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Abstract: Ship collision avoidance is a complex process that is influenced by numerous factors. In
this study, we propose a novel method called the Optimal Collision Avoidance Point (OCAP) for
unmanned surface vehicles (USVs) to determine when to take appropriate actions to avoid collisions.
The approach combines a model that accounts for the two degrees of freedom in USV dynamics
with a velocity obstacle method for obstacle detection and avoidance. The method calculates the
change in the USV’s navigation state based on the critical condition of collision avoidance. First,
the coordinates of the optimal collision avoidance point in the current ship encounter state are
calculated based on the relative velocities and kinematic parameters of the USV and obstacles. Then,
the increments of the vessel’s linear velocity and heading angle that can reach the optimal collision
avoidance point are set as a constraint for dynamic window sampling. Finally, the algorithm evaluates
the probabilities of collision hazards for trajectories that satisfy the critical condition and uses the
resulting collision avoidance probability value as a criterion for course assessment. The resulting
collision avoidance algorithm is optimized for USV maneuverability and is capable of handling
multiple moving obstacles in real-time. Experimental results show that the OCAP algorithm has
higher and more robust path-finding efficiency than the other two algorithms when the dynamic
obstacle density is higher.

Keywords: collision avoidance; velocity obstacle method; trajectory optimization; optimal collision
avoidance point

1. Introduction

Ship collision is an imperative task for navigation safety at sea [1]. Unmanned surface
vehicles (USVs) have gained significant attention in recent years due to their potential for
various applications such as oceanographic research, environmental monitoring, and maritime
security [2]. However, the increasing use of USVs also raises concerns about the safety of
navigation, especially when operating in crowded environments [3]. Collision avoidance is
a critical issue that needs to be addressed to ensure safe and efficient navigation of USVs.
A USV’s collision avoidance algorithm can be considered a local path-planning algorithm.
This paper focuses on local path-planning methods. Many local path-planning algorithms
have been reported for collision avoidance against static and dynamic obstacles [4,5]. By now,
many obstacle avoidance algorithms have been proposed by international scholars, all of
which rely more or less on global path planning and mapping, such as a bug algorithm [6],
a vector field histogram method [7], and an artificial potential field method [8]. Many
improved heuristic algorithms have also been studied for local path planning. For instance,
a hybrid adaptive path-planning scheme based on global path planning and local dynamic
collision avoidance for unmanned surface vehicles under complex marine environments
was proposed in [9]. This method systematically considers the impact of waves and currents
on the navigation of USVs. In recent years, some scholars have emphasized the dynamic
collision avoidance of ships by incorporating methods such as reinforcement learning and
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COLREGS [10]. Based on literature statistics, 56% of the collisions at sea are caused by the
violation of COLREGS by ships [11]. However, data are difficult to collect in real time, and
it is difficult to show a model with mathematical formulas; incorporating regulations in
collision prevention algorithms is still a challenge [12]. Some scholars have tried to design
a ship navigation safety domain to solve the ship collision problem [13–15]. However,
most of them only consider static obstacles or semi-dynamic obstacles that do not change
course [16,17], a highly ideal motion model is used in collision avoidance [18], or the
balance between efficiency and effectiveness is ignored [19].

Some other researchers have evaluated collision avoidance trajectories generated
from the perspective of risk assessment [20] using multiple parameters such as navigation
risk [21], navigation smoothness, and other metrics. For instance, a review [22] described
collision risk assessment, but it neglected techniques for conflict resolution. The most
frequently used distance parameter for conflict detection and obstacle avoidance is the
distance to the closest point of approach dcpa; the time to the closest point of approach
tcpa is often used with it. It has been proposed that various techniques can be developed
to overcome the limitations of dcpa and tcpa alone for collision avoidance [23]. In [24,25],
the authors discussed ASV developments in depth, while conflict detection and obstacle
avoidance received a lesser amount of attention. Only a few studies related to reacting to
collision avoidance for unmanned ships were included in [26].

Comparing other obstacle avoidance algorithms, Fox et al. reported a dynamic window
approach (DWA) [27], which has become a popular academic research method in recent
years. It is mainly used for navigation and obstacle avoidance in a dynamic environment.
Avoiding unpredictable obstacles can better solve the DWA [28]. DWA is widely used
in dynamic obstacle avoidance path optimization of UAVs, robots, and USVs [29–31].
Dobrevski reported local path planning based on DWA and deep reinforcement learning
to improve path optimization [32]. Liu developed a global dynamic path-planning fusion
algorithm combining the jump-A* algorithm and DWA [33]. In addition, several useful
local path-planning methods based on DWA have been reported [34]. However, DWA
generates path candidates by assuming constant velocities for a certain period of time.
Due to the small distances between obstacles and USVs, unexpected collisions often occur
during encounters, which makes it challenging to fulfill the safety requirements of USVs.
However, DWA generates path candidates by assuming constant velocities for a certain
period, making it easy for it to fall into local optima [35]. In the path evaluation stage,
it relies heavily on the settings of the parameter value ranges. For example, when the
distance between an obstacle and a USV is small, accidental collisions often occur during
the encounter, which is a challenge to meeting the safety requirements of USVs. In addition,
the increased complexity of the application scenarios and environments of unmanned
devices make standard DWA unable to solve complex path-planning problems. Traditional
DWA focuses on path generation at each step of the planning process but ignores that
obstacles are also intelligent agents that generate abrupt behavior [36].

In this study, we present a novel approach to collision avoidance for USVs. While
existing methods mainly rely on static obstacle maps or simple heuristics, our approach
combines a two-degree-of-freedom model for USV dynamics with a velocity obstacle
method for obstacle detection and avoidance. This approach allows for real-time adap-
tation to dynamic and complex environments, making it particularly suitable for USVs
operating in areas with high traffic density or unpredictable obstacles. The resulting colli-
sion avoidance algorithm is optimized for USV maneuverability and is capable of handling
multiple moving obstacles simultaneously.

The contents of this paper are as follows. Section 2 describes the USV dynamic model,
the classification of encounter situations, and the basic process framework of USV collision
avoidance decision-making based on the category related to this study. Section 3 contains a
detailed description of the optimal timing point model for collision avoidance based on
the improved DWA. We propose a collision avoidance algorithm based on the velocity
obstacle method. In Section 4, the design of a dynamic obstacle avoidance algorithm for
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USVs is considered and a detailed algorithm flow and design are presented. In Section 5,
the results of computational experiments performed for the evaluation of the proposed
algorithm are presented. According to simulation experiments, we compare the effects of
three different algorithms on the collision avoidance path selection of a USV and analyze
the degree of excellence resulting from the influence of various collision avoidance factors
in path selection. Finally, in Section 6, the conclusions are discussed.

2. USV Dynamic Obstacle Avoidance Modeling
2.1. USV Dynamic Model

Figure 1 shows a schematic description of course angles, heading angles, and sideslip
angles of the USV dynamic model. In this coordinate frame, xi and yi represent north and east
directions, while υ and ν are the divisions of V on the x0- and y0-axes, respectively [37,38].

Figure 1. Schematic description of course, heading, and sideslip angles.

From Figure 1, we can see that the sideslip angle β can be calculated as β = sin−1
( υ

V

)
,

the course angle θ can be defined using the heading angle (yaw) ψ, and the sideslip angle
is θ = ψ + β [39,40]. The equations of the USV motion state can be represented as:

ẋ = V cos(ψ)
ẏ = V sin(ψ)
ψ̇ = ω

(1)

where x and y represent the position coordinates of the USV, V represents the velocity of
the USV, ψ represents the heading angle of the USV, and ω represents the angular velocity
of the USV.

The equations of the obstacle motion state can be represented as:

ẋo = vo cos(ψo)
ẏo = vo sin(ψo)

(2)

where xo and yo represent the position coordinates of the obstacle, vo represents the velocity
of the obstacle, and ψo represents the heading angle of the obstacle.

In this paper, we present a four-layered control structure in Figure 2, which consists
of context awareness, behavioral decision-making, the obstacle avoidance algorithm, and
executive control. In this study, we describe a USV marine collision avoidance strategy by
the self-discipline method, tcpa stands for the time to the closest point of approach, and dcpa
stands for the distance to the closest point of approach [41].

To support the collision avoidance of USVs in complex environments, this paper
proposes a dynamic model that takes into account factors such as the mass, velocity,
acceleration, water resistance, propulsive force, and gravitational acceleration of the USV
in order to predict the changes in the position and velocity of the USV over time.
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Figure 2. Architecture of intelligent vessels.

2.2. Recognition of Collision Avoidance Situations

The closest point of approach (CPA) is the point at which the distance between the
ship and another target object will reach its minimum value. The geometry of the distance
at CPA is illustrated in Figure 3; r is the Euclidean distance between the center points of
the two ships. The equation describing the distance between the USV and obstacles can be
represented as:

r =
√
(x− xo)

2 + (y− yo)
2

vr = v− vo − ḋ
(3)

vessel1 at 
CPA

vessel at 
CPA

v

v

vessel1 before 
CPA

v1

-v1

vr

vessel before 
CPA

𝜂 r

Figure 3. Distance at the closest point of approach.

CPA consists of two parameters: the distance at the closest point of approach (dcpa) and
the time to the closest point of approach (tcpa); αis the angle between the relative bearing of
the obstacle ship and the heading of the USV [41,42].

dcpa = r× sin(α)
tcpa = r× cos(α)/vr

(4)
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2.2.1. Safety Threshold dsa f e Establishment

In this study, we set a safety threshold dsa f e to evaluate the risk of a collision between
vessels. A crash may occur whenever dcpa falls below this safety threshold. A pathfinding
algorithm based on this criterion readjusts the parameters in the path trajectory evaluation
function when the distance at the closest point of approach (CPA) is below dsa f e, which is
given by

dsa f e = −
dcpa

r − r
ṙ× tcpa

(5)

where γ is the range between the two vessels and ṙ = −vr cos η is the range rate. Here, η
is the incident angle and vr denotes the relative velocity of the two vessels. If dcpa = 0, it
expresses that after the two ships have sailed for the tcpa period, if they do not change their
track, the two vessels will inevitably collide; dcpa > 0 indicates that the target ship passes by
the USV’s bow; dcpa < 0 indicates that the target ship passes the USV’s stern [43]. However,
the collision risk of the ship is not limited to dcpa = 0: the collision risk also considers tcpa.
A larger tcpa indicates that it will take a long time to reach the nearest encounter distance
and the degree of urgency is not high. When tcpa is small, it shows that the ship encounter
will occur immediately and the situation is more dangerous [44].

2.2.2. Collision Avoidance Urgency Identification

This paper establishes the optimal collision avoidance velocity and the latest steering
selection time for USVs based on the velocity obstacle method. At the same time, it
provides a sufficient time–space margin for avoiding obstacles using the information of
relative position and relative speed and the extensibility of the relative speed vector in
space–time information.

As illustrated in Figure 4, circle O is a dynamic obstacle, and gray shading ξall denotes
the maximum explored space of all feasible domains of linear and angular velocities
obtained by using the velocity window of the DWA as the USV passes through point A.
Point B is the optimal collision avoidance point.

!!"#$

!!"#$ ∩ !"%%

B

!"%%

Figure 4. Velocity window sampling diagram.

Sector area ξpath is the velocity window after tcpa time as the feasible area of the USV,
which is denoted as the blue sector area. Sector area ξpath 	 ξall is the optimal area of
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the USV driving area; the focus of this paper is to obtain the optimal driving area after
screening the existing DWA velocity sampling window.

VA(t + 1) = VA(t) +
ξpath(t + 1)	 ξpath(t)

ξall
vmax (6)

ωr(t + 1) = ωmax −
vr(t)
vmax

ωr(t) (7)

where VA is the current speed of the USV and Vr is the relative speed of the USV relative
to the incoming ship. In the optimal feasible area, the USV determines its optimal travel
directly through the joint adjustment of different evaluation factors in the following formula:

f (d, v, ψ,∇) = w1 × g1(d) + w2 × g2(v) + w3 × g3(ψ) + w4 × g4(∇) (8)

In Equation (8), w1, w2, w3, and w4 are four collision risk coefficients that represent the
impact of different factors on the urgency of obstacle avoidance by the USV. These weight
coefficients can be adjusted according to specific situations to better adapt to different
obstacle avoidance scenarios; g1(d), g2(v), g3(ψ), and g4(∇) are function expressions of
different factors representing the impact of the distance between the USV and the obstacle,
the velocity of the USV, and the direction of the USV on the urgency of obstacle avoidance.

3. USV Dynamic Obstacle Avoidance Path Planning
3.1. Generation of Dynamic Obstacle Avoidance Points

To determine the optimal avoidance point that is dynamically generated based on
the current position, velocity, and direction of the USV as well as the obstacle information
obtained from sensors, it is necessary to compute the obstacle avoidance urgency using
the function f (d, v, ψ,∇) as defined in Equation (8). The velocity and direction of the USV
are adjusted based on the obstacle avoidance urgency and dynamically generated best
avoidance point. As the USV moves and encounters new obstacles, the obstacle avoidance
urgency and dynamically generated best avoidance points are continuously updated to
ensure safe and effective obstacle avoidance.

Algorithm 1 shows the pseudo-code to generate the optimal collision avoidance point
for path candidates.

The generation of the optimal collision avoidance decision point is mainly based on
the velocity obstacle method, and the optimal collision avoidance angle is added to the
generated nodes (CPA) as an expanded search range. The traditional VOM algorithm
uses the cost function of path length in dynamic obstacle avoidance, which can make the
generated path shortest; however, the shortest-path optimization index may make the
initial path close to the obstacle and increase the collision risk when the unmanned ship
is driving. To solve this problem, this paper adopts the weighted cost function pair of
integrated path length and optimal steering collision avoidance angle to generate the best
collision avoidance decision point to ensure the safety of unmanned ship driving.

3.2. Selection and Evaluation of Obstacle Avoidance Points

In Equation (8), the w1, w2, w3, and w4 weight coefficients can be adjusted according
to specific situations to better adapt to different obstacle avoidance scenarios; g1(d), g2(v),
g3(ψ), and g4(∇) are four function expressions that can be designed and adjusted according
to the actual situation to more accurately reflect the impact of different factors on the
urgency of obstacle avoidance.
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Algorithm 1 Generate OCAP

Require: st: current USV position vector; Vt: current USV velocity vector; sob
t : array

of obstacle positions; Vob
t : array of obstacle velocities; ψ: USV heading angle; dsa f e:

avoidance distance limit; tcpa: avoidance time limit
Ensure: trajectory: array of USV trajectories

1: function FIND OCAP(current_Position, obstacle_Positions, obstacle_Velocities, vehi-
cle_Velocity, vehicle_Heading, lookahead_Distance, avoidance_Distance, tcpa)

2: trajectory = [st];
3: t = 0
4: while t < tcpa do
5: OptimalAvoidancePoint⇐ GENERATE OCAP(st, Va, sob, Vob, ψ, dsa f e, tcpa) .

calculate optimal collision avoidance point
6: trajectory.append(Optimal Avoidance Point)
7: compute xt = OptimalAvoidancePoint
8: (obstacle_Positions,obstacle_Velocities) = update_Obstacle_States (obsta-

cle_Positions,obstacle_Velocities, t)
9: t = t + 1;

10: end while;
11: return trajectory
12: end function

• Distance evaluation: Calculates the distance ratio between the minimum encounter
distance and the safety threshold under the current USV state. The smaller the ratio,
the safer it is.

g1(d) = 1/(1 + exp(−k1 × (d− dsa f e))) (9)

• Velocity evaluation: Evaluates the ratio of the time taken to reach the dsa f e location to
the tcpa at the current speed of the USV. The smaller the ratio, the safer it is.

g2(v) = 1− exp(−k2 × v) (10)

• Direction angle evaluation: Evaluates the steering angle between the USV coordinates
and the CPA coordinates. The larger the steering angle, the greater the risk.

g3(ψ) = 1− exp(−k3 × |ψ|) (11)

• Direction angle evaluation: The symbol ∇ represents the minimum gradient, and
g4(∇) is the function that describes the effect of the minimum gradient on the obstacle
avoidance urgency level. In this paper, the minimum gradient represents the rate of
change in the distance between the USV and the obstacle, which can be used to evalu-
ate the dynamic relationship between the USV and obstacle and the approach speed.

g4(∇) = 1/(1 + exp(−k4 × (∇−∇0))) (12)

The idea of the OCAP algorithm is based on the traditional DWA and is combined with
the optimal collision avoidance point content in the previous section. First, the increments
of vessel linear velocity and heading angle (ν, ψ) that can reach the optimal collision
avoidance point are set as the constraints for dynamic window sampling. Secondly, based
on the constraints, the algorithm calculates the critical conditions for the USV avoidance
action. Finally, the algorithm evaluates the collision hazard risk probability on the trajectory
formed by the optimized velocity region. It uses the collision avoidance probability value
as an evaluation criterion to assess the merit of the route. The evaluation result selects the
corresponding optimal velocity command (ν, ψ). The sampled data meet the optimal timing
of collision avoidance and satisfy the collision avoidance rules to accomplish real-time
obstacle avoidance and fast driving tasks in complex dynamic scenarios.
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3.3. Search for Optimal Obstacle Avoidance Points

The primary focus of this chapter involves a three-step approach. Firstly, utilizing
traditional speed sampling, a collision risk assessment is carried out by calculating the safe
distance (dsa f e) within the current speed window. Secondly, within the dynamic window,
unsafe areas are excluded and the velocity obstacle is utilized to determine the optimal
speed sample that satisfies the requirements of collision avoidance at sea. Lastly, the
steering strategy of the USV is optimized to ensure that the optimized path aligns with the
collision avoidance rules at sea.

Velocity and maximum acceleration limit minimum safety domain based on dsa f e: Line
AO is the connection between point A and point O, m and l are the two tangents of the
obstacle safety expansion circle,

(
π
2 − ψ

)
is the heading angle of the USV, and

(
β− π

2
)

is the
heading angle of the incoming obstacle vessel, as shown in Figure 5. The dashed triangle
represents the velocity vector triangle after the active collision avoidance behavior taken
by the USV. V

′
A is the velocity after steering, ∆ψ is the steering angle of the USV, ∆η is the

steering angle of Vr, and || ~AP′ ||2 is the shortest encounter distance between the ship and the
incoming ship after a period of time after the ship has performed collision avoidance behavior
(such as steering or speed change). It is obvious that in the controllable speed sampling
window, a larger dcpa means a lower collision hazard probability. As long as abs(η) ≥ µ
exists at any time—that is, the sum velocity vector is located outside the triangle formed by m
and l—the USV will not collide with the dynamic obstacle (shaded area shown in Figure 5).

sin µ =
R

||AO||2
(13)

The velocity of the USV is (VA, ψ), the velocity of the target obstacle is (Vo, β), the
speed of the USV relative to the obstacle is Vr, the relative angle can be expressed as:
ψ = ∠(X, Va), θ = ∠(X, AO), λ = ∠(X, Vr), ϕ = ∠(Vr, VA), µ = ∠(AO, m) = ∠(AO, l). It
can be seen from Figure 5 that the velocity triangle is composed of vA, vo, and vr.

Vo sin (ψ− β) = Vr sin (ϕ)

VA −Vo cos (ψ− β) = Vr cos(ϕ)
(14)

Geometric relationships between dcpa and tcpa are shown in the following equations.

dcpa = ||(A, O)||2 sin (ψ + ϕ− θ) (15)

tcpa =
||(A, O)||2

Vr
×
√

1− sin2 (θ − ψ− ϕ) (16)

By obtaining speed Vo and angle β of the obstacle using the sensor in advance, the
USV can adjust speed VA and angle ψ in advance to avoid the obstacle in order to change
the angle to meet abs(η) ≥ µ.

According to the velocity obstacle method, the differential of the yaw angle is used
to express the attitude change rate of the USV, i.e., the change rate of the attitude angle,
as shown in Equation (13). Therefore, using Equations (14)–(16), we can calculate the
derivative of the adjustment variable as follows:

dη =
sinϕ

Vr
dVa +

Va cos ϕ

Vr
dψ (17)

∆η =
sinϕ

Vr
∆VA +

Va cos ϕ

Vr
∆ψ (18)

The difference of yaw angle is used to express the attitude change amount of the
USV, i.e., the change amount of the attitude angle, as shown in Equations (17) and (18).
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These differential and difference values are crucial parameters in the control model of
unmanned ships, as they directly affect the motion state and control the performance of
the USV. By utilizing the differential and difference of the yaw, the control system can
calculate control commands to adjust the attitude angles of the USV, thereby enabling it to
maintain stable navigation or perform specific tasks, such as obstacle avoidance or search
and rescue operations.

From Figure 5, we can see that the total angle after the relative speed is turned is
∆η + η; where abs(η + ∆η) ≥ µ, the USV can complete the obstacle avoidance.

!(#!, %")

(##, %#)

(##$, %%$)

∆!

'

(

∆)
*

)

(#&, %&)

+

,

!

Figure 5. Improved velocity obstacle method and dcpa.

4. Dynamic Obstacle Avoidance Algorithm Design for USVs
4.1. Design of the Algorithm Framework

The algorithm framework as shown in Figure 6, mainly involves three modules:
dynamic sampling, dynamic obstacle avoidance, and an obstacle avoidance point-set
optimization algorithm. Among them, dynamic sampling is used to determine the current
optimal obstacle avoidance area, dynamic obstacle avoidance is used to calculate the
optimal turning angle, and the obstacle avoidance point-set optimization algorithm is used
to find the optimal obstacle avoidance point in the obstacle avoidance point set. Through
this algorithm framework, the USV can achieve efficient obstacle avoidance and path
planning in complex marine environments.

4.2. Design of Obstacle Avoidance Strategy

According to the calculation of dcpa, the maximum total time required for USV steering
is tcpa; steering of at least ∆η is required after tcpa time period to avoid dangerous areas for
incoming ships and to pass at the safe closest encounter distance dsa f e. The speed window
of the USV is mainly limited by the following three factors:

1. Self maximum and minimum speed limits

Vs = {(v, w)| v ∈ [vmin,vmax] ∩ω ∈ [ωmin,ωmax]} (19)

The USV has a safe speed limit, and not all speeds can be used for safe USV travel.
Therefore, vmin,vmax represents the safe speed interval range.
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2. Speed limitations affected by motor performance

Vd = {(ν, ω)|ν ∈ [νc − ν̇b∆t, νc − ν̇a∆t] ∩ω ∈ [ωc − ω̇b∆t, ωc − ω̇a∆t]} (20)

3. Sampled speed affected by an obstacle.

VA =

{
(v, w)

∣∣∣∣ v ≤
[√

2dist(v, w)v̇b

]
∩ω ≤

[√
2dist(v, w)ω̇b

]}
(21)

Figure 6. OCAP algorithm framework.

In this paper, combined with the optimal collision avoidance point, we focus on
improving the speed VA of the USV limited by obstacles. The classical dynamic window
approach generally defines an adequate search space that conforms to the dynamic limit
in the velocity space (v, ω). Still, the actual steering process of the USV is more based on
the change of the heading angle ∆α to complete the vessel’s collision avoidance behavior.
Therefore, this paper replaces the state space formed by the velocity (v, ω) with the state
(v, ∆α). According to the formula, the intersection Vr of Vs and Vd represents the adequate
state space of the ship in the next period.

Vs = {(v, ∆ψ)| v ∈ [vmin, vmax] ∩ ∆ψ ∈ [−2/π, 2/π]}
Vd = {(v, ∆ψ)| v ∈ [νc − ν̇b∆t, νc − ν̇a∆t] ∩ ∆ψ ∈ [−∆ηmax, ∆ηmax]}

VA =
{
(v, ∆ψ)

∣∣ v ∈ [v0 − ˙vmin∆t, v0 + ˙vmax∆t] ∩ ∆ψ ∈
[
−∆̇ηmax∆t, ∆̇ηmax∆t

]}
V = Vs ∩ Vd ∩ VA

(22)
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Equation (22) indicates that a set of possible motion trajectories can be generated by
sampling the velocity and direction of the USV. Then, we evaluate these trajectories based
on their cost function to select the optimal one as the USV’s motion plan. Specifically, Vs is
the velocity and direction sampling space, where vmin and vmax represent the minimum and
maximum velocity the USV can reach and ∆ψ represents the angle range the USV can rotate.
Vd represents the velocity and direction range the USV can reach while avoiding collisions,
vc is the current velocity, v̇a and v̇b are the acceleration and deceleration, respectively, ∆t is
the sampling-time interval, and ∆ηmax represents the maximum angle the USV can rotate.
VA represents the velocity and direction range the USV can reach while maintaining a
certain acceleration and turning speed, v0 is the initial velocity of the USV, and ˙∆ηmax is
the maximum angular velocity the USV can rotate. Finally, V is the intersection of the
three sampling spaces, representing all possible combinations of velocity and direction that
the USV can sample. By evaluating these combinations based on their cost functions, the
algorithm selects the optimal motion plan to achieve the goal of collision avoidance.

In Algorithm 2, the main calculation task is to perform obstacle avoidance on the
sampling points and find the optimal collision avoidance point. This task is completed by
two functions, Generate OCAP (Algorithm 1) and dynamic_obstacle_avoidance. Generate
OCAP (Algorithm 1) is responsible for generating a set of sampling points, and the dy-
namic_obstacle_avoidance function is responsible for performing obstacle avoidance on the
sampling points. In these two functions, the algorithm uses sensor data and environmental
information to calculate the trajectory of the unmanned boat and adjust its heading and
speed based on the position and velocity of obstacles.

Algorithm 2 Evaluate optimal collision avoidance point

1: position_usv←initial_position ;
2: position_target← target_position;
3: while true do
4: points_sampled← Generate OCAP(position_usv, position_target)
5: points_avoided← dynamic_obstacle_avoidance(points_sampled)
6: point_optimal← find_optimal_avoidance_point(points_avoided)
7: avoidance_set.add(point_optimal)
8: if avoidance_set.is_full() then
9: break

10: end if
11: if can generate new_points() then
12: continue
13: end if
14: break
15: if check heading_and_speed by Equations (20)–(23) then
16: position_usv← navigate to next_point()
17: else
18: adjust heading_and_speed by Equations (18) and (19)
19: end if
20: end while

5. Simulations and Discussion
5.1. Parameter Selection

Three algorithms—dynamic window approach (DWA), dynamic window approach
with virtual manipulators (DWV) [36], and OCAP—are considered in this study, where
DWV and DWA are considered conventional methods and OCAP is envisioned as the
proposed improved method. The simulations show the quality of the operation of such an
algorithm. This paper observed a collision avoidance simulation using a minimum safety
domain R for vessels. Moreover, the influence of navigational behaviors and environmental
impacts (wind and currents) are ignored in the modeling process. All the algorithms in
this study run on MATLAB 2020b. In this paper, two cases are considered: a constant map
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and a random map. These maps’ size for all cases is 20× 20. Case1 is simulated once,
and Case2 is simulated 100 times. The start and goal positions of all cases are (USVxstart,
USVystart) = (2.0, 6.0) and (GBxgoal, GBygoal) = (19.0, 18.0). When the distance between
the USV and the goal position is less than 0.3 m, it is judged to have reached the goal. The
other parameters of the simulation experiment are set as shown in Table 1.

Table 1. Simulation setup.

Case Obstacle
Position

Obstacle
Radius Obstacle Type Obstacle

Velocity

Case1 Constant 1, 1.3 Constant -

Case2 Random Random Random [0 0.3]

As shown in Figure 7, there are 12 static obstacles, which is a static obstacle density of
0.04, in the simulation environment. The solid circle is the expanded range with the longest
radius of the obstacle, and the dashed circle is the safe area, where the dsa f e value of the
obstacle relative to the USV is the radius. According to Equation (13), dsa f e is only related
to the size of the obstacle, which is stationary. When the obstacle moves, it is also related
to the relative velocity of the USV and target vessel. The simulation cases are defined as
follows. Combining Algorithms 1 and 2, the time complexity of our proposed algorithm is
O(n3), where n represents the size of the input data. The algorithm consists of three nested
loops and a recursive call. The time complexity of the first loop is O(n), of the second loop
is O(n2), and of the third loop is O(n3). The time complexity of the recursive call is O(logn).
Therefore, the total time complexity of the algorithm is O(n3 + logn). Additionally, the
space complexity of the algorithm is O(n) because it requires storing a copy of the input
data in memory as well as intermediate results of multiple recursive calls.

Figure 7. Simulation environment in Case1: (a) map at a static obstacle density of 0.04 and (b) com-
parison of paths generated by three optimization methods.

5.2. Simulation Results and Discussion

As shown in Figure 7a, there are 12 static obstacles in the simulation environment in
Case1. The start and goal positions are (USVxstart, USVystart) = (2.0, 6.0) and (GBxgoal,
GBygoal) = (19.0, 18.0). The density of obstacles generated on this map is 0.04.
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Figure 7b displays trajectory results of OCAP, DWA, and DWV in Case1, showing that
all methods reached the goal position. DWA and DWV arrived at the goal position later
than OCAP.

Table 2 displays simulation results for Case1, including the success rate, algorithm time
consumption (Time), trajectory length (TL), and λdis in achieving the goal without collisions,
and the average travel time. OCAP reached the goal position earlier than DWA and DWV.
From Figure 7b and Table 2, the best result in Case1 was obtained by OCAP, which did
not need to evaluate the optimal collision points and moved at the maximum translational
velocity on the optimal path. Comparing static obstacle generation paths, the efficiency and
results of the OCAP and DWV algorithms are similar. However, DWA sometimes generates
a ’circling’ motion when avoiding obstacles to reach a specified location. Therefore, the
target time of DWA is longer than those of the other two algorithms.

Table 2. Simulation results in Case1.

Case Method Success (%) Time (s) TL (m) λdis (%)

1 DWA 100 5.377 19.521 9.04

1 time DWV 100 3.502 15.804 9.92

OCAP 100 3.268 14.287 4.87

Figure 8a shows simulation environments of the random maps in Case2 at a static and
dynamic obstacle density of 0.04, which presents five static obstacles and seven dynamic
vessels from different directions (considered dynamic obstacles), which are 12 obstacles in
total. These obstacles are placed in random positions and given random velocities that are
lower than the maximum velocity of the USV. The velocities of obstacles are set randomly
in the range of 0.0 (m/s) to 0.2 (m/s). Case2 is simulated 100 times. Figure 8b shows
path-finding results for a certain time.

Figure 8. Simulation Environments in Case2: (a) random map (b) path generated by three algorithms.

Figure 9a–c shows only trajectories of the USV for 100 simulation times in Case2. In
Figure 9a, OCAP generated path candidates considering dynamic obstacles. OCAP also
considered dynamic blocks when the optimal path was selected from path candidates.
Thus, OCAP reached the goal position. Overall, the path collision hazard probability
obtained by the OCAP algorithm is low. The optimal obstacle avoidance trajectory results
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with the lowest probabilities of collision avoidance are displayed in Figure 9b,c. DWV
and DWA generated path candidates without considering dynamic obstacles. When
DWA reached the goal position of avoiding moving obstacles, DWA sometimes generated
backward movements.

Figure 9. Simulation results of three optimization methods in Case2: (a) OCAP, (b) DWA, (c) DWV.

From Figure 9 and Table 3, OCAP has the highest success rate of reaching the goal at
82.73% along with the longest path-finding time and the lowest level of risk rate at 18.09%
in Case2. These three results are correlated. As circling was sometimes generated to avoid
the obstacle, the goal time of OCAP was longer than that of other methods. Although the
time cost of the OCAP and DWV is similar, the path planned by OCAP is less likely to have
collided and thus has a lower risk rate.

Table 3. Simulation results in Case2.

Case Method Success (%) Time (sec) TL (m) λdis (%)

2 DWA 60.98 65.377 29.521 25.04

100 times DWV 58.42 57.502 25.804 25.92

OCAP 82.73 60.268 24.287 18.09

Figure 10 shows the evolution of four moving features during simulation. From
Figure 10a,b, the obstacles are static in Case1, from which it can be seen that in the proposed
new algorithm OCAP, the changes to the heading angle and course angle are minor,
which means that the vessel does not have rapid turns or emergency braking during
handling. The speed and tcpa shown in Figure 10c,d are the two most critical parameters
reflecting the USV’s state of avoiding obstacles. In the new algorithm OCAP, the tcpa of
USV always appears within the range of change and increases linearly, indicating that the
risk of collision avoidance of the USV in this algorithm is always in the acceptable range.
Specifically, according to Figure 10d, in the OCAP algorithm, the minimum encounter time
tcpa is always greater than 0, indicating that it is effective for path planning to choose the
best collision avoidance point.

The results of changing the density of obstacles in the random map and testing
multiple sets of data are shown in Table 4, which includes the success rate, algorithm
time consumption (T), trajectory length (TL), risk rate (λdis) in achieving the goal without
collisions, and the average travel time.
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Figure 10. Three algorithm simulation parameters compared in Case2: (a) heading angle, (b) course
angle, (c) USV speed to collision, (d) USV tcpa.

Table 4. Comparison of OCAP and conventional algorithms at different obstacle densities.

Obstacle
Density (%) Method Success T (sec) TL (m) λdis (%)

DWV 92.340 3.157 28.496 5.281
0.02 DWA 94.554 2.976 25.765 5.094

OCAP 98.231 2.800 17.027 5.090

DWV 12.340 81.653 48.064 33.317
0.06 DWA 34.554 88.910 45.109 40.338

OCAP 80.231 79.772 37.407 26.060

DWV 10.630 156.157 98.496 53.281
0.08 DWA 13.800 182.976 95.765 52.094

OCAP 67.781 106.278 87.027 20.122

From Table 4, when the obstacle density is smallest (0.02), the path-finding success
rates of all three algorithms are high and not much different; however, as the density of
random map obstacles increases, the path-finding success rates of all three algorithms
decrease, among which the decrease rate of the DWV algorithm changes the most. This
is because the DWV algorithm is more sensitive to the number of obstacles: the more
obstacles, the more DWV demonstrates the characteristics of a breadth-first algorithm that
will fail to complete the computation in the specified time, making the sharpest decline in
the success rate.

Comparing the computation time of the three algorithms, the OCAP algorithm con-
sumes less time to generate dynamic discrete points than dynamic path generation because
the optimal collision avoidance points are generated in advance before the path is generated.
At the maximum obstacle density (0.08), the path-finding success rate of all three algorithms
decreases greatly. However, since the OCAP algorithm generates dynamic discrete points,
if the path changes (e.g., previously unmeasured dynamic obstacles) before driving the
generated path, only the best collision avoidance point needs to be measured again, thus
effectively improving the path-finding success rate. It can also be seen that the length of
the path generated by the three algorithms is about the same when the density is large,
and the main difference lies in the success rate of generation and the time consumed by
the algorithm.

From Figure 11, the path-planning performance of three different algorithms on three
cases is analyzed as a whole. In two other cases, the path planned by the OCAP algorithm
has the shortest length and the least time cost. OCAP has the highest success rate of
reaching the goal at 100%. The best result in Case2 was obtained by OCAP, which shows
that this algorithm is more suitable for avoiding low-speed dynamic obstacles.
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Figure 11. Three algorithms in optimal path-planning performance: (a) total path-planning time
(b) total path-planning length.

6. Conclusions

In this paper, OCAP, a new collision avoidance algorithm, is proposed. OCAP gen-
erated obstacle-avoidable path candidates. Path candidates were generated using the
optimal collision avoidance point based on predictions of static and dynamic obstacles.
Kinematics and dynamics constraints were taken into account in OCAP. The paper used
simulations and experiments, demonstrating the proposed method to be effective. Even
when the obstacle density increases, the effectiveness of trajectory generation is ensured
because the OCAP algorithm can effectively and dynamically evaluate the minimum ob-
stacle avoidance distance. Through simulation experiments, the algorithm was shown to
be more suitable for high-density environments, and by evaluating the optimal collision
avoidance points, the generated paths can be kept away from the obstacles over a larger
area. The results of this study are limited to situations based on ship encounters in the
calm water conditions considered in this study. Additionally, no consideration was made
for hull-to-hull interaction and hull–propeller–rudder–engine interaction between the two
vessels, which is a direction for future research.
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Abbreviations
The following abbreviations are used in this manuscript:

OCAP Optimal Collision Avoidance Point
DWA Dynamic Windows Approach
DWV Dynamic Window Approach with Virtual Manipulators
CPA Closest Point of Approach
USV Unmanned Surface Vehicle
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