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Abstract: Multitarget positioning technology, such as FMCW millimeter-wave radar, has broad
application prospects in autonomous driving and related mobile scenarios. However, it is difficult for
existing correlation algorithms to balance high resolution and low complexity, and it is also difficult
to ensure the robustness of the positioning algorithm using an aging antenna. This paper proposes
a super-resolution and low-complexity positioning algorithm based on the orthogonal matching
pursuit algorithm that can achieve more accurate distance and angle estimation for multiple objects
in a low-SNR environment. The algorithm proposed in this paper improves the resolving power by
two and one orders of magnitude, respectively, compared to the classical FFT and MUSIC algorithms
in the same signal-to-noise environment, and the complexity of the algorithm can be reduced by
about 25–30%, with the same resolving power as the OMP algorithm. Based on the positioning
algorithm proposed in our paper, we use the PSO algorithm to optimize the arrangement of an aging
antenna array so that its angle estimation accuracy is equivalent to that observed when the antenna is
intact, improving the positioning algorithm’s robustness. This paper also further realizes the use of
the proposed algorithm and a single-frame intermediate frequency signal to estimate the position
angle information of the object and obtain its motion trajectory and velocity, verifying the proposed
algorithm’s estimation ability when it comes to these qualities in a moving scene. Furthermore, this
paper designs and carries out simulations and experiments. The experimental results verify that
the positioning algorithm proposed in this paper can achieve accuracy, robustness, and real-time
performance in autonomous driving scenarios.

Keywords: FMCW radar; OMP; FFT; particle swarm algorithm(PSO); 2D trajectory estimation;
super-resolution; low-complexity

1. Introduction

With the continuous improvement of technology and the reduction of industrial
manufacturing costs, widespread uses of FMCW millimeter-wave radar for unmanned
peripheral environment perception, positioning, obstacle avoidance, and other applications
have rapidly emerged. In the fields of intelligent assisted driving or autonomous driving,
the use of millimeter-wave radar signals to accurately detect the position and speed of
neighboring vehicles and pedestrians in order to control vehicle speed and steering will
greatly improve the safety of automatic driving. However, the positioning algorithm
applied in this scenario faces the demands of high resolution and low complexity.

Currently, the FMCW radar positioning algorithm can be roughly divided into three
categories: the baseline algorithm, spatial spectrum estimation methods, and the com-
pressed sensing algorithm. The baseline algorithm uses an FFT ranging angle measurement
after adding a Hamming window, which is low in complexity and simple in implemen-
tation, but exhibits low resolution. Spatial spectrum estimation methods, such as the
MUSIC algorithm, use spatial smoothing filtering and feature subspace decomposition to
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separate the signal from the noise space [1], but they also include problems of resolution
degradation and susceptibility to noise interference. The compressed sensing algorithm
uses the sparseness of the objects detected to improve angle resolution, but its complexity
is high [1], and it is challenging to create a complete Fourier dictionary in the scene, which
directly affects the algorithm’s accuracy and operation speed.

Several researchers have conducted studies based on the FMCW localization method.
For example, Zhiyi Duan et al. proposed a waveform-based FMCW algorithm for multitar-
get detection in 2017 [2], which completed the algorithm using FFT waveforms, but did not
solve the inaccurate localization caused by beat frequency overlap. Based on this research,
Yuki Tachibana et al. developed a power-based multitarget detection FMCW algorithm [3],
which achieves low-complexity localization in the distance dimension by detecting the
power of the reflected echo of the target and comparing it with the echo power of the
same object. However, using only the power information could lose the relative angle
information of the object, and the real-time angle and motion trajectory of the object would
not be obtained.

In 2020, Shunqiao Sun and Athina P. Petropulu used matrix completion to compute the
corresponding virtual uniform linear array (ULA) before estimating the target angle [4–6].
However, they verified the effectiveness of the ULA using only FFT and MUSIC. Lukas
Piotrowsky et al. used an 80 GHz broadband FMCW radar sensor to measure a movable
radar target at a maximum measurement range of 5.2 m and estimated the distance to the
target using an algorithm that evaluates the phases [5].

These studies demonstrate that it is feasible to use FMCW radar-transmitting linear
frequency modulation (FM) signals for ranging and localization. However, these studies did
not combine high-resolution and low-complexity requirements, and there are limitations in
their applications. Moreover, there are also radars that use other algorithms, such as the
phase shift method. The frequency modulation continuous wave (FMCW) method and
the phase shift method are both commonly used in radar systems for various applications.
the phase shift method relies on measuring the phase shift between the transmitted and
received signals. This method is less complex than FMCW and requires less bandwidth, but
it has lower accuracy and is more sensitive to noise. It is commonly used for short-range
applications, such as in proximity sensors and level gauges, while FMCW provides high
accuracy measurements of distance and velocity and is commonly used for applications
such as automotive collision avoidance and atmospheric remote sensing. Therefore, FMCW
is preferred for long-range and high-accuracy applications.

This paper focuses on typical application scenarios, such as indoor object positioning
and outdoor autonomous driving, simplifying them into flat two-dimensional scenarios.
The first part of this paper introduces the modeling of a super-resolution positioning
algorithm based on orthogonal matching tracking, including algorithm models based on
FMCW multitarget positioning, object motion trajectory generation, and antenna array
arrangement optimization, to improve the positioning accuracy of an aging antenna. The
second part of the paper introduces the simulation experiment settings and provides an
analysis of the experimental results corresponding to each algorithm. Figure 1 shows the
block diagram of the FMCW radar-based multitarget localization algorithm conceived in
this paper.
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2. Modeling of Super-Resolution Localization Algorithm Based on OMP
Sparse Decomposition
2.1. Localization Algorithm Based on OMP Sparse Decomposition

The utilization of the common OMP or MP algorithm necessitates knowledge of the
sparsity of the input signal sequence, which refers to the number of signal sources present.
However, in most practical scenarios of autonomous driving, the sparsity of the echo
signal A is usually unknown, making it difficult to determine the number of obstacles or
people beforehand. This paper proposes an algorithm to improve the traditional OMP
algorithm by processing the echo signal using the FFT baseline algorithm, establishing
a complete Fourier dictionary at the maximum peak value of the echo signal amplitude
strength obtained by FFT. Additionally, a sparser dictionary is created at the other peaks
of the FFT waveform, and OMP is utilized to sparsely decompose the overall echo signal.
The estimation accuracy is determined by comparing the acceptable value of the signal
residuals and the signal estimation error. This processing method is suitable for situations
where the number of sources is unknown.

Therefore, to implement this algorithm, the echo signals received by the RX antenna
of the FMCW radar must first undergo FFT processing, and the results can serve as a
reference for establishing a low-complexity dictionary in real time. Establishing the angular
dimension dictionary is simplified because the angular resolution of the radar is not uniform
in the center region of the array, nor at the boundaries on either side of the angular field
of view, owing to the different positions of the antenna array elements. The redundant
dictionary based on the angular resolution of the antenna array is established in the highest
peak of the signal waveform after FFT processing. However, on both sides of this peak,
the angular resolution of the antenna array gradually decreases, as neither ∆φ nor sin θ in
Equation (10) are linearly related. Therefore, the corresponding dictionary at the side flap
waveform is not required to be constructed as a complex dictionary adapted to the best
angular resolution. In Figure 2, we depict the flow of the algorithm to build the dictionary.
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Here, θ is the angular resolution of the antenna array, k is a factor and is less than 1,
AntDis represents the antenna array element spacing and is equal to L in Equation (10),
and Na is the number of antenna array elements. The step size of the angular sequence
corresponding to the wave crest of the FFT waveform is set to kθ, and the corresponding
overcomplete dictionary is established. Similarly, the idea of establishing the dictionary at
the side flaps on both sides of the highest wave peak is based on the same principle as that
of establishing the overcomplete dictionary. However, the angular resolution decreases
near the boundaries of both sides of the angular field of view, which necessitates a larger
step size of the angular variation corresponding to the para-flap area to reduce the number
of atoms in the dictionary, as well as its complexity.

Concerning the dictionary establishment of the distance dimension, its resolution has
no or negligible variability regarding the reception of the antenna array elements at different
positions in the radar field of view. Therefore, simplifying the distance dimension dictionary
may cause the matching tracking algorithm to fail, affecting the distance estimation accuracy.
We first construct the dictionary of the distance domain following the cyclic process shown
in Figure 2. To calculate the distance resolution of the signal, we consider S as the slope of a
linearly increasing FM signal, T as the period of the chirp signal, and B as the bandwidth
of the signal; then S = B/T. The frequency resolution of a signal of length time T is
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fres = 1/T. Subsequently, the frequency resolution of the IF signal can be determined using
Equation (1).

Disres =
c/

2S· fres =
c/

2ST = c/
2B, (1)

Setting the number of snapshots as N, we can obtain the formula for establishing the
distance domain dictionary, as shown in Equation (2).

DisDic(:, i) = ei·2π·(0:N−1)·S·T·(Disres/c), (2)

OMP can be utilized to perform the DOA and distance estimation of the echo signal
once the dictionary is established [7–9]. The sparse representation coefficient of the signal
is denoted as θ̂, and the N − 1 dimensional residual is rk = y− Ak θ̂k. In this paper, the
maximum detection distance of the FMCW radar is 15 m. The sparsity of the signal is
judged by satisfying |rk − rk−1| < |rk| ∗ Thr, and the corresponding sparse signal in the
dictionary is the output. Otherwise, the iterative process of OMP continues, where Thr is
the threshold value. To ensure the detection accuracy for the object to be detected, the Thr
value of the improved OMP-based algorithm proposed in this paper is set to 2. Based on
our practical testing experience, if the residual of the current iteration round is less than 1/3
of the residual of the previous iteration, we can assume that there is a jump in the matching
degree in this iteration, and the dictionary atom matching the echo signal is determined.

Therefore, the main body of the OMP-based super-resolution low-complexity localiza-
tion algorithm in this paper can be obtained as shown in Algorithm A1, which is attached
in the Appendix A.

It is noteworthy that this algorithm does not engage in signal reconstruction. This is
because its sole objective is to locate the echo signal of the object to be detected, which is
akin to extracting the column in which the object’s reflected signal is present in a redundant
dictionary. The decomposed signal under that index contains the information to estimate
the distance and angle. This approach significantly reduces the complexity of the algorithm
compared to that of compressed sensing algorithms.

2.2. FMCW-Based Multi-Target Localization Principle and Model Construction

As shown in Figure 4, the FMCW radar antenna relies on receiving echoes and per-
forming signal processing to obtain information. In this paper, the signal used in the FMCW
radar is a linear FM pulse chirp signal, and within a chirp period T, the frequency of the
radar-transmitted signal f (t) satisfies f (t) = f0 + γt, 0 ≤ t < T, and the transmitted wave
signal is shown in Equation (3) [1]. The waveform of the TX (transmit) antenna transmitting
signal is shown in Figure 5a.

sTX(t) = ATXexp(j2π
(

f0t +
γ

2
t2
)
), 0 ≤ t < T, (3)

where ATX denotes the signal transmitting power, f0 denotes the carrier frequency, γ
denotes the FM slope, T denotes the chirp period, and j denotes the imaginary unit [1,10].
The FM bandwidth of the linear FM signal used in this paper is 2.5 GHz. The signal from
an object, reflected by the radar at a distance of R0, is shown in Equation (4). We assume the
presence of multiple objects within the radar detection range, and the RX (receive) antenna
picks up their signals. The echo signal waveforms of the mth object and the (m + 1)th object
detected by the radar are shown in Figure 5b.

sRX(t) = ARXexp(j2π
(

f0(t− τ) +
γ

2
(t− τ)2

)
), τ ≤ t < T, (4)

where ARX denotes the signal reception power, τ = 2R0/c is the reception delay, and c
is the speed of light. The transmit signal and the receive signal overlap on [τ, T], and
the two signals are fed into the mixer to obtain the intermediate frequency (IF) signal,
which is shown in Equation (5) [1,8]. The mixed signal waveform obtained from the RX
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antenna-received signal in Figure 5b and the TX antenna-transmitted signal in Figure 5a
are shown in Figure 5c.

sIF(t) = sTX(t)s∗RX(t) = ATX ARXexp(j2π(γτt + f0τ)), τ < t ≤ T, (5)

where the term τ2 (τ � 1) is neglected. Since the frequency of the IF signal is f IF = γτ,
R0 =

(
c/2γ

)
f IF.
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This paper lists the antenna array as a common linear array. In the horizontal plane,
the Na equivalent virtual antenna array with aperture L is uniformly arranged. We establish
a coordinate system with the center of the antenna array as the origin, the antenna array as
the x-axis, and the area perpendicular to the antenna array as the y-axis [1,5,7,11–13], as
shown in Figure 6a,b.

Supposing that the distance from object Ok to the center is rk and the angle with the
y-axis is θk, then the corresponding coordinates are shown in Equation (6):

Xk = rksinθk, Yk = rkcosθk, (6)

The two-way echo distance of the nth antenna (with coordinates {xn = −L/2 +
nL/Na − 1, yn = 0}, n = 0, 1, · · · , Na − 1.) is shown in Equation (7):

Rn,k = 2
√
(xn − Xk)

2 + (yn −Yk)
2, (7)

For such an echo distance of an object, the FMCW radar at the moment t and the
received IF signal on the nth antenna are shown in Equation (8) (uniform sampling will be
carried out hereafter, and the formula Tst is simplified to t.):

sn,k(t) = akej(2πγTstτ+2π f0τ)

= akej(2πγTstRn,k/c+2π f0Rn,k/c), t = 0, 1, 2, · · · ,
[

T/Ts

]
− 1,

(8)

where ak denotes the reflectivity of the object, Ts is the sampling interval, c is the speed of
light, and [T/Ts] denotes rounding. At moment t in a chirp period, the IF signal received
by the nth antenna is a mixture of K target objects with noisy IF signals [1], as shown in
Equation (9):

zn(t) =
K

∑
k=1

sn,k(t) + wn(t), t = 0, 1, 2, · · · , [T/Ts]− 1, (9)

where wn means noise.
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Figure 5. The waveform structure of the TX signal, the RX signal, and the IF signal. (a) Waveform
diagram of the signal transmitted by the TX antenna (B represents the bandwidth of the FMCW
signal). (b) The mth and (m + 1)th objects’ echo signal waveform plot of the signal received by the RX
antenna (B represents the bandwidth of the FMCW signal). (c) Waveform diagram of the mixed signal.
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diagram of the received signal of the antenna array element for angle estimation. (a) Antenna array
layout model; (b) antenna array element estimation AOA schematic.

In the design of traditional algorithms based on OMP, it is often necessary to create a
redundant dictionary that builds up the dimensions of distance or angle. If an overcomplete
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dictionary of position and angle information is established at the same time, it will add
unnecessary complexity to the algorithm. To reduce this complexity, this paper uses the
following process for the establishment of sparse dictionaries.

The step size of the angular search is determined based on the angular resolution
of the FMCW radar. The difference in distance between the object and the two antennas
causes a phase change in the FFT peak, and the AOA is estimated by the phase change. The
phase change is mathematically established with Equation (10) [9,14]:

∆φ = 2π∆d/λ, (10)

In the two-dimensional plane, the geometric relationship is ∆d = Lsinθ, where ∆d is
the difference in the distance of the echo signal received between the RX receiving antennas,
and L is the distance between the two antenna elements. The angle between the line
of the object and the origin of the coordinate system and the y-axis can be found with
Equation (11):

θ = sin−1(λ∆φ/2πL
)
, (11)

According to Equation (11), ∆φ depends on sin θ, and they are not linearly related.
When θ is tiny, sin θ can be approximately equal to θ. Therefore, θ is more accurately
estimated when θ is close to 0◦, and the accuracy decreases when θ tends to 90◦. It is
supposed that there is only one TX antenna and one RX antenna in the radar, and that the
distances between them are the same as the antenna-spacing parameter in the experimental
section of this paper. The FMCW radar used in this paper has a maximum angular field of
view of ±50◦, and the resulting estimation error at the boundary is about 6◦. This error is
acceptable in daily application scenarios. We set the step of angle variation to 0.1◦ in the
range of ±25◦, and increase the step to 0.2◦ in 25◦~50◦ and −25◦~−50◦ to reduce the error.

Then, from Equation (8), we can establish a dictionary of echo signals that the center
of the antenna array may receive from objects at different distances. Using this dictionary,
the actual signal received by the radar can be analyzed and matched, and sparse processing
can be performed to obtain the angle and position information of the target object [3,12].
This is also the method used by traditional OMP algorithms to build a complete dictionary.

3. Particle Swarm Optimization Algorithm for Improving the Robustness of a
Super-Resolution Localization Algorithm When the Antenna Is Aging

Suppose an antenna array element is out of order. In such a scenario, the estimation of
the distance domain remains unaffected, but the estimation of the angle domain may be
negatively impacted. This is exemplified in Figure 7. However, if the antenna array layout
is considered an unknown variable, and its location is rearranged using the optimization
algorithm, the resulting layout is a virtual array. This can be deemed optimal if it minimizes
the residuals estimated by the algorithm proposed in Section 2.2.
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The estimation of the distance domain is not affected by the aging antenna array, but
the angular resolution at the aging antenna is affected. We use the sparse decomposition of
the distance domain of the echo signal using the OMP algorithm mentioned in Section 2.1
to obtain the corresponding sparse expression Sest in the distance domain and then find the
dictionary index Index corresponding to the peak representation in the sparse signal. The
pseudoinverse of DisDic(:, Index) is found and multiplied with the echo signal to obtain
the virtual echo signal with a constant distance domain result, recorded as Datatmp. When
an antenna array element loses its role because of aging, if the remaining intact element is
rearranged uniformly, the antenna array element spacing is L/(Na − 1 ), and the uniform
array is recorded as Antloc.

Then, the angle domain dictionary AngGenDic(:, i)=ei·2π·Antloc/λ· sin(Ang(i)) is estab-
lished for the virtual echo signal Datatmp. Based on this dictionary, the virtual echo signal
Datatmp is sparsely decomposed using the OMP-based super-resolution algorithm pro-
posed in this paper, and the corresponding residuals are calculated. The residual maximum
is the initial population of the particle swarm optimization algorithm [13,15], and the object
of optimization is the distance correction value between each antenna element. If we set the
position of the antenna elements as AntLoc, Dic() is the compressed dictionary construction
function, and ompres() represents the residual function to calculate OMP, then there is an
objective function, as shown in Equation (12).

AntLoc= argminAntLoc(max(ompres(Dic(AntLoc),
[Z1( f1), Z2( f1), · · · , ZNa( f1)]), · · · , ompres(Dic(AntLoc),

[Z1( fk), Z2( fk), · · · , ZNa( fk)]),
(12)

In this paper, we chose the particle swarm algorithm (PSO) to solve this objective
function. By updating the iterations of the particle swarm, the minimum residual function
is calculated under different arrangements, and the correction value of the best antenna
array element spacing Antcor(best) is obtained for a given iteration round. The final
arrangement of the antenna array elements is AntLoc + Antcor(best), which completes the
solution of the actual antenna array placement under the condition of the highest angle
estimation accuracy.

The pseudocode of the antenna array element position rearrangement algorithm based
on PSO is given next, as shown in Algorithm A1, which is attached in the Appendix A.
In Section 6.2, we carry out simulation experiments to verify whether the accuracy of the
positioning of the object being detected is corresponds to the intact antenna array.

4. Super-Resolution Low Complexity Localization and Object Motion Trajectory
Estimation Based on Single-Frame Signals

In Section 3 of the algorithm modeling process, we aim to enhance the robustness of
the proposed algorithm in Section 2.1 To achieve this, we employ a fine-tuned optimization
method based on a uniformly redistributed array to obtain the optimal virtual antenna
array element arrangement. However, the computational process of the proposed algorithm
in Sections 2.1 and 3 is solely for one chirp period in a frame of the IF signal; if all the
chirp periods in such a frame are needed to build the corresponding dictionary, then the
algorithm’s complexity for solving one frame will be multiplied by the number of chirp
periods. This increase in complexity can make it challenging to meet the low-complexity
requirements in online moving scenarios.

Therefore, to achieve distance, angle, and velocity estimations in actual moving sce-
narios, we need to further simplify the modeling process of the algorithm. First, we extract
a frame of the echo IF signal received by the FMCW radar. Figure 8 illustrates the process
of obtaining a 3D data matrix of IF signals in the time, antenna, and chirp domains. The K
beat signals of length n are connected in series to form an n × K matrix. We denote Yl by
the two-dimensional data matrix at the lth chirp. Then, we obtain the three-dimensional
data matrix of the radar-received IF signal, as shown in Figure 9.
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In order to effectively compress all periodic signals in the distance domain (angle
domain), the construction of a comprehensive dictionary of reflected signals at various
distances and angles is imperative. The principle of building the dictionary is akin to that
presented in Equation (9) and Figure 3 of the previous algorithm, which was based on
orthogonal matching tracking. In order to minimize the size of the compressed dictionary
while maintaining a remarkable level of accuracy, we establish the dictionaries of distances
and angles as follows:

1. First, a compressed perceptual dictionary Dic(Dis) (or Dic(Ang)) of the reflected
signals at different distances (angles) is constructed.

2. If the signal analyzed is the first cycle of a frame, then the dictionary should include
all distance or angle domain signals; otherwise, it means that the signal analyzed is a
different cycle of a frame, and only the dictionary needs to be built in the vicinity of
the previous distance estimation result.
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The overall low-complexity dictionary building process in the angle and distance
domains is illustrated in Figure 10. It is noteworthy that the bandwidth of the chirp signal
used in the simulation experiments in this paper is approximately 2.5 GHz, and the distance
resolution Disres = 3 cm of the FMCW radar used in this paper can be determined from
Equation (11). Therefore, the minimum distance between interpolations in the distance
domain data correlation should be no less than 3 cm. The angular resolution near the center
of the array is utilized instead of that under the whole angular field of view, according to
Equation (11).
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The distance and angle domain dictionaries of the signals in all the cycles in a frame
of the IF signal, except for the first cycle, can be obtained from the algorithm shown in
Figure 10. The angle and distance information of each object in a frame of the IF signal
can be obtained by estimating the angle and distance of the signal in each cycle using the
algorithm proposed in Section 2.1. Consequently, the object can be localized.

For the velocity discrimination problem of multiple objects in moving scenes, this
paper considers two implementation ideas. One is the more common velocity-dimension
DFT algorithm, which posits that the overall distance–velocity spectrum of multiple objects
is a linear combination of the spectra of individual reflected objects because the DFT (discrete
Fourier transform) is a linear transformation, so objects with different distances and velocities
can be detected from the peaks in the distance–velocity spectrum. Let the angular frequency
resolution wres = 2π/Nc for a discrete time signal of time length Nc [16–19]; the velocity
resolution vres is shown in Equation (13).

vres =
λ/

4πTc
·wres =

λ/
2NcTc

= λ/
2TF

, (13)

where TF is the frame duration, and λ is the wavelength. Another idea is to use the
algorithm proposed in this paper to calculate the Euclidean distance between the positions
of the object at different cycles within one frame of the signal by using the localization
results of the target object at different cycles, and from this, the average velocity of each
cycle is obtained as the instantaneous velocity of the object (because the period of a single
chirp signal in one frame of the IF signal is very short).
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5. Complexity and Resolution of the Proposed Algorithm in This Paper

In Section 2, Section 3, and Section 4, we completed the introduction of the algorithms
proposed in this paper. Here, we calculate the complexity of the FFT- and OMP-based super-
resolution low-complexity localization algorithms, namely the classical FFT algorithm,
MUSIC, and OMP.

We assume that the number of elements in the antenna array is Na, the number of beat
frequencies of the chirp signal is N, and the number of DFT points is N f f t. Then, we can
obtain the complexity of FFT as O(NaN · log(N) + NaN f f t · log(N f f t)).

We assume that the length of the vector theta formed by the angles traversed in the
MUSIC algorithm is L. That is, theta satisfies the equation:

theta = [−θmax : (2·θmax /L) : θmax], (14)

where θmax is the angle at the maximum boundary of the radar’s angular field of view.
Since the covariance matrix is calculated in the MUSIC algorithm, as well as in the eigende-
composition process, such matrix multiplication is calculated throughout the cycle for each
angle value, so the complexity of MUSIC is O(N3·L).

Let us consider the complexity of the classical OMP algorithm. We assume that the
dimensionality of the angle dictionary created is the same as the length of the angle vector
in MUSIC, i.e., L. After this operation, the angular resolution of the classical OMP algorithm
and MUSIC will theoretically be at the same level. We set the number of objects detected as
M. Then, the complexity of classical OMP can be obtained as O(M·L·Na).

Regarding the complexity of the super-resolution low-complexity localization algo-
rithm proposed in this paper, we can calculate the complexity of the part of the algorithm
that analyzes the FFT waveform of the echo signal and builds a dictionary adapted to it
is O(N·log(N) + NaN · log(N) + NaN f f t·log(N f f t)). We set the dimension of the reduced-
complexity dictionary matrix as Llow, and the number of objects detected is set to M. Then,
we can obtain the complexity of the super-resolution low-complexity localization algorithm
proposed in this paper as O(N·log(N) + NaN · log(N) + NaN f f t·log(N f f t)) + O(M·Llow·Na).

In order to compare the complexity of the algorithms, we set the number of detected
objects M to be 2, the number of vector elements of the angle L to be 1000, the number
of DFT points N f f t to be 256, and the number of arrays in the antenna array Na to be
4. If the number of beat frequencies N of the chirp signal is taken as the independent
variable and the algorithm complexity as the dependent variable, then we can obtain the
complexity curve of the above algorithm, as shown in Figure 11. It can be clearly seen
that the algorithmic complexity of MUSIC increases significantly with the number of beat
frequencies N of the signals used. Conventional FFT has the lowest complexity. Due to the
low dimensionality of the matrix constructed, the algorithm proposed in this paper is less
complex than that of the classical OMP.

Next, we discuss the resolution that can be achieved by the positioning algorithms
proposed above. Distance resolution is the ability to discriminate between two or more
objects at different distances. Fourier transform theory states that the observation window
(length T) can resolve frequency components at intervals greater than 1/THz. This means
that two IF signals can be distinguished, if the frequency difference satisfies the relationship
given in Equation (15).

∆ f > 1/
T, (15)

If the linear FM slope of the chirp signal emitted by the antenna is set as γ, and
the distance resolution is represented by dres, then we can obtain the relation equation
from equation: ∆d > c/2γ·T = c/2B. Distance resolution dres depends only on the
bandwidth of the linear FM pulse sweep B; that is, dres = c/2B. Then, there is not much
difference in distance resolution between the above four algorithms. Next, we focus on the
angular resolution, which is low for the conventional FFT algorithm, and if we express it as
Angleres(FFT), it satisfies the equation Angleres(FFT) = 2π/Na. In fact, the experiments
we performed in Section 6.1 show that the angular resolution of FFT is indeed very poor.
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MUSIC requires an estimate of the covariance matrix to be constructed from the received
signal vector, which affects the accuracy of the algorithm in estimating the angle. Therefore,
the number of elements in the array, the SNR of the received signal, and even the step size
of the traversal angle of the arrival process all affect the angular resolution of the MUSIC
algorithm Angleres(MUSIC). The angular resolutions of traditional OMP and the algorithm
proposed in this paper are mainly influenced by the angular measurement accuracy of the
radar, the signal-to-noise ratio, and the accuracy of the dictionary construction, as they all
make use of the sparse characteristics of the signal. The angular resolution of the proposed
algorithm is essentially comparable to that of traditional OMP, and is improved by the fact
that it can build a more precise dictionary near the center of the angular field of view. In
the experiments in Section 6.1, we will give the values of the angular resolution that can be
achieved by the different algorithms.
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6. Simulation Experiments and Results

In each scenario, it is assumed that K (to be determined) is an object within the
detection range of the radar [9,13,14,16,19,20] (a sector with a radius of 15 m from the origin
and an angle of 100◦ from the center of the circle).

6.1. Localization Simulation Experiments Based on OMP Sparse Decomposition

The distances of the object to be detected from the origin of the antenna coordinates
were set to 10.1 and 11.5 m, respectively, and the angles of the line regarding the origin and
the y-axis were set to 1.4

◦
and−1.7

◦
. After modulating the waveform of the electromagnetic

wave, NTX transmitting antennas will transmit in turn, and NRX receiving antennas will
receive the returned signal in turn; because this period is very short, it can be equated to
NTX × NRX antennas transmitting and receiving at the same time. All simulations and
experiments in this paper used the FM signal and the relevant parameters of the antenna,
as shown in Table 1.

The signals collected by the 12 equivalent virtual antenna arrays contained the echo
signals of two objects, mixed with Gaussian white noise, and the signal-to-noise ratio was
set to 30 [21–24]. We used the classical FFT algorithm, the localization algorithm based on
the OMP orthogonal matching tracking proposed in this paper, and the classical 2D-MUSIC
algorithm to estimate the positions and angles of two objects. The results are shown in
Figure 12a–e.
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Table 1. The simulation parameters of the FM signal and the antenna array used in this paper are set
as follows.

Simulation Experiment Parameter Type Set Value

Sampling interval Ts 1.25× 10−7 s
Chirp Periodicity T 3.2× 10−5 s

Number of chirp signal periods in one frame of IF signal N f 32
Aperture of the antenna array element L 0.0815 m
Number of antenna array elements Na 12

Linear FM slope of the chirp signal emitted by the antenna γ 78.986× 1012 Hz/s
Carrier frequency f0 78.8× 109 Hz

As exemplified in Figure 12b, the classical MUSIC algorithm only manages to distin-
guish one angle, and the angle estimate obtained by the solution is 1.26◦. This shows a
significant error compared to the preset values of −1.7◦, 1.4◦ in the simulation experiment.
Moreover, it is also quite challenging for FFT to distinguish two objects.

As depicted in Figure 12c,d, when the number of antenna elements is increased and
other parameters remain unchanged, MUSIC can exhibit wave peaks covering different
objects. However, the wave peaks are not clearly distinguished, even when the number of
antenna elements is increased, to a certain extent. At this point, the baseline FFT algorithm
can already distinguish two objects. This observation leads us to speculate that MUSIC
introduces some noise in the smoothing filtering process, leading to angle estimation errors.
Furthermore, its angle resolution is not exceptional when the number of antenna array
elements is small at a low signal-to-noise ratio.

However, when the signal-to-noise ratio of the signal increases, as demonstrated in
Figure 12e, MUSIC can distinguish two objects more effectively, while FFT fails to distin-
guish two objects. It is worth noting that the specialization filtering and spatial spectrum
estimation process of the classical MUSIC algorithm itself exhibits high algorithmic com-
plexity. In contrast, the algorithm proposed in this paper can estimate the two objects
remarkably well in the above cases, and the angle estimates are −1.62◦ and 1.43◦, re-
spectively. This is more similar to the true values of the angle settings, which further
underscores the superiority of the super-resolution capability of the proposed algorithm.
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SIC algorithm to estimate the positions and angles of two objects. The results are shown 
in Figure 12a–e. 
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Figure 12e, MUSIC can distinguish two objects more effectively, while FFT fails to distin-
guish two objects. It is worth noting that the specialization filtering and spatial spectrum 
estimation process of the classical MUSIC algorithm itself exhibits high algorithmic com-
plexity. In contrast, the algorithm proposed in this paper can estimate the two objects re-
markably well in the above cases, and the angle estimates are −1.62° and 1.43°, respec-
tively. This is more similar to the true values of the angle settings, which further under-
scores the superiority of the super-resolution capability of the proposed algorithm. 

We conducted the experiments for the above algorithms in the same code-running 
environment; the computer used was a Lenovo ThinkPad 2018, and its CPU processor 

Figure 12. (a) Simulation results using the classical baseline algorithm (FFT) and the OMP-based
localization algorithm proposed in this paper. (b) Comparison of the simulation results between the
conventional FFT algorithm and the MUSIC algorithm using the orthogonal matching tracking-based
localization algorithm in this paper with a 12-array uniform linear array, a signal-to-noise ratio of
30, and the number of snapshots set to 256. (c) Comparison of the simulation results between the
conventional FFT algorithm and the MUSIC algorithm using the orthogonal matching tracking-based
localization algorithm in this paper with a uniform linear array of 24 elements, a signal-to-noise ratio
of 30, and the number of snapshots set to 256. (d) Comparison of the simulation results between the
conventional FFT algorithm and the MUSIC algorithm using the orthogonal matching tracking-based
localization algorithm in this paper with a uniform linear array of 48 elements, a signal-to-noise ratio
of 30, and the number of snapshots set to 256. (e) Comparison of the simulation results between the
conventional FFT algorithm and the MUSIC algorithm using the orthogonal matching tracking-based
localization algorithm in this paper with a uniform linear array of 24 arrays, a signal-to-noise ratio of
50, and the number of snapshots set to 256.

We conducted the experiments for the above algorithms in the same code-running
environment; the computer used was a Lenovo ThinkPad 2018, and its CPU processor was
an Intel(R) Core™ i7−8550U CPU@1.80 GHz 1.99 Hz. Then, we could compare the running
times of the different algorithms in terms of the angular resolution that can be achieved
under different conditions, as shown in Table 2.

Table 2. Angular resolution and runtime of a 24-array antenna using different algorithms at different SNRs.

Different SNR FFT MUSIC OMP/Algorithm Proposed

Angle Resolution
20 19◦ 6◦ 0.10◦ 1 0.10◦

30 17◦ 4◦ 0.04◦ 0.05◦

50 15◦ 3◦ 0.04◦ 0.01◦

Running Time
20 0.61 s 5.11 s 1.91 s 2 1.45 s
30 0.59 s 5.08 s 1.84 s 1.37 s
50 0.70 s 5.24 s 2.14 s 1.41 s

1,2 In the “OMP/Algorithm proposed” column of “Angle Resolution” and “Running Time”, the left column
represents the angle resolution/running time of the traditional OMP algorithm, and the right column represents
the angle resolution/running time of the algorithm proposed in this paper.

To gain deeper insights into the performance of the three algorithms, we conducted a
comprehensive analysis of the root-mean-square error curves of angle estimation under
diverse signal-to-noise conditions for signal data, with all other parameters being the same.
The results of this analysis are presented in Figure 13.
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Figure 13. The root-mean-square error curves estimated using the proposed algorithm, the FFT
algorithm, and the MUSIC algorithm angles at different signal-to-noise ratios.

It is worth noting that the baseline FFT algorithm exhibits a higher mean-square error
in estimating the angle, whereas the mean-square error of MUSIC and the OMP-based
algorithm proposed in this paper are both relatively low. Moreover, when the signal-to-
noise ratio is low, the accuracy of MUSIC and the proposed algorithm are quite similar.
However, as the signal-to-noise ratio increases, the accuracy of the proposed algorithm is
better than that of MUSIC. This observation further underscores the superior stability of
the proposed algorithm under noise interference conditions.

6.2. Simulation Experiments on Improving the Positioning Accuracy of Aging Antenna Arrays
Using Particle Swarm-Based Algorithms

In this section, the localization performance of the antenna array arrangement ob-
tained by using the particle swarm optimization algorithm is verified through numerical
simulation experiments. Two objects are set to be detected by the antenna array, the angle
between their lines and the center of the antenna array and the y-axis are −0.31◦ and
0.35◦, respectively, and their distances from the center of the antenna array are 12.0 m and
12.2 m, respectively. Suppose one antenna array element in the original antenna array
near the detected object is aged, resulting in its inability to receive echoes and estimate its
own position, producing poor angular resolution, which may lead to the localization of
two objects in proximity to one object. By using the localization algorithm proposed in
Section 2.2 of this paper and the FFT algorithm, the aging antenna array is used to process
the echoes, and the localization results are obtained, as shown in Figure 14.

Assume that the original equivalent virtual antenna array has 86 arrays with uniform
linear distribution, and one of the antenna arrays fails because of aging. The arrangement
of the remaining 85 antenna elements was optimized using the particle swarm algorithm,
and we describe the flow of the optimization algorithm in Section 3. The optimal placement
of the virtual antenna array elements was obtained, as shown in Figure 15, then compared
with the estimated angles and distances obtained by positioning the non-aged antenna
array elements, as shown in Figure 16. We used the proposed algorithm and FFT again
on the optimized antenna virtual array for angle and distance estimation, and the results
are shown in Figure 17. Based on this, five Monte Carlo simulation experiments were
conducted, and five groups of angle and distance values were randomly selected, according
to the set FMCW radar detection distance and the angular field-of-view size, including one
group of small angles and four groups of large angles. The positioning results obtained
from the virtual array are shown in Table 3, Figure 18.
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Table 3. Comparison of the positioning results of the antenna array obtained by particle swarm
algorithm optimization with the original experimental settings.

Setting Values for
Five Experiments

Positioning Results of the Optimized Virtual Antenna Array Using the Algorithm
Proposed in This Paper

No. Ang * (◦) Dis (m) Ang Detected
(◦)

Ang Error
(◦)

Ang
Error-to-Ang

Dis Detected
(m)

Dis Error
(m)

Dis
Error-to-Dis

1
−0.30 11.99 −0.31 0.01 3.33% 11.99 0 0%
0.30 12.21 0.35 0.05 16.67% 12.21 0 0%

2
−30.00 6.90 −29.80 0.20 0.67% 6.88 0.02 0.29%
10.00 10.60 10.10 0.10 1% 10.61 0.01 0.09%

3
5.00 11.30 5.20 0.20 4% 11.39 0.09 0.80%

40.00 8.60 39.91 0.09 0.23% 8.61 0.01 0.12%

4
−50.00 1.30 −49.10 0.90 1.8% 1.29 0.01 0.77%
20.00 13.60 20.11 0.11 0.55% 13.78 0.18 1.32%

5
−10.00 9.30 −10.10 0.10 1% 9.29 0.01 0.11%

4.00 7.60 3.96 0.04 1% 7.49 0.11 1.45%

* Ang means angle, and Dis means distance.

As we can glean from Figures 14–18 and Table 3, the issue at hand revolves around the
aging antenna array, which is equivalent to missing array elements. This leads to the signal
pulling up the side flaps, thus causing a false alarm phenomenon in the proposed algorithm.
To rectify this issue, we employed the virtual antenna array after rearrangement by the
particle swarm algorithm-based array alignment algorithm in this paper, as its positioning
and resolution capabilities meet the requirements when using the positioning algorithm.

However, the estimation of the object angle shows some deviation from the original
experimental setting data, with the deviation range being 0.01◦~0.9◦. Conversely, the devia-
tion in the estimation of the distance dimension is very small, ranging from 0 to 0.18 m. The
maximum linear deviation distance of localization is 0.0030 m, which we believe can meet
the target application scenarios, such as autonomous driving. The array rearrangement
algorithm proposed in this paper can increase the robustness of the OMP-based super-
resolution low-complexity localization algorithm when the antenna array elements are
aging, ensuring that the antenna still exhibits a comparable localization accuracy.
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6.3. Experiment on Estimating the Trajectory and Velocity of An Object Using a Frame of the
IF Signal

We set the initial distance of two moving objects (people) from the antenna as 12 m;
the angle with the antenna array center line as 2◦ and −2◦, respectively; and the initial
velocity as 0 m/s. The echo signals of two moving objects detected by the FMCW radar
were analyzed and the dictionary was built in the same manner shown in Section 2.2. A
single frame of the chirp signal, which contains 32 cycles, was removed and processed
for distance domain compression and OMP-based orthogonal matching tracking; only the
distance domain-compressed images under the 8th, 16th, 26th, and 32nd cycles are shown
here (Figure 19a).
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domly within the FMCW radar detection range, according to their own will, and we did 
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Figure 19. The results of distance domain compression and trajectory generation for a frame of the IF
signal using the algorithm proposed in this paper. (a) Distance-domain compressed image of a frame
with a partial period of an IF signal; (b) angular and positional points of the corresponding objects at
different periods within a frame of the signal, generating trajectories by data correlation.

The targets to be measured in our experiment were two volunteers that moved ran-
domly within the FMCW radar detection range, according to their own will, and we did not
know their trajectories in advance. The experiment used a millimeter-wave radar module
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with a computer host computer for data acquisition. The sensor used was an HLK-LD7903A
millimeter-wave radar module, which was connected to a computer (PC) [3], and the PC
used was a Lenovo ThinkPad 2018. Its CPU processor was an Intel(R) Core™ i7-8550U
CPU@1.80 GHz 1.99 Hz. The experimental setup is shown in Figure 20.
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Figure 20. The experimental design for estimating the trajectory and velocity of an object using one
frame of the IF signal.

As shown in Figure 19a, the two target objects were initially at almost the same
distance from the antenna, after which the two objects moved away from each other, and
the distances gradually pulled apart. Using the localization algorithm mentioned in this
paper and the iterative algorithm in Section 4 until the signal was estimated for 32 cycles
within one frame of the signal, the results of the estimation of the position and angle Zn( f ),
i.e., the corresponding position points in each cycle of the different objects, were obtained.
The position and angle ranges were estimated using the position and angle resolutions,
except for the first cycle, and the estimates obtained by the algorithm in this paper were
used as the most probable distance and angle estimates for this cycle. The center of the
antenna array was used as the origin to establish the coordinate system [1], and all the
points that met the resolution requirements and were closest to the real position were
connected in a line to obtain the trajectory of multiple objects, as shown in Figure 19b.
The distance between the two objects in adjacent cycles was calculated, and their average
velocities in the cycle were obtained. The estimated velocities were compared with the
velocities of the objects at the corresponding moments in the actual simulation, as shown
in Figure 21. The velocity–distance domain FFT 3D maps of the signals of the two objects
in the 28th cycle of the second half of the motion are shown in Figure 22. Figure 23
shows the comparison between the results of the velocity estimation of two moving objects
using the velocity-dimension FFT algorithm and their actual velocities. The difference
between the velocities of the two detected targets and their actual velocities using the
algorithm proposed in this paper and the velocity-dimensional FFT method was taken as
the residual, as shown in Figure 24, for a comparison of the residuals of the results of the
velocity estimation of the objects using the two methods with the actual velocities. We
can see that the results of velocity estimation using this paper’s algorithm for object 2,
with small velocity variations, are close to the accuracy of the velocity-dimensional FFT.
For object 1, with more drastic velocity changes, the velocity estimation accuracy using
the algorithm in this paper is better than that of the velocity-dimensional FFT algorithm,
with an accuracy improvement of approximately 30%. Therefore, we believe that using
the algorithm proposed in this paper can accomplish the velocity estimation of objects
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using one frame of the IF signal, which can meet the demand for real-time velocity and
trajectory estimation.
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7. Conclusions

In this paper, we propose a low-complexity OMP-based super-resolution localization
algorithm based on the FMCW millimeter-wave radar model for the position and angle
estimation of objects for two-dimensional autonomous driving scenarios. The algorithm
improves the resolving power by 2 and 1 orders of magnitude, respectively, compared
to the classical FFT and MUSIC algorithms in the same signal-to-noise environment, and
its complexity can be reduced by about 25–30% with the same resolving power as the
OMP algorithm. Founded on the positioning algorithm proposed in this paper, we use an
algorithm model based on particle swarm optimization to rearrange the aging antenna array
for the problem of degradation of positioning accuracy. Using simulation experiments,
we show that our proposed virtual antenna array rearrangement algorithm can provide
an aging antenna array with the same positioning accuracy as that of an intact antenna.
Moreover, based on the localization algorithm proposed in this paper, the position and angle
of the object can be estimated from a single frame of the IF signal, and the motion trajectory
and velocity of multiple objects can be obtained. In this paper, simulations and experiments
are designed to verify the localization accuracy of the proposed algorithm, the feasibility of
improving the robustness of the algorithm when the antenna ages, and the trajectory and
velocity estimation in mobile scenarios. The experimental results show that the proposed
algorithm improves the super-resolution capability and stability under a low signal-to-
noise ratio compared with current widely used algorithms, such as FFT and MUSIC, for
the mobile scenario of autonomous driving, in addition to meeting real-time requirements.
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Appendix A

The pseudo-code for the algorithms mentioned in Sections 2.1 and 3 of this paper are
shown as Algorithms A1 and A2.

Algorithm A1: Compressive sensing localization algorithm under the condition that the number
of sources is unknown

Input: Observation Matrix A (the created sparse dictionary matrix), input signal sequence y,
maximum number of iterations is k, t is the number of iteration times, initialize residuals r0 = y,
orthogonal projection matrix P0 = 0, subspace index assemblies S = φ, recovery signal θt is a t× 1
dimensional vector.
Output: Sparse estimation of the signal x̂, residuals rk = y− Ak θ̂k.
1. Calculate index = argmaxi

∣∣AT
i rt
∣∣,

2. Put index into the set S, we get S = S ∪ {indext}, At = At−1 ∪ aindext .

3. Find the least squares solution of y = Atθt, θ̂t = argmin||y− Atθt|| =
(

AT
t At

)−1 AT
t y.

4. Update residuals ri = y− At θ̂t = y− At
(

AT
t At

)−1 AT
t y.

5. t = t + 1, If t ≤ k, judge: if |rt − rt−1| ≥ |rt| ∗ Thr, then return to step 2, otherwise execute step 6;
if t > k, stop iteration and execute step 6

6. Calculate: xs =
(

AT
S AS

)−1 AT
S b, get the value of the element in x whose corresponding position is S.

7. Return x̂

ri denotes the residual, φ is the empty set, indext represents the index (column number)
found in the tth iteration, S represents the set of indexes (column numbers) of t iterations,
aj denotes the jth column of matrix A, and At denotes the set of column vectors of matrix A
selected by index S.

Algorithm A2: Antenna element position optimization algorithm to ensure angle estimation accuracy

Input: Arrangement of the initial antenna array position AntLoc, location of antenna array
elements Xi, the best available antenna array pBest, maximum number of iterations N.
Output: Optimal antenna array arrangement gBest.
1. FOR each particle i
2. Initialize velocity Vi and position Xi for particle i

Evaluate particle i and set individual historical optimum pBesti = Xi
3. END FOR
4. Current optimal value of the fitness function gBest = min{pBesti}
5. WHILE not stop
6. FOR i = 1 to N
7. Update the velocity and p

optimisition of particle i
8. Evaluate particle i
9. IF fit (Xi) < fit (pBesti)

pBesti = Xi;
10. IF fit (pBesti) < fit (gBest)
11. gBest = pBesti;
12. END IF
13. END FOR
14. END WHILE
15. Output gBest
16. END Algorithm A2

The iterative operation of the algorithm to obtain the antenna array is a remaining
antenna array rearrangement of the virtual array after the aging of the antenna array.

Table A1 comprises a list of all the abbreviations that appear in the text.
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Table A1. The meaning of the abbreviations appearing in this document.

Abbreviations Appearing in This Article Added Content

FMCW frequency modulated continuous wave
SNR signal-to-noise ratio
PSO particle swarm optimization
FFT fast Fourier transform

OMP orthogonal matching pursuit
MUSIC multiple signal classification

ADC analogue-to-digital converter
PA power amplifier

LNA low-noise amplifier
TX transmit
RX receive

AOA angle of arrival
DOA direction of arrival
DFT discrete Fourier transform

In Section 3, we use the PSO algorithm rather than a simulated annealing algorithm or
a genetic algorithm. The reason why other algorithms are not used is that PSO has several
advantages compared to a simulated annealing algorithm and a genetic algorithm. The
advantages include:

Faster convergence: PSO can often converge to the optimal solution faster than simu-
lated annealing and genetic algorithms, especially when dealing with complex problems
with high dimensionality.

Simplicity: PSO is relatively simple and easy to implement compared to the other two
algorithms, making it more accessible for those new to optimization.

Robustness: PSO is quite robust and can handle noisy or incomplete datasets with ease.
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