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Abstract: Monitoring the shoreline over time is essential to quickly identify and mitigate environ-
mental issues such as coastal erosion. Monitoring using satellite images has two great advantages,
i.e., global coverage and frequent measurement updates; but adequate methods are needed to extract
shoreline information from such images. To this purpose, there are valuable non-supervised methods,
but more recent research has concentrated on deep learning because of its greater potential in terms
of generality, flexibility, and measurement accuracy, which, in contrast, derive from the information
contained in large datasets of labeled samples. The first problem to solve, therefore, lies in obtaining
large datasets suitable for this specific measurement problem, and this is a difficult task, typically
requiring human analysis of a large number of images. In this article, we propose a technique to
automatically create a dataset of labeled satellite images suitable for training machine learning models
for shoreline detection. The method is based on the integration of data from satellite photos and
data from certified, publicly accessible shoreline data. It involves several automatic processing steps,
aimed at building the best possible dataset, with images including both sea and land regions, and
correct labeling also in the presence of complicated water edges (which can be open or closed curves).
The use of independently certified measurements for labeling the satellite images avoids the great
work required to manually annotate them by visual inspection, as is done in other works in the
literature. This is especially true when convoluted shorelines are considered. In addition, possible
errors due to the subjective interpretation of satellite images are also eliminated. The method is
developed and used specifically to build a new dataset of Sentinel-2 images, denoted SNOWED; but is
applicable to different satellite images with trivial modifications. The accuracy of labels in SNOWED
is directly determined by the uncertainty of the shoreline data used, which leads to sub-pixel errors
in most cases. Furthermore, the quality of the SNOWED dataset is assessed through the visual
comparison of a random sample of images and their corresponding labels, and its functionality is
shown by training a neural model for sea–land segmentation.

Keywords: satellite monitoring; deep learning; sea–land segmentation; shoreline detection; AI-based
measurements; automatic labeled dataset construction; Sentinel-2; benchmark datasets

1. Introduction

Coastlines are crucial ecosystems with both environmental and economic significance,
as nearly half of the world’s population lives within 100 km of the sea [1]. These areas
face various threats, including, fishing, pollution, shipping, and various consequences
of climate change [2–4], making it imperative to monitor them for early detection of
potential issues such as coastal erosion, that can cause harm to the environment and
human settlements. Coastal monitoring can include detecting microplastics [5,6], and
monitoring seagrasses [7,8], water quality [9,10], and antibiotics pollution [11,12] among
others. Monitoring using in situ measurements is the most precise, but it can be costly
and time-consuming, especially for large areas and/or frequent measurements. Remote
sensing is an alternative solution that has evolved from aerial imagery taken from aircraft

Sensors 2023, 23, 4491. https://doi.org/10.3390/s23094491 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23094491
https://doi.org/10.3390/s23094491
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2632-7357
https://orcid.org/0000-0002-7827-1156
https://orcid.org/0000-0001-9209-4195
https://doi.org/10.3390/s23094491
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23094491?type=check_update&version=1


Sensors 2023, 23, 4491 2 of 18

for the use of Unmanned Aerial Vehicles (UAVs) and Unmanned Underwater Vehicles
(UUVs). Such methods of remote sensing offer advantages over in situ measurements, but
still require extensive human intervention and specialized technologies.

More recently, satellite imagery has become a promising additional monitoring tech-
nique. Satellite data are characterized by global coverage and high temporal resolution and
are often publicly accessible. Sentinel-2 and Landsat 8 are two of the most used Earth ob-
servation satellites, capturing multispectral images of the Earth’s surface with a resolution
of up to 10 m. They provide, for a wide range of users including governments, academic
institutions, and private companies, valuable information for monitoring changes in land
cover and land use, as well as for detecting and mapping natural hazards [13–15]. The
revisiting time of a few days enables near real-time monitoring of dynamic events on the
earth’s surface. The increasing demand for high-quality earth observation data makes
Sentinel-2 and Landsat 8 expected to remain key players in the earth observation satellite
market in the future.

Lines delimiting water regions may be extracted from satellite images using traditional
signal processing methods. Even in the AI era, these methods are valuable and often optimal
tools to extract information from signals and images [16–21]. As regards the specific topic
of coastline monitoring, edge detection algorithms are used in [16] for Sentinel Synthetic
Aperture Radar (SAR) images, obtaining an extracted coastline with a mean distance of
1 pixel from the reference shoreline, measured through in situ analysis. In [22] coastline
is achieved from very-high-resolution Pléiades imagery using the Normalized Difference
Water Index (NDWI), which is one of the most popular techniques for automatic coastline
extraction. NDWI is also used in [23], but, in this case, results are improved by using
repeated measurements and adaptive thresholding. Another example of traditional signal
processing for coastline detection is [18], where shorelines were extracted from multispectral
images using a new water-land index that enhances the contrast between water and land
pixels. Yet another example is [19], where unsupervised pixel classification is used for
extracting shorelines from high-resolution satellite images.

Sentinel-2 satellite images are frequently employed for the purpose of coastline extrac-
tion, owing to their high spatial resolution and multispectral capabilities. In [24], shoreline
changes in the Al Batinah region of Oman and the impact of Cyclone Kyarr are analyzed
using Sentinel-2 images and the Digital Shoreline Analysis System (DSAS). In [25], the
effectiveness of MODIS, Landsat 8, and Sentinel-2 in measuring regional shoreline changes
is compared. Shorelines are extracted, again, with the DSAS and Sentinel-2 is identified as
the most effective source of satellite images due to its higher spatial resolution. Another tool
proposed for shoreline extraction is the SHOREX system [26,27]. It is able to automatically
define the instantaneous shoreline position at a sub-pixel level from Landsat 8 and Sentinel
2 images. In [28], shoreline changes associated with volcanic activity in Anak Krakatau,
Indonesia, are analyzed using a NDWI-based method on Sentinel-2 multispectral imagery.

In more recent years, semantic interpretation of images is being performed more and
more by means of supervised machine learning, i.e., deep neural networks (DNN), due to
its successful applicability in very different fields and to very different kinds of images, and
shoreline extraction from satellite imagery is no exception [29,30]. The well-known U-Net
architecture [31], in particular, is often used for effective DNN-based coast monitoring
on a global scale [32–40]. Different types of satellite images have been used for this
purpose, including Sentinel-1 SAR images [32–34], Landsat 8 and Gaofen-1 multispectral
images [35,40], and true color images (TCI) from Google Earth [36–39]. In [41], eight deep
learning models, including different variations of U-Net, are used for coastline detection,
and their performances are compared. Other kinds of deep neural networks have also been
proposed for coastline detection. In [42], ALOS-2 SAR images are analyzed using a densely
connected neural network with two hidden layers. A multi-task network which includes
both a sea–land segmentation and a sea–land boundary detection module, named BS-Net
is instead proposed in [43].
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The key requirement to successful supervised machine learning is, of course, the
availability of large datasets of accurately labeled samples. The problem with coastline
detection from satellite images is that datasets of appropriate size are not common. A
possible solution is to build synthetic datasets, i.e., a collection of artificially generated
realistic images, produced by a computer program together with the associated “exact” la-
bels. Synthetic datasets have been built and used successfully in many applications [44–46],
but their construction is unpractical for satellite images, which contain complex patterns
difficult to reproduce realistically with computer graphics. This is true for TCI images and
even more for images in other spectral bands. Manual labeling, based on visual interpre-
tation of TCIs, is a long and boring task, but usable effectively as long as the shorelines
are comparatively simple, e.g., with sea and land separated by a single line; when many
images in the dataset have elaborate shorelines (as in the example that will be shown later),
it becomes impractical and very burdensome.

The present paper, extending the preliminary research in [47] (where a much smaller
dataset is obtained), presents a method for automatically building a dataset of labeled
satellite images for sea–land segmentation and shoreline detection. The method is based
on the usage of publicly available shoreline data, together with publicly available satellite
images. In particular, the method is developed to use shoreline data from the National
Oceanic and Atmospheric Administration (NOAA) and satellite images from Copernicus
Sentinel 2 project, obtaining the “Sentinel2-NOAA Water Edges Dataset” (SNOWED) [48],
whose main features are the following.

• SNOWED is constructed with a fully automatic algorithm, without human interven-
tion or interpretations.

• SNOWED is annotated using certified shoreline measurements.
• SNOWED contains satellite images of different types of coasts, located in a wide

geographical area, including images related to very elaborate shorelines.

One intrinsic drawback of the automatic generation process is that some satellite
images can contain water regions not included in the shoreline data used for labeling it
and, hence, may have an incomplete label. This problem is however identified and handled
as described in Section 4.1.

With respect to other datasets of this type that have been proposed in recent years,
the method presented in the paper to generate the SNOWED dataset is characterized
by some innovative aspects. Datasets found in the literature are all based on the visual
interpretation of satellite images and require therefore a strong human effort for labeling.
Furthermore, the accuracy of sea/land segmentation labels depends directly on the quality
of satellite images selected for the dataset and on how well they can be visually interpreted
by humans. The methodology designed and implemented for this work uses instead
independent measurements to automatically generate the labeled dataset, without any
human intervention. This translates both to avoidance of tiresome human work and to the
generation of sea/land labels having known and very low uncertainty. In addition, by using
the proposed method, the source of satellite images (which is the Sentinel 2 project in the
case of SNOWED) can be easily changed while using still the same shoreline measurements,
leading to broader possibilities of application.

The paper is organized as follows. In Section 2, a review of the available datasets of
satellite images for sea/land segmentation tasks is presented. In Section 3, the automatic
dataset generation procedure is presented. In Section 4, results of the application of the
proposed generation method are reported, together with quality assessment results. In
Section 5 are the conclusions.

2. Publicly Available Datasets of Satellite Images for Sea/Land Segmentation

The aim of this section is to illustrate the already available public datasets developed
for training deep learning models for sea/land segmentation. Particular attention is
dedicated to the general characteristics of the provided datasets and to the generation
process used to obtain them. This is useful to understand the novelty and relevance of the
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proposed work, and to conveniently compare the proposed SNOWED dataset with the
other available alternatives.

Two major features are considered for each dataset: the number of samples containing
both water and land pixels, and the source of labeling information. These features are
indeed the only ones strictly related to the effectiveness of a dataset for training a neural
network. We consider the number of images containing both land and sea, rather than
the absolute number of images, because samples containing only one class can be trivially
extracted from large areas that are known to contain only sea or only land. Besides, we
highlight that the source of labeling information determines the accuracy of the labels, and
hence the accuracy of models trained using the dataset.

2.1. Water Segmentation Data Set (QueryPlanet Project)

The water segmentation data set [49] has been created as a part of the QueryPlanet
project, which has been funded by the European Space Agency (ESA). The dataset is
composed of satellite images of size 64 × 64 from the Sentinel-2 Level-1C product. Each of
them has been manually labeled by volunteer users of a collaborative web app. Volunteers
were prompted with an initial label obtained by calculating the NDWI [50] and had to
visually compare it with the corresponding satellite TCI and correct eventual discrepancies
based on their interpretation of the image. The online labeling campaign led to the creation
of 7671 samples, but only 5177 of them contain both sea and land pixels.

2.2. Sea–Land Segmentation Benchmark Dataset

The dataset proposed in [51] contains labeled Landsat-8 Operational Land Imager
(OLI) satellite images, of different types of Chinese shorelines: sandy, muddy, artificial and
rocky coasts. The labels of the dataset are obtained through a multi-step human annotation
procedure. First, Landset-8 OLI images with less than 5% cloud cover are selected along
the Chinese shoreline. These images are pre-processed by applying radiometric calibration
and atmospheric correction and then are manually annotated by dividing all their pixels
into two classes: sea and land. Finally, satellite images are cut into small patches and each
patch is checked to remove the defective ones (e.g., blank and cloud-covered patches). At
the end of the procedure, 3361 images of size 512 × 512 are obtained, but only 831 of them
contain both classes.

2.3. YTU-WaterNet

The YTU-WaterNet dataset proposed in [52] contains Landsat-8 OLI images too. The
dataset is created starting from 63 Landsat-8 OLI full-frames containing coastal regions of
Europe, South and North America, and Africa. Only the blue, red and near-infrared bands
are used for the samples of the dataset to reduce the dataset size and the computational
load needed for training operations. The satellite images are cut into 512 × 512 patches and
binary segmented by exploiting OpenStreetMap (OSM) water polygons data [43]. OSM
data is created by volunteers based on their geographical knowledge of the area or on
visual interpretation of satellite images. This data is available as vector polygons, which
are then converted to raster images representing the water regions of the sample. Finally, a
filtering operation is performed to eliminate cloud-covered samples and samples with only
one class, while samples with a mismatching label are identified and eliminated by visual
inspection. The YTU-WaterNet dataset contains 1008 images.

2.4. Sentinel-2 Water Edges Dataset (SWED)

The most recent dataset is the Sentinel-2 Water Edges Dataset (SWED), proposed in a
research work supported by the UK Hydrographic Office [53]. SWED uses Sentinel-2 Level-
2A imagery, semantically annotated through a semi-automatic procedure. The first step of
the dataset creation process is the selection of Sentinel-2 images between 2017 and 2021.
Only clear and cloud-free images are selected, by filtering on the ‘cloudy pixel percentage’
metadata associated with each image, and then by visually inspecting the obtained search
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results. Furthermore, images are manually selected to cover a wide variety of geographical
areas and types of coasts. A water/non-water segmentation mask is therefore created
for each of the selected Sentinel-2 images. First, a false color image with visually good
contrast between water and non-water pixels is searched by trial and error among those
that can be obtained by rendering different combinations of Sentinel-2 bands in the RGB
channels. The selected combination of bands is not the same for each image, although three
combinations are found to be a good starting point. Secondly, a manually refined k-means-
based procedure is applied to the rendered false color images to collect their pixels into two
clusters, corresponding to water and non-water regions. Finally, segmentation masks are
manually corrected by visual comparison against high-resolution aerial imagery available
on Google Earth and Bing Maps. This imagery is, however, obtained as a composition of
multiple images acquired on different and not precisely known dates, and therefore in some
cases can represent inaccurately the actual state of the coasts at the Sentinel-2 acquisition
time. The SWED dataset contains 26,468 images of size 256 × 256, cut from the annotated
Sentinel-2 full-tiles, but only 9013 of them contain both classes.

2.5. Summary of the Characteristics of the Already Available Datasets, and of the New
SNOWED Dataset

The described datasets are the result of a very intense effort and provide solid solutions
for training and benchmarking machine learning models for shoreline recognition. Of
course, a larger number of samples, or another dataset that can be used together with them,
is desirable. Another improvable feature is the labeling process accuracy: a specific quality
assurance on the shoreline labels would be a clear plus.

The methodology described in this work aims precisely at these goals: providing
further samples useful for training neural models for satellite coastline measurements,
along with labels coming from certified coastline measurements.

Table 1 summarizes the main characteristics of the four datasets in the literature
described in this section, and those of the SNOWED dataset obtained with the procedure
illustrated in the present work. The number of images reported in Table 1 refers to images
containing both sea and land classes. As can be seen, the image size is not the same for all
the datasets and therefore a conversion is needed to directly compare the number of images
of the two datasets. For example, the 1008 512×512 images of YTU-WaterNet correspond
to 4032 256 × 256 images.

Table 1. Main characteristics of the four examined datasets. The same characteristics for the new
SNOWED dataset are included for comparison. They highlight that SNOWED (i) is compatible with,
and adds up, to SWED; (ii) uses NOAA measurements, instead of human interpretation of images.

Dataset ID N. of Images Image Size Source of Coastline Data

QueryPlanet [49] 5177 64 × 64 Human interpretation of TCI images

Sea–land segmentation
benchmark dataset [51] 831 512 × 512 Human interpretation of TCI images

YTU-WaterNet [52] 1008 512 × 512 Human-generated OpenStreetMap water polygons data

SWED [53] 9013 256 × 256 Human interpretation of high-resolution aerial imagery
available in Google Earth and Bing Maps

SNOWED 4334 256 × 256 U.S. NOAA shoreline measurements

3. Data and Methods

The methodology presented in this paper consists in combining publicly available
satellite images and shoreline data. This is a non-trivial task since many preprocessing
operations and quality checks are needed to obtain accurately annotated samples. The
methodology, and the involved processing, are illustrated with the concrete construction
of a dataset, where the source of satellite imagery is the Level-1C data product of the
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Sentinel-2 mission, and the source of shoreline data is the Continually Updated Shoreline
Product (CUSP).

3.1. Data Sources
3.1.1. Sentinel-2 Satellite Imagery

The Sentinel-2 mission consists of a constellation of two satellites for Earth observation,
phased at 180◦ to each other to provide a revisit period of at most 5 days. The satellites
are equipped with the MultiSpectral Instrument (MSI) that acquires images in 13 spectral
bands, with spatial resolutions up to 10 m (four bands have a resolution of 10 m, six bands
have a resolution of 20 m, three bands have a resolution of 60 m). Level-1C data products
provide Top-Of-Atmosphere reflectances measured through the MSI as 100 × 100 km2

ortho-images (tiles) in UTM/WGS84 projection [54]. Level-1C data covers all continental
land and sea water up to 20 km from the coast, from June 2015 to the current date [55].

Sentinel-2 data has been selected since this mission provides better performances
compared to other public continuous Earth observation missions, in terms of both spatial
resolution and revisit period. Landsat 8/9 mission, for example, has a spatial resolution of
at most 15 m and a revisit period of 8 days. The choice of satellite imagery data sources,
however, is not a conditioning factor for the dataset creation process and other products
can be used with few trivial changes in the procedure.

3.1.2. Shoreline Data

CUSP is developed by U.S. NOAA with the aim of providing essential information
to manage coastal areas and conduct environmental analyses. This dataset includes all
continental U.S. shoreline with portions of Alaska, Hawaii, the U.S. Virgin Islands, Pacific
Islands, and Puerto Rico. CUSP provides the mean-high water shoreline, measured through
vertical modeling or image interpretation using both water level stations and/or shoreline
indicators. All data included in CUSP is verified by contemporary imagery or shoreline
from other sources [56]. Another important feature of CUSP is that the shoreline is split into
shorter paths and each of them has additional information associated, including the date
and type of source data used to measure the shoreline, the type of coast and the horizontal
accuracy, which represents the circular error at the 95% confidence level [57]. An analysis of
the horizontal accuracy shows that 90% of paths have measurement errors ≤ 10 m, while
99.97% of paths have measurement errors ≤ 20 m. NOAA’s CUSP paths have therefore a
very high accuracy, comparable and, in most cases, overcoming the resolution of Sentinel
2 imagery. To our knowledge, NOAA’s CUSP is the only publicly available source of
shoreline data with these features, which are essential to perform the dataset generation
procedure proposed in this work. In principle, nothing prevents one from using other sets
of shoreline measurements, with the same essential features, i.e., geographic coordinates,
date, high accuracy, and possibly the measurement method.

3.2. Shoreline Data Preprocessing (Selection and Merging)

A preliminary filtering operation is performed on CUSP data to exclude shoreline that
has been extracted from observations prior to the Sentinel-2 mission launch in June 2015.
A representation of the shoreline remaining after this preliminary operation is depicted
in the map of North America in Figure 1 which shows that locations of useful shorelines
are very heterogeneous, spanning most areas of the U.S. coast. This is an advantageous
feature since it guarantees a great variability of the satellite images included in the final
produced dataset.

Selected shoreline paths that share one terminal point and have the same date are
then merged, in order to optimize the satellite images selection procedure described in
the following. Statistics about the NOAA CUSP shoreline data and the selected paths are
reported in Table 2.
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Table 2. Statistics about the NOAA’s CUSP shoreline data.

Initial number of paths 779,954

Total length of the paths 403,707 km

Number of selected paths 221,331

Total length of selected paths 107,600 km

Number of paths after merging 126,938

3.3. Selection of Satellite Images

In the practical implementation of the procedure, we have obtained the Sentinel-
2 Level-1C tiles of our interest, which are 10, 980 × 10, 980 pixels, using the Plateforme
d’Exploitation des Produits Sentinel of the Centre National d’études Spatiales (PEPS CNES) [58].

Satellite images are selected on the basis of the location and the date of the merged
shoreline paths obtained in the former step. It is important here to clarify the issue of dates
and times of satellite images and on-field measurements used for labeling.

Obviously, the ideal situation is to have perfect simultaneity between the acquisition of
the satellite image and the field measurements of the area it takes. It is easy to understand,
however, that this situation is unfeasible and never occurs in practice.

Even when in situ measurements are made specifically for image labeling, simultaneity
is not achieved in practice (see e.g., [7]). Satellite images, indeed, are taken at intervals of
some days (5 days in the case of Sentinel-2), and an image is not always usable, due to
the presence of clouds or other causes: hence, usable images have dates that cannot be
chosen as desired by the user and can be spaced between them by many days. For this
same reason, satellite monitoring is not designed to keep track of changes that occur in a
few hours, but of changes over months and years. In general, one must always choose the
image with the date nearer to that of interest. When labeling a dataset, the date of the image
must be as close as possible to that of the in situ measurement.

On the basis of the above consideration, PEPS CNES has been queried according to
the following criteria.

• Sentinel tiles must contain the shoreline path.
• Cloud cover of Sentinel tiles must be lesser than 10% (parameter: cloud_cover).
• Sentinel tiles acquisition date must be at most 30 days (parameter: time_difference)

before or after the shoreline date.

The time difference between satellite images and NOAA CUSP measurements is
exactly known and recorded in the dataset. It never exceeds the parameter time_difference:
otherwise, the data sample is not generated. When more than one result is obtained, the
tile having the acquisition date closest to the shoreline date is selected.

It is possible to choose different values for the parameters cloud_cover and time_difference.
A value of cloud_cover > 10% generates more dataset samples, but it is more likely that they
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will be discarded in the following steps (see Section 3.4), due to the presence of clouds. A
parameter time_difference < 30 days generates fewer dataset samples, but the shorelines in
the obtained images are likely to be negligibly different since the resolution of Sentinel-2 is
10 m / pixel, and therefore only changes of the order of tens of meters are important. In
any case, a time_difference < 10 days is not reasonable due to the revisit time of Sentinel-2.

The selection obtained with these constraints has been found to provide a good
compromise between the computational resources required to generate the dataset (directly
related to the number of selected tiles) and the final size of the dataset, which can grow if
more tiles, and hence more shoreline paths, are considered. It is worth highlighting that:

(1) The quality of each sample generated with this method is assured by later checks,
which are also automatic, being based on Sentinel data themselves (see Section 3, in
particular, Section 3.4). For example, the presence of clouds in localized areas of the
tile is not detrimental.

(2) Further releasing the constraints (cloud coverage and time difference) do not lead,
ultimately, to a significant increase in the dataset’s size.

The described procedure has obtained 987 tiles, containing 102,283 shoreline paths
(about 20% less than the overall number of paths).

3.4. Extraction of Samples and Labeling

The selected Sentinel-2 tiles are then downloaded and processed singularly to extract
the semantically annotated samples. Two preliminary operations are performed before the
actual extraction phase.

First, Level-2A products are generated from Level-1C products using the sen2cor
processor [59]. Level-2A products are composed of (i) a scene classification (SC) mask and
(ii) surface reflectance obtained through atmospheric correction [60]. The SC mask assigns
one of 12 classes (including water, vegetated and non-vegetated land, and clouds) to each
pixel of the tile and is the only data needed in subsequent steps.

Second, the shoreline paths associated with each Sentinel tile are projected to the plane
of the UTM/WGS84 zone containing the Sentinel tile. The UTM coordinates of the vertices
of the Sentinel tile in the plane of the UTM zone are also known (they can be downloaded
from [61]), and thus the pixel coordinates of the shoreline points inside the tile can be
computed.

The 10, 980 × 10, 980 pixels Sentinel tile is then split into sub-tiles of size 256 × 256,
among which the samples of the dataset are selected. The sub-tile size has been chosen so
that a direct comparison, and a side-to-side utilization, is possible of the obtained dataset
and that described in [53], the most recent and numerous for water segmentation in the
literature. In Figure 2 an example of a sub-tiling grid is depicted.

The subsequent processing involves only sub-tiles containing shoreline paths, as
shown in Figure 2. The basic task is to create, for each sub-tile, a binary segmentation map
based on NOAA CUSP shoreline paths. This operation is of some complexity and must be
illustrated in detail.

First of all, we specify that, for any sub-tile, all shoreline paths partially or completely
contained in it are considered, independent of their date. A strict constraint on the dates of all
the used shoreline segments leads to discarding many sub-tiles, due to the short shoreline
segments with dates too different from that of the tile. Instead, completing the shoreline
including also short segments measured in different dates allows the construction of a
dataset with much more sample, without compromising meaningfully the quality of the
shoreline data. Besides, the date of each shoreline path is supplied in the dataset, so that
samples can be later selected, if deemed useful, according to arbitrary constraints on the
time difference between the Sentinel date and the CUSP shoreline dates.

The process used for generating the binary segmentation mask of sub-tiles from CUSP
shoreline paths is depicted in Figure 3. As a first step, shoreline paths completely or
partially contained in the sub-tile are selected (Figure 3a). The second step is to merge
contacting paths: merged paths, depicted with different colors in Figure 3b, can be closed
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(e.g., the light green path and the gray path) or open (e.g., the orange, blue and red paths).
If open paths have an end inside the sub-tile, the sub-tile is discarded; otherwise, paths
are clipped using the sub-tile borders as the clipping window. Only closed polygons are
obtained after this operation, as shown in Figure 3c. To obtain a binary mask, polygons
are filled with ones and summed, producing the matrix in Figure 3d; finally, a binary map
(Figure 3e) is obtained by selecting the even and odds elements of the matrix in Figure 3d.
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2A SC layer, depicted in Figure 4 for the case considered in Figure 3. The class in the mask 
containing more Level-2A water pixels is categorized as water, while the class containing 
more non-water Level-2A pixels is categorized as land. The SC layer is also used to eval-
uate the correctness of the label. In particular, the sub-tile is discarded if the water class 
and land class contain less than 80% Level-2A water pixels and non-water pixels, respec-
tively. 

Figure 3. Steps for generating the binary segmentation mask for a sample of the dataset. (a) Selection
of the shoreline paths inside the sub-tile. Paths with dates compatible with the Sentinel-2 tile’s date
are depicted in red and the other paths in yellow. (b) Merging of contacting paths. Distinct merged
paths are depicted using different colors, while the sub-tile border is in black. (c) Clipping of merged
paths using the sub-tile border as the clipping window. After this stage, closed polygons are obtained.
(d) Starting from a zero-filled matrix of the sub-tile, ones are added in the regions defined by the
polygons. (e) A binary map is obtained by classifying the pixels of matrix (d) into even and odds.
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The segmentation label of the sub-tile is created by assigning water and land categories
to the two classes of the mask in Figure 3e based on the previously computed Level-2A
SC layer, depicted in Figure 4 for the case considered in Figure 3. The class in the mask
containing more Level-2A water pixels is categorized as water, while the class containing
more non-water Level-2A pixels is categorized as land. The SC layer is also used to evaluate
the correctness of the label. In particular, the sub-tile is discarded if the water class and
land class contain less than 80% Level-2A water pixels and non-water pixels, respectively.
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Figure 4. Sentinel-2 Level-2A scene classification (SC) mask of the sub-tile in Figure 3. For the sake of
clarity, the legend includes all the 12 classes provided by Level-2A SC, although only some of them
are identified in this case.

3.5. Overview of the Dataset Generation Procedure

For the sake of clarity, a flowchart of the previously described dataset generation
method is depicted in Figure 5. The proposed method is an original solution, and each
step except one (marked with a solid line) has been designed and implemented purposely
for this work. The flowchart highlights the novelty of this method compared to others
reported in the literature and reviewed in Section 2. In these works, sea/land labeling is
fundamentally based on the human interpretation of satellite imagery, while the proposed
method uses shoreline measurements from NOAA CUSP as a source for automatic labeling.

In the flowchart in Figure 5, operations with a gray background, namely B and C, are
specific to Sentinel 2 and need major refactoring if other imagery sources are used. All
the other operations require instead only trivial changes. The general logic and overall
procedure for dataset generation are, however, the same even if other imagery sources are
used. Furthermore, the changes required for operations B and C are not substantial. In
particular, for operation B, the same constraints for selecting satellite images must be used
to query the appropriate satellite imagery platform (PEPS CNES is used in this work for
Sentinel images). For operation C, the only required output is a low-accuracy sea/land
classification of the satellite image, used later in operation H, and this can be easily obtained
e.g., by computing the NDWI.
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Figure 5. Flowchart of the proposed method. Details about each operation are provided in the
previous subsections. Operations performed with novel methods, proposed in the paper, are marked
with a dashed blue line. Operations performed with known methods are marked with a solid blue
line. Operations with gray backgrounds are those specific for Sentinel 2 imagery.

4. Results and Discussion

The annotated dataset generated using the proposed method counts 4334 samples of
size 256 × 256 containing both water and land pixels. The dataset has been built retrieving
all 13 Sentinel-2 MSI bands, which are therefore all present in each sample. The resolution
of Sentinel-2 images is different for the various bands, the best being 10 m per pixel. The
images in all 13 bands have been linearly rescaled to a uniform 10 m per pixel spatial
resolution, a standard operation that allows one to have all the images in a single 3-d array.
Each sample is provided with the water/land segmentation label and with the following
additional information.

• Level-2A SC mask.
• Shoreline paths are used for labeling, each with its measurement date.
• PEPS CNES identifier of the Sentinel-2 Level-1C tile.
• Acquisition date of the Sentinel-2 Level-1C tile.
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• Pixels offset of the sub-tile in the complete Sentinel-2 image.

Some examples taken from the generated dataset are depicted in Figure 6. It is possible
to appreciate the accuracy of the labeling, especially in the two cases of complicated water
edges.
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Figure 6. Examples of semantically annotated Sentinel-2 satellite images (true color image on the left)
and labels (on the right) contained in the proposed dataset.

In the next subsections, the quality of the dataset is assessed both visually, by compar-
ing images of a random subset of the dataset with their corresponding labels, and from a
functional point of view, by training and testing a deep learning model using SNOWED.

4.1. Dataset Visual Quality Assessment

In premise, it is important to remember that any dataset is prone to including in-
consistent labels. In datasets that are manually labeled by subject matter experts there is
room for human mistakes and subjective interpretations; in automatically labeled datasets
problems may arise from intrinsic imperfections in the labeling algorithm. The problem of
inconsistent labels is negligible only in synthetically generated datasets, which, in contrast,
are prone to providing samples not similar enough to the actual samples with which the
model must work. Therefore, assessing the quality of a dataset, and providing methods to
improve it, can be considered a good metrological practice, always advisable.

The automatic method presented here to construct the dataset, together with its clear
advantages, has an intrinsic drawback, that occasionally produces samples with incomplete
labels. The problem arises from the fact that, in general, there is no guarantee that the set
of measured shorelines includes all the water edges in each sample. In the case of SNOWED, a
Sentinel-2 sub-tile may include water edges that have not been measured and included
in CUSP NOAA. This problem can be avoided only by using a (hypothetical) collection
of shorelines that is guaranteed to include all the water edges present in a large enough
geographic region. This is not the case with NOAA CUSP.

Because of the considerations above, we provide here a procedure to check, assess and
improve the dataset quality.

Any single sample of the dataset can be checked by inspecting three images provided
in it, i.e., the TCI, the label, and the Sentinel-2 scene classification, as shown in Figure 7.
The TCI and the label are visually compared, and the Sentinel-2 SC is used as a guide. It is
important to remember that the latter image may only serve as a guide for a human, and
not for an automatic check: the scene classification is, indeed, not very accurate, and in
some cases misclassifies regions of the satellite image.
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In Figure 7 it is clear that, in the upper left corner, there is a small water edge, and
therefore a small portion of land, not included in the label. This water edge was simply not
present in NOAA CUSP and is of a length comparable with that of the labeled water edge
in the sample. This sample, therefore, is considered “bad”.

In Figure 8, instead, there is a sample that we consider “suspect”. In this sample, the
main shoreline is clear and labeled, but there is a small region which is classified as water
by Sentinel-2 SC and as land according NOAA CUSP. It is not obvious if the water edge
is real or not—a further check with an independent source should be made, e.g., using
commercial satellite imagery with very high resolution—and the (possibly) missing edge is
much shorter than the labeled one.

We want to highlight that, together with “bad” and “suspect” samples, the dataset has
many samples that are “particularly good”, in the sense that the label includes elaborated
shorelines, difficult to recognize by a human, and that the label is also completely ignored
by Sentinel-2 SC. An example is in Figure 9.
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We have assessed the dataset quality by checking a randomly selected subset of
n = 200 samples, out of N = 4334 sample total. In the selected samples, we found five
“bad” samples, with clearly incomplete labels, and 30 “suspect” samples, with possibly
incomplete labels and ambiguous interpretation. The point estimate of the fraction of “bad”
and “suspect” samples in a dataset (a conservative estimate of the fraction of improvable
samples) is therefore:

p̂ =
35

200
= 17.5%

and the 95% confidence interval for this fraction is, approximately:

p95% = p̂ ± 1.96

√
p̂(1 − p̂)

n
N − n
N − 1

= (17.5 ± 5.1)%

where the Gaussian approximation of the hypergeometric distribution has been applied,
taking into account the term (N − n)/(N − 1) to correctly account for the sampling without
replacement in the acceptance sampling procedure [62,63].

The samples in this fraction can be further processed, by humans or by an algorithm
using a different source of water edge data, to improve the labeling. It can also be discarded,
even if this choice does not seem appropriate for the “suspect” samples, whose labels always
include the “main” shorelines in the image.

In the next subsection, the dataset is used “as is”, without discarding or correcting
neither the bad samples nor the suspect ones found in the assessment process. It is shown
that the dataset trains quite effectively a simple neural model for shoreline detection.

4.2. Example Application of the Dataset

The SNOWED dataset has been employed to train a standard U-Net segmentation
model [31]. The dataset has been shuffled and then split into a training and a validation
subset, corresponding to 80% and 20% of the samples respectively. Afterwards, the U-Net
neural network has been trained for 30 epochs, using the Adam optimizer [64]. Cross-
entropy has been used as a loss function in the optimization, while mean intersection over
union (IoU) is the metric to evaluate the performance of the neural model.

The training process is depicted in Figure 10. The final mean IoU for the validation
set, obtained after completing the training phase, is 0.936. In Figure 11, the sea/land
segmentation masks produced by the trained U-Net model for the first four samples of the
validation set are depicted. The visual inspection of these results shows that an accurate
sea/water segmentation is obtained, even if we used the standard U-Net model without
any further optimization.
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Figure 11. (a–d) Sea/land segmentation results obtained with the trained U-Net model for the first
four samples of the validation set.

5. Conclusions

Measuring boundaries between land and water is important for understanding and
managing environmental phenomena like erosion, accretion, sea level rise, etc. Measure-
ments from satellite imagery are particularly useful to provide consistent information over
large areas and long periods of time (even if with limited spatial resolution). There is
not a single best method to measure shorelines using satellite data, but artificial intelli-
gence techniques are also acquiring more and more importance in this field. Therefore,
recent research is devoted to the construction of datasets of satellite images with shoreline
labels, customarily obtained with human work of image interpretation and annotation.
Constructing datasets with human intervention has obvious costs and drawbacks, which
are especially meaningful considering that a dataset of labeled images of a given satellite
cannot be used to work with images of other satellites.

Based on these considerations, we have focused on the task of constructing a labeled
dataset of satellite images for shoreline detection without any human intervention. The algo-
rithm uses NOAA CUSP shoreline data to properly select and annotate satellite images. By
annotating Sentinel-2 Level-1C images, the algorithm has constructed the SNOWED dataset,
which can be used alongside the very recent SWED dataset. With minimal adjustments, the
algorithm can be used to construct datasets for different satellites.

The concept and results presented in this work show that it is possible, in general,
to construct readily a dataset of labeled satellite images, if a set of in situ measurements
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with geographic and temporal data are available. Therefore, satellite monitoring and
measurements can receive a great boost by increasing the public availability of measurement
data coming from accurate ground surveys.
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