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Abstract: Optimizing the bias modulation of a fiber-optic gyroscope is crucial to improving its
precision. In this study, we propose and demonstrate the use of multiple harmonics of sinusoidal
modulation as an intermediate alternative to the widely used modulation methods: sinusoidal and
square-wave modulation. We show that this alternative integrates the advantages of each modulation
method by providing a smooth modulation that produces a clean, spike-free output and a satisfactory
signal-to-noise ratio. By using three harmonics of modulation in combination with a high frequency
to reduce thermal phase noise, we obtained an angular random walk of 5.2(2) µdeg/

√
h and a bias

instability of ∼10 µdeg/h. This is the highest performance ever reported for fiber-optic gyroscopes.

Keywords: fiber-optic gyroscope; multiple harmonics; sinusoidal bias modulation; relative-intensity
noise; thermal-phase noise

1. Introduction

Inertial rotational motion detection is an essential requirement in the fields of iner-
tial navigation and geophysics. Based on the Sagnac effect, interferometric fiber-optic
gyroscopes (FOGs) measure the phase difference of two counterpropagating light waves
traveling through a fiber coil. In recent years, FOGs have received extensive attention
and research [1–3] because of their light weight, high reliability, wide dynamic range, and
long life.

For demanding applications, including inertial navigation and geophysics, improving
the precision of an FOG is crucial. The precision of an FOG can be improved by either
increasing its scale factor, which is proportional to the coil diameter and length, or reducing
its amount of phase noise [4]. Giant FOGs with large coil diameters of over a meter are
promising for studying geophysical phenomena [4,5]. Using longer fibers is also possible
at the expense of increased shot noise contributions due to optical attenuation. While
considering the effects of shot noise, the optimal coil length is a few kilometers [6].

Reducing phase noise is especially important in applications regarding inertial naviga-
tion because the precision can be improved without increasing the size of the coil [4,7]. In
an FOG interrogated by incoherent light, four types of noise dominate [8]: relative-intensity
noise (RIN) [9–12], thermal-phase noise (TPN) [13–15], shot noise (SN), and detection noise
(DN). While SN and DN can be kept sufficiently small using high-power laser sources
and low-noise detection instruments, ultimately, RIN and TPN are the limiting factors in
current FOGs. To reduce TPN, high modulation frequencies can be used. This has been
demonstrated in previous experiments that are based on using a 30 km-long single-mode
(SM) fiber coil [16]. Several techniques were demonstrated to reduce the effects of RIN:
using noise subtraction by either electronic [17] or optical [18–20] means; with an interfero-
metric filter [21]; with a fiber ring resonator [22]; using a semiconductor amplifier [23]; and
by current feedback [24].
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To properly identify the rotation direction, an FOG utilizes dynamic biasing phase
modulation. Optimization of the bias modulation is essential for reducing the phase
noise [25]. Two different types of modulation are used on FOGs: sinusoidal and square-
wave modulation (SWM). Sinusoidal modulation is popular in open-loop-based FOG since
it can be easily achieved with commercial lock-in amplifiers. On the other hand, in terms
of maximizing the ratio between the sensitivity and RIN, SWM is preferred [25]. This is
because the signal is proportional to sin(φ), where φ is the modulation amplitude, while
RIN is proportional to 1 + cos(φ). Regarding a modulation depth near φ = π, both the
signal and RIN converge to zero, but the signal-to-noise ratio diverges to infinity [25].

Unfortunately, using SWM has disadvantages. When the modulation voltage switches
at a finite speed, spikes are generated in the detected signal. Spikes can be partially removed
from the signal by analog or optical switching [25] or digital processing. However, since
the temporal shape of the spike is determined only by the bandwidth of the modulation
and detection elements and is independent of the frequency, the temporal density of spikes
increases with frequency. A large portion of the signal must be removed at high modu-
lation frequencies, which deteriorates the sensitivity. Therefore, the following dilemma
arises: choosing a high modulation frequency that favors TPN reduction or using SWM,
which reduces RIN but is incompatible with high modulation frequencies due to the spike
problem.

In this paper, we propose the use of multi-harmonic modulation for solving this
dilemma. A modulation signal with multiple harmonics is given by:

φmod =
Nh

∑
n=1

φ2n−1 sin(2n− 1)ωt (1)

where ω and φ2n−1 are the odd-order harmonic of the fiber-coil eigenfrequency and the
modulation depth, respectively. This includes the sinusoidal wave modulation case for
Nh = 1 and the square-wave modulation for Nh → ∞, given by:

φsq =
4φ

π

∞

∑
n=1

1
2n− 1

sin(2n− 1)ωt. (2)

where φ is the amplitude of the square wave. We show that choosing a multi-harmonic
bias modulation that is sufficiently close to a square wave modulation can reduce the RIN
effects. Additionally, since this modulation does not generate spikes, it can be applied at
high frequencies to reduce TPN.

The goals of this work are to derive theoretical formulas for multi-harmonic modula-
tion, obtain optimal parameters for modulation, and experimentally verify its potential. In
particular, we focus on the cases for Nh = 1, 2 and 3 corresponding to single-harmonic mod-
ulation (SHM), dual-harmonic modulation (DHM) and triple-harmonic modulation (THM),
respectively.

2. Theory of Multi-Harmonic Modulation

First, SHM will be reviewed. The output of the photodetector is given by:

S =
I0

2
<
(

1 + eiθeiφ1 sin ωt
)

, (3)

where I0 is the current at the photodetector without rotation and modulation and θ is the
Sagnac phase. The Jacobi-Anger expansion can be used to obtain:

eiφ1 sin ωt =
∞

∑
n=−∞

Jn(φ1)einωt (4)
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where Jn(φ1) is the n-th order ordinary Bessel function (OBF) of the first kind. Moreover,
we obtain:

S =
I0

2
<
(

1 + eiθ
∞

∑
n=−∞

Jn(φ1)einωt

)
. (5)

The demodulated, fundamental harmonic of the signal results in:

S1ω =
∫ ∞

−∞
S sin(ωt)dt = −I0 sin θ J1(φ1). (6)

Similarly, the output of the photodetector modulated by DHM is:

S =
I0

2
<
(

1 + eiθeiφ1 sin ωt+iφ3 sin 3ωt
)

. (7)

We can now introduce the two-dimensional generalized Bessel function (GBF) [26,27], with
a Jacobi-Anger expansion given by:

ei(u sin pωt+v sin qωt) =
∞

∑
n=−∞

Jp,q
n (u, v)einωt (8)

Then, the photodetector signal results in:

S =
I0

2
<
(

1 + eiθ
∞

∑
n=−∞

J1,3
n (φ1, φ3)einωt

)
. (9)

Since this equation is in the same form as Equation (5) except for a different factor multiply-
ing einωt, it follows that:

S1ω = −I0 sin θ J1,3
1 (φ1, φ3). (10)

The two-dimensional GBF can be decomposed into ordinary Bessel functions:

Jp,q
n (u, v) = ∑

k,l∈Z,pk+ql=n
Jk(u)Jl(v) (11)

For φ3 = 0, the following can be obtained:

J1,3
n (φ1, 0) = ∑

k,l∈Z,k+3l=n
Jk(φ1)Jl(0) = Jn(φ1), (12)

and Equation (10) reverts to Equation (6), that is, the SHM case.
As seen with Equations (5) and (9), any Jacobi-Anger expansion in the SHM case can

be expressed in an equivalent form for the DHM case by just replacing the OBF with the
GBF. Using this property, known equations for RIN and SN [24] can be easily extended to
the DHM case to obtain:

σRIN =
η I0
√

B
2
√

∆ν

{[
1 + J1,3

0 (φ1, φ3)− J1,3
2 (φ1, φ3)

]2
+

∞

∑
n=1

[
J1,3
2n (φ1, φ3)− J1,3

2n+2(φ1, φ3)
]2
}1/2

(13a)

σSN =

{
eI0B

2

[
1 + J1,3

0 (φ1, φ3)− J1,3
2 (φ1, φ3)

]}1/2
(13b)

where B, ∆ν, η and e are the detection bandwidth, laser spectrum bandwidth, attenuation
factor related to semiconductor gain effects, and electron charge, respectively.

Additionally, this analysis can be further extended to the THM case using the three-
dimensional GBF [27] given by:

ei(u sin pωt+v sin qωt+w sin rωt) =
∞

∑
n=−∞

Jp,q,r
n (u, v, w)einωt (14a)



Sensors 2023, 23, 4442 4 of 12

Jp,q,r
n (u, v, w) = ∑

k,l,m∈Z,pk+ql+rm=n
Jk(u)Jl(v)Jm(w). (14b)

The equations for an increased number of harmonics Nh > 3 are straightforward.

3. Modulation Index Optimization

The theoretical formulas for the signal and each of the noises can be used to obtain the
optimal set of modulation depths (φ1, φ3, φ5) that minimize RIN- or SN-induced angular
random walk (ARW); this set is defined by:

ARWRIN(φ1, φ3, φ5) =
σRIN

SF I0 J1,3,5
1 (φ1, φ3, φ5)

√
B

(15a)

ARWSN(φ1, φ3, φ5) =
σSN

SF I0 J1,3,5
1 (φ1, φ3, φ5)

√
B

(15b)

respectively [24]. Here, SF = 4πRL/cλ is the scale factor of a fiber coil with a radius
of R and a length of L. Moreover, c and λ correspond to the speed of light and central
wavelength of the light source, respectively. To perform the analysis, it is convenient to plot
ARW values as a function of the modulation index φ1 and the ratios (φ3/φ1, φ5/φ1), which
determine the depth and temporal shape of the modulation signal, respectively.

Theoretical calculations on ARW to obtain the DHM are shown in Figure 1a,b. To
compare the performance of the DHM and THM with that of the SHM, we introduced
improvement factors:

ηRIN =
ARWRIN(φ1, φ3, φ5)

ARWRIN(2.70, 0, 0)
(16a)

ηSN =
ARWSN(φ1, φ3, φ5)

ARWSN(2.70, 0, 0)
, (16b)

which normalize the ARW to the optimal case for the SHM occurring at φ1 = 2.70. For
ARWRIN in the DHM, the optimal modulation is (φ1, φ3) = (3.21, 0.75), which results in a
2.3 dB improvement in the ARW. SN-induced ARW also improves by 0.7 dB at (φ1, φ3) =
(3.18, 0.60). For reference, we included results for negative ratios −0.05 < φ3/φ1 < 0 in
Figure 1a,b, which correspond to the case of a sinusoidal wave approximating a triangular
wave. In general, negative ratios of φ3/φ1 deteriorate both ARWRIN and ARWSN.

Figure 1c,d show the improvement factor dependence on the modulation index φ1
for the SHM, DHM, THM, and SWM. Here, we fixed the modulation index ratios for the
DHM and THM to the value that minimize the ARW for each noise. One can see that
incorporating more harmonics improves the ARW, and the improvement factor converges
to that of the SWM. Optimal values of the SHM, DHM, and THM are summarized in
Table 1.

Table 1. Optimal modulation indexes for SHM, DHM and THM that minimize ARWRIN and ARWSN.
Improvement factors are shown in dB units.

RIN Shot Noise
φ1 φ3 φ5 ηRIN φ1 φ3 φ5 ηSN

SHM 2.70 0 0 0 2.70 0 0 0
DHM 3.21 0.75 0 −2.3 3.18 0.60 0 −0.7
THM 3.42 0.99 0.41 −3.7 3.40 0.80 0.27 −1.0
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Figure 1. Improvement of RIN- and SN-induced ARW for multi-harmonic modulation. Improvement
units are in dB. (a,b): ηRIN and ηSN as a function of φ1 and ratio φ3/φ1. SHM and optimal DHM ratios
φ3/φ1 are shown as solid and dashed lines, respectively. (c) ηRIN as a function of φ1 for fixed ratios:
φ3/φ1 = 0.234 for DHM; φ3/φ1 = 0.288 and φ5/φ1 = 0.118 for THM. (d) ηSN as a function of φ1 for
fixed ratios: φ3/φ1 = 0.188 for DHM; φ3/φ1 = 0.235 and φ5/φ1 = 0.080 for THM. For comparison,
the SWM case is shown as a function of 4φ/π in (c,d).

According to the Fourier decomposition of a square wave in Equation (2), the modula-
tion index ratios φ3/φ1 and φ5/φ1 that best approximate a modulation wave to a square
wave are (φ3, φ5)/φ1 = (1/3, 1/5). Contrary to expectations, these ratios are not optimal for
minimizing the ARW. It can be demonstrated through numerical calculations that optimal
ratios will eventually converge to φ2n−1/φ1 = 1

2n−1 for Nh → ∞, which corresponds to
the SWM.

4. Experimental Setup

The experimental setup is shown in Figure 2. The optical source is composed of a
super-luminescent diode (SLD) with a central wavelength of 1544 nm, bandwidth of 52 nm,
and output power of 40 mW amplified by a semiconductor optical amplifier (SOA). The
SOA has two important roles: it amplifies the output of the SLD to 100 mW and reduces
the RIN due to the gain saturation effect [23]. By comparing the noise measured directly
after the SLD and SOA, we estimate a 11.2 dB improvement in RIN. The output of the
SOA goes through an optical circulator (OC) to a multifunctional integrated optical chip
(MIOC). The output of the MIOC is spliced to a quadrupolar-wound coil having a length of
L = 4920 m and an average radius of R = 115 mm. The return path of the optical circulator
is inputted to a photodetector (PD), resulting in an output of I0 = 4 mA. We positioned
the fiber coil and MIOC inside a temperature-stabilized vacuum chamber (temperature
23.000± 0.001 ◦C, pressure below 5× 10−2 Pa) to reduce long-term drift effects.

The Sagnac phase detection system is a digital-closed-loop detection scheme built
around a field-programmable gate array (FPGA) based on a Zynq 7020 SoC. Bias and
serrodyne modulation signals are generated by a digital-to-analog converter (AD9747,
250 megasamples per second (MSPS)) followed by a homemade amplifier. Digital genera-
tion of the bias signal is crucially important for multi-harmonic modulation, as it ensures
that the relative amplitude and phase between different harmonics remain constant. The
output of the PD is read by an analog-to-digital converter (LTC2157-14, 250 MSPS) and
demodulated digitally using sinusoidal demodulation.
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FPGA

SLD SOA

OC MIOC

Fiber Coil

PD

Figure 2. Schematic setup of the experimental apparatus. SLD, super-luminescent diode; SOA,
semiconductor optical amplifier; OC, optical circulator; MIOC, multifunctional integrated optical
chip; PD, photodetector.

Calibration of the modulation index is realized by measuring the dependency between
the demodulated signal S1ω and the voltage applied to the MIOC and then fitting the
resultant curve with a Bessel function (see Equation (6)). We employ the 101st harmonic of
the coil eigenfrequency fc for modulation, which is given by ω/2π = 101 fc = 2.05 MHz.
At this frequency, the TPN is comparable to SN and DN. This will be analyzed in detail in
the next section.

5. Experimental Results

We experimentally verify the improvement in the ARW by measuring its dependency
on modulation index φ1 for the fixed ratios (φ3, φ5)/φ1. The ARW including all sources of
noise is given by:

ARW =
√

ARW2
TPN + ARW2

RIN + ARW2
SN + ARW2

DN, (17)

where the TPN-induced ARW is:

ARWTPN =
σTPN

SF I0 J1,3,5
1 (φ1, φ3, φ5)

√
B

(18a)

σTPN = I0

√
πB

∞

∑
n=1

[
J1,3,5
2n−1(φ1, φ3, φ5)− J1,3,5

2n+1(φ1, φ3, φ5)
]2
× 〈∆φ2

N,rms(2nω)〉. (18b)

Here,

〈∆φ2
N,rms(2nω)〉 = kBT2L

κλ2

(
dneff
dT

+ neffαL

)2

× ln


(

2
W0

)4
+
( 2nω

D
)2(

4.81
d

)2
+
( 2nω

D
)2

[1− sinc
(

2nωLneff
c

)]
(19)

is the spectral density of phase noise introduced by the TPN. kB, T, κ, neff, αL, W0 and D
are the Boltzmann’s constant, the temperature of the coil, thermal conductivity, effective
refractive index of the fiber, linear thermal expansion coefficient, mode field radius and
thermal diffusivity, respectively. Typical values can be found in different studies [14,16,24].
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The DN-induced ARW is given by:

ARWDN =
σDN

SF I0 J1,3,5
1 (φ1, φ3, φ5)

√
B

(20a)

σDN =

√
B
2

{
2eiD + i2N +

(
vN

RF

)2
+

4kBT
RF

+

(
vADC

RF

)2
}1/2

, (20b)

where iD, iN, vN, RF and vADC are the dark current of the PD, the input noise current
and voltage of the transimpedance amplifier, the feedback resistance, and the input noise
voltage of the ADC, respectively.

The results are shown in Figure 3. We utilize the fixed ratios (φ3, φ5)/φ1 = (0.234, 0)
for DHM and (φ3, φ5)/φ1 = (0.288, 0.118) for THM, corresponding to the optimal ratios
that minimize the RIN effects. Each value was estimated by fitting the Allan deviation
during one hour of measurement. The best ARW values obtained for SHM, DHM and
THM were 8.5(2) µdeg/

√
h, 5.5(4) µdeg/

√
h and 5.2(2) µdeg/

√
h, respectively, which

translates to a 1.9 dB improvement for DHM and 2.2 dB for THM. Solid lines indicate the
theoretical estimation for ARW including all sources of noise (Equation (17)).

Figure 3. ARW dependence on the modulation index φ1 for SHM, DHM (φ3/φ1 = 0.234) and
THM ((φ3, φ5)/φ1 = (0.288, 0.118)) denoted by circular, triangular and square points, respectively.
Solid lines: Total estimated ARW including all sources of noise. Dashed lines: RIN-induced ARW.
Dashed-dotted lines: SN-, DN- and TPN-induced ARW.

We estimated the RIN (dashed lines in Figure 3) by switching off the modulation and
measuring the noise in the detector in open-loop mode. Since RIN is one order of magnitude
larger than SN, the resultant noise is dominated by RIN. The estimated attenuation factor
was η = 0.15. Detection noise was estimated in the same manner with the input light in
the PD removed. The measured DN was 3% of RIN in the absence of modulation. Other
noise-induced ARWs, shown in dashed-dotted lines in Figure 3, include the effects of SN,
DN and TPN.

To estimate the amount of TPN, we measured the dependency of the ARW on the mod-
ulation frequency for the SHM case (modulation index φ1 = 2.70). The experimental results
are shown in Figure 4. Since the other sources of noise can be considered independent of
the modulation frequency, the data can be fitted by:

ARW =
√

ARW2
TPN(ω; D) + ARW2

other (21)

where the fitting parameters are the thermal diffusivity of the optical fiber D and a con-
stant ARWother that includes RIN, DN and SN contributions to the ARW. This resulted in
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D = 1.0(1)× 10−6 m2s−1 and ARWother = 8.7(8) µdeg/
√

h. We found no discrepancy
between the obtained thermal diffusivity value and the value for bulk fused silica found in
the literature [14,16,28].

Figure 4. Modulation frequency dependency of the ARW for the SHM case. Solid dots: Experimental
results. Solid line: ARW including all sources of noise. Dashed line: TPN contribution to ARW.
Dashed-dotted lines: Sum of other noise-induced ARW, including SN, DN and RIN.

The estimated contributions of RIN, DN, SN and TPN to ARW are summarized in
Table 2. For a modulation frequency of 2.05 MHz, the TPN contribution to the ARW is
comparable to the sum of the DN and SN contributions. Consequently, a further increase
in the modulation frequency will result in a negligible improvement in the ARW. On the
other hand, RIN is still the dominant source of noise. In principle, increasing the number
of harmonics in the modulation to Nh = 4 or more can decrease the RIN. However, we
found that even THM produced very little improvement in ARW. The reason for this is
still unclear. One possible explanation is that the high frequency of the fifth harmonic
(5ω/2π = 10 MHz) produces nonlinearity effects in the electronics and optoelectronics that
deteriorate the performance of THM. Another possibility is that environmental vibrations
are limiting the ARW. We observed that our system is highly susceptible to building
vibrations caused by human activity and wind. Regarding SHM and DHM, we found
good agreement between the theory and experiments.

Table 2. Estimation of the contribution for each type of noise to the total ARW.

Modulation Index ARW (µdeg/
√

h)

φ1 φ3/φ1 φ5/φ1 RIN SN TPN DN Total Experiment

SHM 2.53 0 0 8.09 1.41 1.68 0.74 8.42 8.5(2)
DHM 3.17 0.234 0 4.67 1.21 1.62 1.03 5.19 5.5(4)
THM 3.27 0.288 0.118 3.56 1.17 1.78 1.10 4.30 5.2(2)

The long-term performance of our FOGs is shown in Figure 5. The obtained ARWs
for SHM, DHM and THM were 9.0(1) µdeg/

√
h, 6.5(2) µdeg/

√
h, and 6.1(1) µdeg/

√
h,

respectively. The bias instability was ∼10 µdeg/h for the three cases. We observed no
degradation of long-time stability due to multiple-harmonic modulation.
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Figure 5. Allan deviation for 12-hour measurements of SHM, DHM, and THM.

6. Comparison with Square-Wave Modulation

When a high frequency is used for bias modulation, the spike problem hampers the
application of SWM. However, from a theoretical point of view, it is useful to compare the
performance of multi-harmonic modulation with ideal, spike-free SWM to estimate the
number of required harmonics. Figure 6 shows the dependence of the ARW on the number
of harmonics. For each number of harmonics, we calculate the optimal set of modulation
indexes φi that minimize the ARW when the effects of all types of noise (RIN, TPN, SN, and
DN) are considered using the parameters of our current experimental setup. With three
harmonics, corresponding to THM, the ARW is reduced by less than half compared with
the case of one harmonic. Further increasing the number of harmonics further improves the
ARW, but very slowly. Ultimately, the ARW converges to the optimal ARWSWM that can be
obtained with ideal SWM, shown by the dashed line in Figure 6. The optimal modulation
index for SWM is estimated as φ = 2.81, which results in ARWSWM = 2.9 µdeg/

√
h. The

contributions to ARWSWM from RIN, DN, TPN and SN are 1.7 µdeg/
√

h, 1.7 µdeg/
√

h,
1.3 µdeg/

√
h, and 1.1 µdeg/

√
h, respectively.

Figure 6. Dependence of the ARW on the number of modulation harmonics. The dashed line shows
the best ARW attainable using ideal square-wave modulation.

Note that this analysis is not universal but rather depends on the amount of noise in
each individual setup. This is because SWM is very effective at reducing the effects of RIN
and SN but offers no advantage in reducing the effects of TPN and DN compared with
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sinusoidal modulation. For a system with a large amount of TPN and/or DN, one or two
harmonics will be sufficient to reach a value close to ARWSWM. On the other hand, for a
system with a large amount of RIN, more harmonics will be required.

7. Conclusions

In this study, we have introduced a novel modulation method using multiple har-
monics of sinusoidal modulation. This method combines the advantages of SWM and
sinusoidal modulation to simultaneously suppress TPN and RIN effects. In Section 2, we
derived the theoretical formulas used to calculate the noise and signal levels for DHM
and THM. In Section 3, we determined the optimal parameters for modulation. We found
that the RIN-induced ARW can be reduced by 2.3 dB and 3.7 dB in the DHM and THM
cases, respectively. Additionally, the SN-induced ARW is reduced by 1.0 dB in the THM
case. Furthermore, in Section 5, we experimentally demonstrated improvement of the ARW
using multi-harmonic modulation. The ARW was improved from 8.5 µdeg/

√
h in SHM

to 5.5 µdeg/
√

h and 5.2 µdeg/
√

h in the DHM and THM cases, respectively. Finally, in
Section 6, we compared the performance of multi-harmonic modulation with the ideal
SWM case.

Table 3 shows a comparison between the FOG presented in this work and other
high-accuracy FOGs. The phase noise in our FOG is notably smaller than that in other
works by virtue of the simultaneous reduction in TPN and RIN achieved using a high
modulation frequency combined with multi-harmonic modulation. This simultaneous
reduction would not be possible using SWM due to the spike problem, which prevents
its use at high modulation frequencies. On the other hand, sinusoidal modulation is
compatible with the high modulation frequencies necessary to reduce TPN, but it performs
poorly in reducing RIN.

An inertial navigation system (INS) with an accuracy of one nautical mile per month
requires a gyro bias below 20 µdeg/h [29]. For initial alignment purposes, reaching this
bias precision within one hour requires an ARW below 20 µdeg/

√
h [29]. Our system,

using either DHM or THM, can reach a minimum bias stability of 10 µdeg/h in less than
one hour. With the phase noise reported here, it is possible to reduce the radius of our
coil to R = 30 mm while maintaining an ARW of 20 µdeg/

√
h, paving the way for the

production of a compact INS with an accuracy of one nautical mile in a month.

Table 3. Comparison of high-accuracy FOGs.

Modulation
Method Phase Noise Scale Factor ARW Ref.

Square-wave 0.68 µrad/
√

Hz 34 s 69 µdeg/
√

h [30]
Sinusoidal 0.55 µrad/

√
Hz 157 s 12 µdeg/

√
h [16]

Square-wave 0.13 µrad/
√

Hz 12 s 37 µdeg/
√

h [4] 1

Sinusoidal 68 nrad/
√

Hz 15.5 s 15 µdeg/
√

h [24]
Multi-harmonic 23 nrad/

√
Hz 15.5 s 5.2 µdeg/

√
h This Work

1 1st mockup.

To further reduce RIN and TPN, modulation with even higher frequencies and number
of harmonics is needed. Ultimately, the bandwidth and linearity of the electronic and
optoelectronic components will limit how much RIN and TPN can be decreased using
this method. Improving these technologies will be important in the future to increase the
precision of FOGs.

This work has focused on the improvement of the ARW using multi-harmonic modula-
tion. Long-term stability of an FOG is crucial to improve the accuracy of an INS. Although
we observed no degradation in bias instability due to DHM or THM, future research will
be required to improve the long-term stability.
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Abbreviations
The following abbreviations are used in this manuscript:

FOG Fiber-optic gyroscope
RIN Relative-intensity noise
TPN Thermal-phase noise
SN Shot noise
DN Detection noise
SWM Square-wave modulation
SHM Single-harmonic modulation
DHM Double-harmonic modulation
THM Triple-harmonic modulation
OBF Ordinary Bessel function
GBF Generalized Bessel function
ARW Angular random walk
PD Photodetector
SLD Super-luminescent diode
SOA Semiconductor optical amplifier
OC Optical circulator
MIOC Multifunctional integrated optical chip
FPGA Field-programmable gate array
MSPS Megasamples per second
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