligent cargo handling
system has been designed as described in Figure 14. The evaluation metrics for the trained
models of the proposed approach have been calculated using the images collected during
the actual cargo handling process, and the comparison results among the alternative
approaches are presented in Figure 15 and Table 2.

high density

different scales

random placement

camera

manual auxiliary cab

carton stack

vacuum sucker

collecting basket

remote controller

Figure 14. Intelligent cargo handling system.

Figure 15. Precision–recall curve of carton detection.
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Table 2. Metrics comparison of trained models.

Approaches Pr Re AP AP

baseline 0.715 0.657 0.701 0.430
cut-and-paste [28] 0.732 0.714 0.784 0.460
rand augment [25] 0.741 0.719 0.793 0.493
proposed approach 0.775 0.773 0.828 0.521

It can be seen that, with the introduction of the approach proposed in this paper, the
precision, recall and other metrics of the trained model are greatly improved, and the
average precision is increased by 18.1% from the initial 0.701 to 0.828, providing a good
guarantee for the carton detection in the cargo handling process.

5. Discussion

The proposed method enables the automatic augmentation and balancing of images
collected in various scenarios. Figure 7 illustrates the obtained images in different scenarios.
As can be seen from Figure 7, the parameters of the images, such as brightness, satura-
tion and contrast, vary considerably in different scenarios, as demonstrated in Figure 8.
Through clustering analysis, the imaging parameters in each scenario are represented by
the mean values of parameters such as brightness, saturation and contrast, which are used
to guide the augmentation process of the collected images in each scenario, thus increas-
ing the scale of the original dataset from 1000 to 3000, as shown in Figure 9. Figure 10
proves that the precision of the trained model on the augmented dataset is significantly
improved compared to the baseline. However, the detection precision of dense boundaries
still needs to be improved, as shown in Figure 11a,c. Thus, the boundary feature stochastic
synthesis strategy is adopted to further augment the dataset scale from 3000 to 4000, which
significantly improves the detection ability of the trained model, as shown in Figure 11b,d.
To address the problem of decreasing training efficiency due to the large number of aug-
mented datasets, Figure 13 demonstrates the effect of the modified GA. Compared to the
traditional GA, the number of training iterations is reduced from 269 to 246, saving nearly
8.5%. Finally, Figure 15 compares the detection precision of the baseline, cut-and-paste,
rand augment and the proposed method in the actual cargo handling process. As shown in
Figure 15, the proposed method performs significantly better when compared to the other
methods and the baseline, achieving a precision of 0.828 and an improvement from 4.4%
to 18.1%.

In summary, we believe that our study contributes significantly to the recognition
of dense objects in complex environments due to the simultaneous consideration of the
complexity of the scenario, the poor boundary discrimination of the objects and the opti-
mization of the model hyperparameters. The proposed adaptive augmentation method can
balance the dataset, making the performance of the trained model better and more stable
in each scenario. Meanwhile, the proposed stochastic synthesis method can overcome
the effect of dense boundaries and improve the recognition precision. Moreover, with the
proposed hyperparameter optimization method, the effect of the augmented dataset on the
training speed is eliminated and the training efficiency is improved.

However, the proposed method still suffers from some shortcomings. In the actual
cargo handling process, it is found that the proposed method has a significant effect on
the detection precision for images collected in “night” and “fog” scenarios, but it is almost
ineffective for images collected in the “day” scenario. The reason is that the images from the
“day” scenario make up the majority of the original dataset; however, high quality datasets
should be balanced. The method in this paper focuses on the balanced augmentation of
datasets and is therefore beneficial for scenarios other than “day”. From a generalization
point of view, for round-the-clock target detection efforts, there will be an inevitable
imbalance in the dataset. Therefore, the method in this paper still has an important role
and significance.
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6. Conclusions

Carton detection is crucial for unattended intelligent cargo handling to achieve effi-
cient port operations and reduce the virus transmission rate. However, cargo handling
scenarios are diverse, and the carton stacks are characterized by high densities with indistin-
guishable boundaries. Therefore, this paper proposes a novel data augmentation approach
to achieve a high detection precision, which takes into account the interferences of multiple
scenarios and indistinguishable target boundaries. First, the distribution law of the imaging
parameters in multiple scenarios is investigated, and the imaging parameters of each image
in the training set are adjusted to those of the complementary scenario of that image, thus
enabling adaptive augmentation of complementary scenarios. Then, the images in the
training set are stochastically selected, cropped and synthesized to enhance the carton
boundary features. Finally, the hyperparameters are also optimized through a modified
GA to further improve the precision of the trained model. With the proposed approach, the
trained model achieves a large improvement in average precision from 0.701 to 0.828 in the
actual cargo detection process. Comparisons with other data augmentation methods are
also performed to demonstrate the better performance of the proposed approach.
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