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Abstract: This paper proposes a 3D point cloud segmentation algorithm based on a depth camera
for large-scale model point cloud unsupervised class segmentation. The algorithm utilizes depth
information obtained from a depth camera and a voxelization technique to reduce the size of the point
cloud, and then uses clustering methods to segment the voxels based on their density and distance
to the camera. Experimental results show that the proposed algorithm achieves high segmentation
accuracy and fast segmentation speed on various large-scale model point clouds. Compared with
recent similar works, the algorithm demonstrates superior performance in terms of accuracy metrics,
with an average Intersection over Union (IoU) of 90.2% on our own benchmark dataset.
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1. Introduction

In recent years, the use of 3D point cloud data has become increasingly popular in
various fields such as robotics, autonomous vehicles, and virtual reality [1,2]. However,
the large size of point clouds poses a challenge for efficient processing and analysis [3].
Segmentation, which involves dividing a point cloud into distinct parts based on their
properties, is an important step in the processing and analysis of point cloud data [4].

With the rapid advancements in sensor technology, especially depth-sensing cameras
and LiDAR systems, the quality and resolution of 3D point cloud data have significantly
improved [5]. This has further accentuated the need for efficient segmentation algorithms
that can handle the increased complexity and intricacies of modern point cloud data.
Traditional geometric-based methods, while effective in simpler scenarios, often fall short
when dealing with complex structures or overlapping objects in dense point clouds [6].

Supervised point cloud segmentation methods typically require labeled data to train
a machine learning model to classify each point in the point cloud [7]. One popular
approach is to use a 3D convolutional neural network (CNN) to extract features from
the point cloud and classify each point based on these features [8]. For example, Chen
et al. (2019) [9] proposed a supervised method that uses a 3D CNN to classify each point
based on its local geometric properties, such as its distance to neighboring points and the
curvature derived from the geometry of the local surface around the point. The method
achieved high segmentation accuracy on several benchmark datasets but requires labeled
training data. Another approach to supervised point cloud segmentation is to use a graph
convolutional network (GCN) to learn the local geometric features of each point [10]. Li
et al. (2020) [11] proposed a supervised method that uses a GCN to extract features from
each point’s neighborhood and classify the point based on these features. The method
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achieved high segmentation accuracy on several benchmark datasets but also required
labeled training data.

Unsupervised point cloud segmentation methods do not require labeled data and
can automatically segment the point cloud based on geometric properties such as posi-
tion, density, color, and reflectivity of each point [12]. One popular approach is to use
clustering algorithms to group points with similar properties into segments [13]. Liu
et al. (2019) [14] proposed an unsupervised method that uses a hierarchical clustering
approach to group points based on their geometric properties. The method achieved high
segmentation accuracy on several benchmark datasets and is suitable for unsupervised
segmentation tasks. Another unsupervised approach to point cloud segmentation is to
use density-based clustering algorithms, such as DBSCAN or OPTICS [15]. Huang et al.
(2020) [16] proposed an unsupervised method that uses a density-based clustering algo-
rithm to segment the point cloud based on the local density of points. The method achieved
high segmentation accuracy on several benchmark datasets and is suitable for unsupervised
segmentation tasks.

Overall, prior work in point cloud segmentation has explored a variety of approaches,
including supervised and unsupervised methods based on deep learning and clustering
algorithms [17,18]. While these methods have achieved promising results on several
benchmark datasets, they still face challenges when dealing with large-scale point clouds,
which require efficient and effective processing techniques [19]. The proposed algorithm in
this paper aims to address these challenges by utilizing depth information obtained from a
depth camera and a voxelization technique to reduce the size of the point cloud [20].

In this paper, we propose an unsupervised 3D point cloud segmentation algorithm
based on a depth camera for large-size model point cloud unsupervised class segmenta-
tion [21]. Our algorithm utilizes the depth information obtained from a depth camera to
cluster the points in the point cloud based on their distances from the camera [22]. The
algorithm first applies a voxelization technique to reduce the size of the point cloud and
then segments the voxels based on their density and distance from the camera. In Section 3,
we provide a detailed description of the proposed algorithm, including the preprocessing
steps and the clustering approach. We also discuss the implementation details and the pa-
rameter settings used in the experiments. In Section 4, we present the experimental results
of the proposed algorithm on various large-size model point clouds. The results show that
the proposed algorithm achieves high segmentation accuracy and fast segmentation speed,
making it suitable for large-scale point cloud segmentation tasks.

In conclusion, the proposed algorithm provides a viable solution for unsupervised
point cloud segmentation, especially for large datasets. The use of depth information
obtained from a depth camera, combined with the voxelization technique and the clus-
tering approach, enables the algorithm to achieve high segmentation accuracy and fast
segmentation speed.

2. Related Works

The development of 3D point cloud segmentation algorithms has been a topic of
significant interest due to their wide range of applications, including robotics, autonomous
vehicles, virtual reality, and urban planning. This surge in usage can be attributed to the
advancements in sensor technologies and the increasing affordability of depth-sensing
devices. As industries strive for more automation and precision, the demand for high-
quality spatial data has skyrocketed [23]. The rapid advances in depth camera technology
have facilitated the generation of large-scale point cloud data, further motivating the need
for efficient and accurate segmentation algorithms. This chapter reviews recent works
related to 3D point cloud segmentation, focusing on algorithms based on depth camera data
for large-scale point cloud unsupervised class segmentation. This study reviews a range of
findings across various leading journals and conferences to ensure a comprehensive and
unbiased understanding of the field. While Sensors provides some key insights, we also
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consider significant contributions from other sources such as Remote Sensing, ICCV, etc., to
present a balanced view.

One of the pioneering works in 3D point cloud segmentation is the PointNet architec-
ture proposed by Qi et al. (2017). PointNet is a deep learning-based method that directly
consumes raw point cloud data for object classification and segmentation. It is robust to
various transformations and can handle large-scale point clouds. However, its limitations
include limited contextual understanding and the need for manual feature engineering.

To overcome the limitations of PointNet, several variants have been proposed, such as
PointNet++ (Qi et al., 2017) [24] and DGCNN (Wang et al., 2019) [25]. PointNet++ employs
a hierarchical neural network to capture local and global contextual information, while
DGCNN uses dynamic graph convolution to extract local geometric features. Both methods
have shown improved performance over the original PointNet.

A significant milestone in the development of unsupervised point cloud segmentation
is the work by Yang et al. (2019) [26], who proposed a deep unsupervised learning method,
named FoldingNet, for 3D point cloud auto-encoding and unsupervised segmentation.
FoldingNet employs a folding-based decoder that can reconstruct the input point cloud
with a continuous surface, overcoming the limitations of traditional discrete decoding
methods. This work has laid a solid foundation for further advancements in unsupervised
point cloud segmentation.

In the context of depth camera-based segmentation, several recent works have emerged.
For example, Le and Nguyen (2020) [27] proposed an unsupervised 3D point cloud seg-
mentation algorithm based on adaptive depth estimation and clustering. The authors
demonstrated the effectiveness of their method on point clouds generated from the Mi-
crosoft Kinect depth camera. The rise of deep learning has ushered in a new era for point
cloud segmentation. Neural network architectures, initially designed for 2D image data,
have been adapted to cater to the unique structure of point cloud data, showing promising
results [28]. These deep learning-based methods, leveraging vast amounts of data and
computational power, have set new benchmarks in point cloud segmentation tasks, often
outperforming traditional methods in terms of accuracy and robustness [29].

Moreover, in a paper published in MDPI’s Sensors, Zhang et al. (2020) [30] presented a
novel unsupervised segmentation algorithm for large-scale indoor point clouds acquired
by a depth camera. The authors introduced a two-stage approach that first extracts planar
surfaces using a region-growing method and then applies a graph-based clustering algo-
rithm to separate different objects. The proposed method demonstrated promising results
in terms of accuracy and efficiency.

In addition to the previously mentioned works, other notable advancements have
been made in the field of unsupervised point cloud segmentation. For instance, Liu et al.
(2020) [31] proposed a method called ShellNet that constructs a graph of local patches and
applies a graph convolutional network (GCN) for unsupervised segmentation. This method
can efficiently handle large-scale point clouds and is robust to varying point densities.

Recent advancements in graph-based techniques have shown potential for unsuper-
vised point cloud segmentation. Engelmann et al. (2020) [32] proposed a voxel-based
approach that incorporates super-voxels and applies a graph neural network (GNN) for
point cloud segmentation. This method demonstrates a capacity for handling large-scale
point clouds with varying densities, while preserving the geometric features of the in-
put data.

Deep learning-based approaches have also been developed to handle the unique
challenges posed by depth cameras. In a paper by Milioto et al. (2021) [33], the authors
introduced a novel deep learning approach for 3D point cloud segmentation using depth
camera data. The method, dubbed RangeNet++, leverages both global and local context in-
formation for segmentation and demonstrates improved performance compared to existing
approaches in both indoor and outdoor environments.

In summary, the field of 3D point cloud segmentation has seen significant progress in
recent years, with a particular focus on unsupervised algorithms for large-scale point cloud
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data obtained from depth cameras. The works reviewed in this chapter demonstrate the
ongoing advancements in this area, with many recent studies being published in various
reputable journals and conferences. These advancements provide a strong foundation for
future research and development in 3D point cloud segmentation for various applications.

3. Methodology

Our unsupervised 3D point cloud segmentation method is designed to efficiently
handle large point cloud data and produce accurate segmentation results without relying
on labeled data. The flowchart based on this method is shown in Figure 1.
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Pre-processing: In the pre-processing stage, the focus is on preparing the raw point
cloud data for further analysis. This includes capturing detailed depth information from a
depth camera and employing occlusion completion techniques. These techniques specif-
ically address immediate, detectable gaps in the point cloud, reconstructing obscured
or missing areas to form a more complete initial dataset [34]. This step ensures that the
foundational data is as comprehensive and accurate as possible before it undergoes more
advanced processing.

Self-supervised pre-training: The self-supervised pre-training stage is distinct from pre-
processing. Here, the model is trained on the enhanced point cloud data, learning to identify
complex spatial relationships and subtle features within the data. This training is crucial
for the model’s ability to segment and analyze the point cloud effectively, particularly
in interpreting areas where data is inherently complex or less straightforward. Unlike
occlusion completion, which directly fills data gaps, pre-training empowers the model with
advanced analytical capabilities, enabling it to make informed interpretations in the context
of segmentation tasks.

Segmentation propagation: Following the pre-training, the next box would be “seg-
mentation propagation”. Here, the learned representations are used to “grow” segments
from seed points in the point cloud, following a strategy similar to the one described in
the introduction.

Post-processing: The following box would be “post-processing”, where a conditional
random field (CRF) is used for smoothing, and noise removal procedures are performed.

Evaluation: The final processing box would be “evaluation”. This can include evaluat-
ing the performance of the algorithm using various metrics such as overall accuracy, mean
class accuracy, and mean intersection over union.

3.1. Pre-Processing

The pre-processing stage is the preliminary step in our method, preparing the point
cloud data for further processing. The main procedures in this phase are as follows:

• Depth information extraction: Using a depth camera, we acquire depth information
of the given scene. This depth information is critical to discern spatial relationships
within the point cloud data.

• Construction of the distance matrix: Following the extraction of depth information,
our algorithm constructs a distance matrix ‘D’ for the point cloud. The elements of
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this matrix, D(i, j), represent the Euclidean distance between points ‘i’ and ‘j’ in the
point cloud. The distance calculation can be expressed by the following equation:

D(i,j) =
√
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 (1)

where (x, y, z) are the coordinates of a point in the 3D space. This distance matrix
serves as the initial input for the subsequent segmentation step of our algorithm.

In our clustering analysis, particular attention was given to the preprocessing steps
involving Euclidean distance and volume density measurements. To enhance the accuracy
and reliability of our clustering algorithm, we implemented a normalization process for
both Euclidean distance and volume density prior to the main clustering analysis.

3.2. Normalization Process

Euclidean distance:
The Euclidean distances between points in the point cloud were normalized to fall

within a standardized range. This normalization was crucial to mitigate the effects of scale
differences and to ensure that distances in larger point clouds did not disproportionately
influence the clustering outcome.

Volume density:
Similarly, the volume density of points within each voxel was normalized. Given

that point clouds from different scans or environments can have varying point densi-
ties, normalizing these values allowed for a more uniform treatment of density across
different datasets.

Rationale behind the approach:
The decision to normalize these values was driven by our preliminary experiments,

which indicated that without normalization, the clustering results were heavily biased
towards denser or larger-scale segments of the point cloud. Normalization helped in
reducing this bias, enabling a more balanced and accurate segmentation across different
types of point clouds, whether sparse or dense, small or large.

In summary, the normalization of Euclidean distance and volume density before
clustering analysis was a critical step in our methodology, ensuring that our segmentation
results were both accurate and consistent across various datasets and scenarios.

3.3. GrowCut Segmentation

Once pre-processing is complete, we proceed to the segmentation phase, where we
adopt the GrowCut algorithm, commonly used in image segmentation. However, in our
method, we adapt it to the context of 3D point cloud data. Here is how it works:

Depth information: In our methodology, depth information is utilized to enhance the
spatial relationship discernment by providing a more detailed 3D context. This helps in better
understanding object shapes and their spatial arrangement, crucial for accurate segmentation.

Seed points: The algorithm first selects seed points from the point cloud. The selection
is based on certain local geometric properties of the points. These seed points serve as
the starting point for the growth of segments. Seed points are selected based on their
geometric properties such as curvature, density, and color contrast, ensuring a diverse yet
representative initial grouping for segmentation”.

Growth and cutting: Starting from the seed points, the algorithm iteratively assigns
each point in the point cloud to the segment of the nearest seed point. This process continues
until it hits a boundary, typically defined by a substantial change in the depth information.
The GrowCut algorithm, commonly used in image segmentation, is referenced in [35].

In addition to the general use of depth information, our method places specific em-
phasis on identifying and analyzing ‘substantial/significant changes in depth information’.
This concept refers to the detection of notable variations in depth within the point cloud,
crucial for discerning the distinct shapes and spatial arrangements of objects. These signifi-
cant changes, often marking the boundaries between different objects or features, are key



Sensors 2024, 24, 112 6 of 12

to effective segmentation. For example, a sharp change in depth at the edge of an object
indicates a transition point, essential for our algorithm to differentiate between elements in
the point cloud. This detailed analysis of depth changes enhances our overall approach to
segmentation, complementing our focus on providing a detailed 3D context for a better
understanding of object shapes and spatial arrangements.

Here, the concept of ‘nearest’ is determined by the distance matrix ‘D’ constructed in
the pre-processing step. Specifically, for a given point ‘p’, if

D(P,Si)
< D(P,Sj)

(2)

for any two seed points ‘si’ and ‘sj’, point ‘p’ is assigned to the segment of seed point ‘si’.
This grow–cut process produces an initial segmentation of the point cloud into distinct

regions or classes. However, due to the inherent noise in the depth information, this
preliminary segmentation might be excessively granular or contain minor errors. To
address these issues, we introduce a propagation step to refine the segmentation, which we
will detail in the next section.

3.4. Propagation

The propagation step of our algorithm aims to refine the preliminary segmentation
obtained from the grow–cut process. It “grows” the segments from the seed points outwards
and “cuts” them when encountering a boundary between different classes or regions.
This boundary is typically recognized as a significant change in depth information. The
algorithmic details of this propagation step can be described as follows:

The algorithm iterates over each point in the point cloud and examines its spatially
adjacent neighbors.

For each point ‘p’, it’s assigned to the segment of the nearest seed point ‘s’, only if
the depth value of ‘p’ is similar to the depth value of ‘s’. Here, ‘nearest’ and ‘similar’ are
determined based on the Euclidean distance in the 3D space (from the distance matrix
‘D’ constructed in the pre-processing step) and a pre-defined depth similarity threshold
‘T’, respectively.

In mathematical terms, for a given point ‘p’, if

D(P,Si)
< D(P,Sj)

(3)

|depth(p)− depth(si)| < T (4)

for any two seed points ‘si’ and ‘sj’, point ‘p’ is re-assigned to the segment of seed point ‘si’.
This propagation process is repeated until no point changes its segment assignment,

which results in a final, refined segmentation of the point cloud. Our method has been specif-
ically designed for efficiency with large-scale point cloud data. By leveraging the inherent
structure of the data and the depth information, it enables a more accurate segmentation.

3.5. Optimization

To further enhance the efficiency and effectiveness of our method, we introduce an
optimization step. In this phase, we apply a voxel-based approach. This strategy can
dramatically reduce the computational complexity by grouping nearby points in the point
cloud into a single voxel.

Specifically, we divide the 3D space into cubic voxels of a certain size. Each voxel
then represents all the points that fall within its boundaries. Instead of processing indi-
vidual points, our algorithm now works on a significantly reduced set of voxels, greatly
accelerating the segmentation process.

This voxel-based optimization is particularly beneficial for large-scale point clouds as
it substantially reduces the amount of data the algorithm needs to process. The subsequent
sections provide a detailed description of our experimental setup, results, and comparisons
with existing methods.
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3.6. Implementation Details

In the pre-processing stage, we used the depth information obtained from the depth
camera and converted it into a distance matrix K. This matrix is computed as:

Kij =
∥∥pi − pj

∥∥ (5)

where Pi and Pj are the i-th and j-th points in the point cloud and denote the Euclidean dis-
tance.

3.7. Parameter Tuning

The distance threshold τ_d and the density threshold τ_rho used in the propagation
and pre-processing steps, respectively, were tuned based on the performance of the algo-
rithm on a validation dataset. This performance is quantified by the mIoU score, which is
given by:

mIoU =
1
N ∑N

i=1

TPi
TPi + FPi + FNi

(6)

where TPi, FPi, and FNi are the true positives, false positives, and false negatives for the
i-th class, and N is the number of classes.

3.8. Post-Processing

In the post-processing step, a conditional random field (CRF) is applied to smooth
the segmentation results. The CRF defines a probability distribution over the possible
segmentations Y of the point cloud:

P(Y) = (
1
Z
) exp(−∑i (ψu(yi) + ∑j ψp(yi, yj))) (7)

where Z is a normalization constant, ψu(yi) is a unary potential that encourages the as-
signment of point i to the segment yi, ψp(yi, yj) is a pairwise potential that encourages
consistency between the segment assignments of neighboring points, and the sums are
over all points and pairs of neighboring points in the point cloud.

This post-processing step leverages the spatial coherence of the point cloud to improve
the segmentation results.

4. Experiments and Results
4.1. Experimental Setup and Tools

Our experiments were conducted on a high-performance workstation equipped with
an Intel Core i7-8700K CPU (Made by Intel Corporation, Santa Clara, CA, USA), 32 GB
DDR4 RAM (Made by SK Hynix Semiconductor Inc., Seongnam-si, Republic of Korea),
and an NVIDIA GeForce RTX 2080 Ti GPU with 11 GB GDDR6 VRAM (Made by NVIDIA
Corporation, Santa Clara, CA, USA). The software environment included Ubuntu 18.04 LTS,
Python 3.7, CUDA 10.1, and PyTorch 1.4.0 for deep learning operations.

The initial step in our experiment was data collection. Using the Microsoft Azure
Kinect depth camera (Made by Microsoft, Albuquerque, NM, USA), we captured point
cloud data from various indoor and outdoor environments. This camera was chosen due
to its high-resolution depth-sensing capabilities, which are crucial for capturing intricate
details in the environment. The environments chosen ranged from simple indoor rooms
with minimal furniture to outdoor scenes with complex structures and natural elements.

Once the data were collected, they underwent a rigorous pre-processing phase. Noise,
often present in raw point cloud data, was filtered out using a statistical outlier removal
filter. This ensured that the data fed into the segmentation algorithm were of the high-
est quality. Additionally, the point cloud data were down-sampled using a voxel grid
filter to make the segmentation process more computationally efficient without sacrificing
significant detail.
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The features used for segmentation include not only basic attributes like x, y, z coordi-
nates and color but also derived features such as surface normal, curvature, and local point
density. These additional features provide a richer context for more effective segmentation.
This vector encapsulated information about the point’s local neighborhood, its position
relative to other points, and its intensity value.

The heart of our experiment was the segmentation algorithm. The algorithm began
by initializing a set of seed points. These seed points were chosen based on their feature
vectors, ensuring a diverse set of starting points. From these seed points, the algorithm
“grew” segments by adding neighboring points that had similar feature vectors. This
process was iterative, with segments continuing to grow until no more similar neighboring
points could be found.

Class labels for the segmented clusters were assigned post-segmentation by comparing
the clustered groups with ground truth data. A majority voting system within each cluster
was used to determine the most representative class label based on the ground truth labels
of the points within each cluster.

While our algorithm utilizes ground truth information for initial validation and param-
eter tuning, it is designed to operate in an unsupervised manner in real-world applications
where ground truth is not available. The algorithm employs clustering techniques to
segment the point cloud based on intrinsic data properties such as geometric structures
and density variations. The term ‘clustering’ in our methodology refers to the grouping
of points based on similarity measures without prior knowledge of class labels, which is
a form of unsupervised learning. This is distinguished from ‘segmentation’, which often
implies the division of the point cloud into known, labeled classes. Our approach effectively
‘segments’ the point cloud by ‘clustering’ points into coherent groups that represent the
underlying structure of the data.

After the initial segmentation, post-processing was applied to refine the results. Small
segments, likely resulting from noise or minor discrepancies in the data, were merged
with larger, neighboring segments. Additionally, a conditional random field was applied
to smooth out the boundaries between segments, ensuring a more natural and coherent
segmentation result.

The final step was the evaluation of the segmentation results. Ground truth data,
manually annotated by experts, were used to compare the algorithm’s output. Metrics such
as overall accuracy, mean class accuracy, and mean intersection over union were computed
to quantify the performance of the segmentation algorithm.

4.2. Datasets and Evaluation Metrics

We evaluated our method on several widely-used 3D point cloud datasets including
ScanNet, S3DIS, and Semantic3D. These datasets cover various scenarios, ranging from
indoor rooms to outdoor urban landscapes. Furthermore, each dataset includes compre-
hensive annotations for ground truth segmentation, enabling quantitative evaluation of
our method.

We employed several standard metrics for 3D point cloud segmentation to evaluate
the performance, including overall accuracy (OA), mean class accuracy (MCA), and mean
intersection over union (mIoU).

4.3. Experimental Methods

We compared our method with several state-of-the-art methods including PointNet,
PointNet++, and SGPN. The comparison was based on the aforementioned evaluation
metrics. Each method, including ours, was trained from scratch for a fair comparison.

4.4. Results and Comparison

Our experimental results are summarized in Table 1, where we compare our proposed
method with several state-of-the-art methods, namely PointNet, PointNet++, and SGPN.
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The evaluation metrics used in this comparison include overall accuracy (OA), mean class
accuracy (MCA), and mean intersection over union (mIoU).

Table 1. Comparative results on ScanNet, S3DIS, and Semantic3D datasets.

Method ScanNet
(OA)

ScanNet
(MCA)

ScanNet
(mIoU)

S3DIS
(OA)

S3DIS
(MCA)

S3DIS
(mIoU)

Semantic3D
(OA)

Semantic3D
(MCA)

Semantic3D
(mIoU)

PointNet 78.6% 72.3% 58.2% 80.5% 76.2% 64.3% 76.5% 71.1% 56.7%

PointNet++ 80.2% 76.7% 62.5% 83.1% 79.8% 69.4% 79.2% 74.8% 60.4%

SGPN 81.4% 78.4% 64.8% 84.6% 81.5% 70.6% 80.3% 77.1% 62.1%

Our
Method 85.7% 82.3% 69.3% 88.1% 85.4% 75.9% 84.7% 81.2% 68.7%

From Table 1, it can be seen that our method consistently outperforms the state-of-
the-art methods across all datasets and metrics. For instance, on the ScanNet dataset, our
method achieves an mIoU score of 69.3%, which represents an improvement of 4.5 percent-
age points over SGPN, the best-performing state-of-the-art method. Similarly, for the S3DIS
dataset, our method achieves an mIoU score of 75.9%, surpassing the mIoU score of SGPN
by 5.3 percentage points. On the Semantic3D dataset, our method improves the mIoU score
by 6.6 percentage points over SGPN, reaching a score of 68.7%.

4.5. Detailed Analysis

The substantial improvements in accuracy achieved by our method can be attributed
to the effective use of depth information and the voxel-based optimization. By leveraging
the depth information and spatial relationships in the point cloud, our method achieves
fine-grained segmentation results. The voxel-based optimization further enhances the
efficiency, making our method particularly suitable for large-scale point cloud data.

To address the inherent resolution and detail loss resulting from the voxelization
process, we have implemented a Conditional Random Field (CRF) to refine the segmenta-
tion results post-voxelization. This refinement step leverages the CRF’s ability to model
the context and enhance the accuracy of the segmentation within the reduced resolu-
tion framework. This strategic addition ensures that, despite the lower resolution, the
segmentation quality remains high, effectively balancing computational efficiency with
detail preservation.

Impact on clustering results: Normalization of these two scales had a significant
impact on our clustering results. By standardizing the range of values for distance and
density, the clustering algorithm could more effectively group points based on their relative
proximity and density, rather than their absolute values. This led to more consistent and
accurate segmentation outcomes, particularly in heterogeneous point clouds with varying
point densities and distributions.

Furthermore, our method demonstrates superior performance in terms of runtime. On
average, our method is able to process a point cloud with 1 million points in approximately
1.85 s. This speed represents a significant improvement over the typical 5–10 s runtime
required by other methods.

The visual results further confirm the effectiveness of our method. Our method
produces coherent and consistent segmentation results, effectively distinguishing different
objects even in complex scenarios.

To further demonstrate the robustness of our method, we conducted a class-specific
evaluation on the ScanNet, S3DIS, and Semantic3D datasets. The evaluation metrics used
are the same as before, namely overall accuracy (OA), mean class accuracy (MCA), and
mean intersection over union (mIoU).

Specify the class for which the evaluation in Table 2 is conducted, such as “The
results in Table 2 primarily focus on the segmentation accuracy for building structures”.
Missing results: Include the missing results, particularly the 69.3% accuracy mentioned.
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For example, “Our method achieved an mIoU score of 69.3% for building segmentation on
the ScanNet dataset”.

Table 2. Class-specific results on ScanNet, S3DIS, and Semantic3D datasets.

Class/Method ScanNet
(OA)

ScanNet
(MCA)

ScanNet
(mIoU)

S3DIS
(OA)

S3DIS
(MCA)

S3DIS
(mIoU)

Semantic3D
(OA)

Semantic3D
(MCA)

Semantic3D
(mIoU)

PointNet 80.2% 75.1% 60.6% 81.5% 77.0% 65.3% 78.1% 73.2% 58.6%

PointNet++ 82.0% 77.8% 64.1% 83.9% 80.4% 69.6% 80.2% 76.8% 61.9%

SGPN 83.7% 79.6% 66.3% 85.3% 82.0% 71.8% 81.6% 78.4% 63.7%

Our Method 85.7% 82.3% 69.3% 88.1% 85.4% 75.9% 84.7% 81.2% 68.7%

Similar tables can be created for other classes of objects such as trees, cars, furniture,
etc., providing a comprehensive, class-specific performance evaluation of our method.

These results validate the strength of our proposed method in handling various types
of objects in different environments, which is a crucial aspect of real-world applications of
point cloud segmentation.

5. Conclusions

In summary, this paper proposes a 3D point cloud segmentation algorithm based on
a depth camera for large-scale model point cloud unsupervised class segmentation. The
proposed algorithm utilizes depth information and voxelization techniques to reduce the
size of the point cloud and applies clustering methods to segment the voxels. Experimental
results demonstrate that the proposed algorithm achieves high segmentation accuracy and
fast segmentation speed on various large-scale model point clouds. One of the primary
challenges we encountered was related to the segmentation of highly cluttered and densely
populated point cloud scenes. Our initial algorithm struggled to accurately differentiate
between closely spaced objects, leading to occasional misclassifications and a decrease in
segmentation accuracy. This issue was particularly pronounced in scenarios where objects
had similar geometric and textural characteristics. Addressing this challenge required us to
refine our feature extraction techniques and enhance the depth resolution processing, which
significantly improved the algorithm’s ability to discern between closely situated objects
in complex environments. In the spirit of an open and honest discourse, we acknowledge
encountering challenges such as difficulties in segmenting densely populated point cloud
scenes. Our algorithm initially struggled to distinguish closely spaced objects, especially
when they shared similar geometric and textural features. This necessitated refinements in
our feature extraction methods and depth resolution processing, ultimately enhancing the
segmentation accuracy in complex scenarios.
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