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Abstract: The shear strength of granitic gneiss residual soil (GGRS) determines the stability of
colluvial landslides in the Huanggang area, China. It depends on several parameters that represent
its structure and state as well as their interactions, and therefore requires accurate assessment. For an
effective evaluation of shear strength parameters of GGRS based on these factors and their interactions,
three parameters, namely, moisture content, bulk density, and fractal dimension of grain size, were
selected as influencing factors in this study based on a thorough investigation of the survey data and
physical property tests of landslides in the study area. The individual effects and interaction of the
factors were then incorporated by implementing a series of direct shear tests employing the response
surface methodology (RSM) into the regression model of the shear parameters. The results indicate
that the factors affecting shear parameters in the order of greater to lower are bulk density, moisture
content, and fractal dimension, and their interactions are insignificant. The proposed model was
validated by applying it to soil specimens from other landslide sites with the same parent bedrock,
showing the validity of the strength regression model. This study demonstrates that RSM can be
applied for parameter estimation of soils and provide reliable performance, and is also significant for
conducting landslide investigation, evaluation, and regional risk assessment.

Keywords: granitic gneiss residual soil; shear strength; response surface methodology

1. Introduction

Landslides are the major type of geohazards affecting the living environment of the
residents in the Huanggang area, China. By the end of 2021, a total of 585 landslides have been
recognized in the Huanggang area, which severely threaten human life and property safety [1].
The gneiss in the area has two main types, granitic gneiss and hornblende feldspar gneiss. In
particular, landslides with bedrock of granitic gneiss account for 30%, and that of hornblende
feldspar gneiss account for 25%, as shown in Figure 1. Upon field investigation, these colluvial
landslides are predominantly minor or medium-sized, and primarily slide along the contact
zone between weathered residual soil and bedrock [2]. Therefore, the shear strength of gneiss
residual soils and its influencing factors are particularly essential for studying the stability of
colluvial landslides in the Huanggang area.

Granite gneisses are formed by the recrystallization of minerals from granite under long-
term ground stress, and their lithology and mineral composition are comparable to that of
granite [3]. Being derived from the in-situ weathering and decomposition of granite gneisses,
it is identified that the properties of granite gneisses residual soil (GGRS) are dominated by the
parent rock [4], and hence the findings on the mechanical properties of granite residual soils
(GRS) can be directly applied to the study of GGRS, thus the following text would employ the
word residual soil to collectively describe these two kinds of soil. As a remark of commonality,
the intrinsic microstructure, i.e., primary pores and fractures, as well as the unique grain
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distribution from clay to gravel, pose a significant challenge to sophisticatedly capturing the
physical, hydraulic, and mechanical behaviors of residual soil [5–9].

Figure 1. Landslides distributed in different lithological formations in the Huanggang area.

The acquisition of the shear strength of the residual soil, of the mechanical properties, is
of the most significance in the evaluation of colluvial landslide stability. The studies associated
with the predominant factors governing the shear strength are thus of particular importance.
Zhao et al. analyzed the strength of GRS by triaxial tests and direct shear tests, and found
that the GRS have the characteristics of shear dilation and shrink, and concluded the effects of
different particle compositions on shear strength [10]. Wu et al. identified the interaction effect
of particle composition and matrix suction on the shear strength of GRS through laboratory
experiments [11]. Wei et al. examined the shear strength properties of GRS based on the study
of GRS in Southern China and indicated that the moisture content has a significant effect on
their shear strength [12]. Meanwhile, a considerable number of studies on colluvial landslides
in the Huanggang area also demonstrated that the reduced shear strength caused by the
increasing moisture content of GGRS under heavy rainfall acts is the dominant factor for the
instability [13]. Combined with related research results of other soil types, it revealed that the
shear strength of GGRS is highly associated with its moisture content [12,14,15], compactness
state [16], and particle composition [14,16–18]. However, the contribution of these factors and
their interactions has been insufficiently studied.

To evaluate the correlation of shear strength of geo-materials and the related indices,
the orthogonal experimental design method has been employed by the present studies. For
instance, Zhou et al. studied the shear strength of soil-rock mixture under the freeze–thaw
cycle environment considering five factors, including rock content, compaction degree,
moisture content, number of freeze–thaw cycles and freezing temperature at four experi-
mental levels, respectively according to the orthogonal experimental design method [19].
Ren et al. performed a series of multi-factor orthogonal softening experiments on gypsum
rock from Lower Triassic Jialing River Formation [20]. However, the orthogonal test has the
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drawback of incapability of identifying the interaction of the different factors. Therefore,
the interaction of the factors has not been identified.

Given this shortcoming, the response surface methodology (RSM), a mathematical
and statistical technique that optimizes the experimental results by approximately devel-
oping a explicit polynomial expression, provides a corresponding strategy that enables
the complicated connection between the required response and input factors to be ascer-
tained [21]. Moreover, it allows a minimization of the number of experiments and the
level of independent variables, and offers internal error estimates [22]. It has been exten-
sively applied in the food industry, chemical industry, etc., for optimization design [23].
Recently, a couple of studies have introduced it into the geotechnical engineering field for
estimating the mechanical properties of geo-material and building materials. Asadizadeh
et al. assessed the individual and interactive weighting contributions of the parameters
(e.g., bridge length, bridge step angle, Joint Roughness Coefficient, etc.) on the shear and
uniaxial compression strengths of jointed rocks through RSM [24]. Soltani et al. applied
RSM to investigate the influence of cement content, water–cement ratio, and aggregate
size on the compressive strength, permeability, and porosity of pavement concrete [25].
A recent study has also investigated the shear strength of paddy soil and its influencing
factors by RSM method [17]. However, the application of RSM to the study of strength
parameters of residual soils from colluvial landslides has not been reported yet.

There are two primary aims of this study: (1). To investigate the contribution of
physical indices, in terms of moisture, dense state and grain size gradation, to the shear
strength of GGRS; (2). To facilitate the empirical estimation model of shear strength
of GGRS in a more effective way. In this sense, this study employed RSM to examine
the individual and interacting effects of the factors. Moreover, the non-linear regression
relationships were developed and verified to estimate the shear strength parameters via
Analysis of Variance (ANOVA). The attempt of this application provides a prerequisite for
the estimation of landslide stability in the study area, thus promoting the evaluation of
landslide stability, and allows the extension of this research framework to other regions
with similar geo-material.

2. Materials and Methods
2.1. Materials

The Huanggang area is located in the eastern Hubei Province, China. It has a border
with the northern bank of the middle reaches of the Yangtze River and the southern foot of
the Dabie Mountains. Generally, it has a high terrain in the northeast and a low terrain in
the south. The region is a component of the Qinling stratum area’s eastern extension, which
has relatively complete strata from the Archean to Cenozoic eras. With more than 1200 mm
of annual precipitation, the average annual temperature is 16.3~18.2 ◦C. It is reported a
population of around 7.49 million and an area of 17,453 km2 of the area [1].

2.1.1. Overview of the Sampled Colluvial Landslides

Based on the comprehensive geotechnical survey data of the studied area, this study
took GGRS specimens from five landslide sites for laboratory experiments. These five
landslides are the Pingtouling landslide in Luotian County (PLL), the Guanshan welfare
house landslide in Xishui County (GLX), the Qingcaoping landslide in Qichun County
(QLQ), the Zoujiashan landslide in Macheng County (ZLM), and the Chengmagang kinder-
garten landslide in Huanggang town (CLH), as shown in Figure 1. The above landslides
all have a lithology from top to bottom of GGRS and granitic gneiss. Among them, the
GGRS specimens from PLL were selected for preparing specimens for response surface
experiment design.

2.1.2. Composition and Structure of GGRS

The composition and content of clay minerals in the GGRS play an overwhelming role
in the stability of the colluvial landslides. X-ray diffraction analysis (XRD) was performed
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on the GGRS specimens, and the compositions and contents of the main mineral are
presented in Table 1 and Figure 2. It is clear that the GGRS specimens in the Huanggang
area contain a considerable amount of clay minerals, such as montmorillonite, rectorite,
and illite, etc. These clay minerals are susceptible to swelling and softening with water, and
thus are not conducive to slope stability [26].

Through the SU8010 field emission scanning electron microscope, the flake-like silicate
minerals can be clearly observed in the form of void-filled intergranular voids, as shown in
Figure 3. Under the action of fluid flushing, the adsorbed water and interlayer water inside
the minerals enable the groundwater caused by the rainfall infiltration to be retained in the
soil, increasing the soil weight; also, the swelling, dispersion, and cohesion produced by
the action of minerals and water would reduce the mechanical strength of the soil, thereby
reducing the stability of the colluvial landslides [27].

The particle gradation curves were examined by sieving and densitometer methods on
the GGRS specimens (shown in Figure 4), and the percentage content of each particle group
is shown in Table 2. The inhomogeneity coefficient, Cu, and curvature coefficient, Cc, of the
soil samples were determined from the particle gradation curves, and it was indicated that
Cu > 5 and Cc = 1~3 for all samples, indicating that the GGRS specimens are well graded.

Table 1. Mineral composition of the GGRS specimens.

Sample No. Percentage of Mineral Composition (%)
Montmorillonite Rectorite Illite Tremolite Quartz Orthoclase Albite

PLL 37.74 23.54 — — 21.12 5.75 11.85
GLX 65.36 13.9 — 3.1 10.64 — 7.01
QLQ 3.34 — 27.36 — 33.11 — 36.2
ZLM 17.92 33.46 — 12.87 28.54 — 7.22
CLH 13.64 — 16.15 — 31.79 10.66 27.76

Table 2. Percentage content of each grain group.

Sample No.
Percentage Content of Each Grain Group (%)

Cu Cc
>2 mm 0.075–2 mm 0.002–0.075 mm <0.002 mm

PLL 31.49 58.97 8.99 0.55 21.822 1.146
GLX 31.83 32.65 33.73 1.79 19.818 0.077
QLQ 11.08 79.50 9.05 0.37 4.951 1.521
ZLM 23.37 57.34 19.01 0.28 8.036 0.877
CLH 22.21 68.66 8.64 0.49 6.868 2.594

Figure 2. Mineral composition and content of the GGRS specimens.



Sensors 2023, 23, 4308 5 of 18

Figure 3. SEM images of GGRS specimens: (a) flake-like silicate minerals in specimens obtained from
PLL; (b) intergranular voids observed in specimens obtained from PLL.

Figure 4. Particle gradation curves of GGRS specimens.

2.1.3. Parameters Considered for RSM Experimental Design

Previous studies have demonstrated that the water contents, dense state, and particle
gradation of GGRS have significant impacts on shear strength. In this study, therefore, three
indicators, water content, bulk density, and particle fraction dimension, were selected as
the major physical indicators for consideration. Among them, the water content, ω, reflects
the moisture of the soil in its natural state. The bulk density, ρb, is the dry weight of the
solid per unit volume of the solid, representing the density of the soil when there is no
water in the pores at all. Similar to the porosity ratio, it reflects the degree of compactness
of the soil. The particle fractal dimension, D, is the most significant index to quantify the
complexity and irregularity of an object or fractal body, and is a parameter to quantitatively
depict the degree of fractal self-similarity, which is generally defined by Equation (1).

Pi =

(
di

dmax

)3−D
·100 (1)



Sensors 2023, 23, 4308 6 of 18

where, Pi is the cumulative mass fraction of particles smaller than di, dmax is the largest
dimension of the particles. The D value herein was calculated and averaged according to the
contents of gravel grains (>2 mm), sand grains (0.075~2 mm), silt grains (0.002~0.075 mm),
and clay grains (<0.002 mm) presented in Table 2, according to Equation (2):

lg
M(< d)

M0
= (3 − D)lg

(
d

dmax

)
(2)

where, M0 is the total weight of each soil grain; M(<d) is the accumulated weight of soil
with grain size less than d; dmax is the average diameter of the largest particle size; d is the
grain size of soil. The larger the value of D, the larger the content of fine particles, and the
lower the content of coarse particles in the soil.

The above three parameters of all the GGRS specimens from five landslide sites were
counted, and the maximum, minimum, and mean value of the parameters are presented in
Table 3.

Table 3. Statistics of physical parameters of the samples.

Parameters ω/% ρb/g · cm−3 D

Maximum 26.28 1.53 2.76
Minimum 23.27 1.20 2.37

Mean value 24.92 1.37 2.55

2.2. Methods
2.2.1. Direct Shear Tests

All the direct shear tests were performed on prepared GGRS specimens from stud-
ied landslides sites employing a tetragenous strain-controlled direct shear apparatus
(TT-ADS4D, Figure 5a) in China University of Geosciences, Wuhan. The apparatus is
equipped with a high precision stepper motor to apply vertical consolidation pressure
and shear stress. It allows four simultaneous direct shear tests on soil samples with shear
rates ranging from 0.001 to 2 mm/min, and automatically collects and transmits data to a
computer system for results processing. The specimen with a diameter of 61.8 mm and a
height of 20 mm was first consolidated at a normal pressure of 400 kPa for 24 h until stable
consolidation, and then placed on the base of the shear box (Figure 5b), followed by fixing
the upper and lower shear boxes, the pressurization system, and the measuring system
to begin the test. Four GGRS specimens were applied with vertical pressures of 100 kPa,
200 kPa, 300 kPa, and 400 kPa, and sheared simultaneously at a rate of 0.08 mm/min,
and the shearing of the specimens ceased when the shear displacement was up to 6 mm.
The stress-displacement curves (Figure 5b) and the maximum shear stress under different
normal stresses were then captured as the shear strength, and the shear strength compo-
nents (c and ϕ) can be identified by linear fitting of determined shear strengths of GRSS
specimens under different normal stresses according to the Mohr-Coulomb theory. The
shear strength of soil is defined as: τ = c + tan ϕ, where c is the shear strength with zero
normal stress, and it depends on various physicochemical forces between soil particles,
including Coulomb force, van der Waals force, cementation force, etc.; ϕ is the internal
friction angle, and it relies on the occlusal friction and sliding friction between particles.

2.2.2. RSM Method

The underlying idea of RSM is to formulate a polynomial to express the implicit func-
tional by approaching. Essentially, it is a statistical approach with which to search for the
best response value after considering the variability or uncertainty of the input independent
variables. It determines the optimal conditions for a multivariable system rapidly and effi-
ciently by designing a reasonable number of tests with few trials to precisely investigate the
relationship between each independent factor and the response dependent value.
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Commonly adopted design methods are Box-Behnken experimental design (BBD)
and central composite design (CCD). The BBD method based on a spherical space design
allows an efficient combination of variable factors with a minimum number of trials [28].
Compared to the CCD method, BBD is applicable to experiments with less factor levels, and
the design is typically regarded as more efficient when dealing with three to five factors,
avoiding the extreme value points that may lead to failure or instability of the test results.

In this study, the BBD method was adopted to design the influence factors. According
to the results of the laboratory experiments as stated in Table 3, each influence factor had a
low-level value (−1), a medium-level value (0), and a high-level value (1), as depicted in
Table 4.

Figure 5. Direct shear test: (a) tetragenous strain-controlled direct shear apparatus (TT-ADS4D);
(b) GGRS specimen in the shearing box after shear test; (c) representative stress-displacement curves,
the colored lines and the adjacent pressure values represents the stress-displacement curves at diverse
normal stress.

Table 4. Influence factors levels of RSM experimental design.

Levels ω/% ρ/g · cm−3 D

−1 18 1.2 2.4
0 24 1.4 2.55
1 30 1.6 2.7

The RSM approach, which can be regarded as a multivariable regression analysis,
may be expressed as follows based on the factorial model of multiple quadratic regression
equations.

Y = β0 +
3

∑
i=1

βiXi +
3

∑
i=1

βiiXi
2 +

3

∑
i=1

3

∑
j=i+1

βijXiXj (3)

where Y is the response shear strength index, represented by cohesion (c) and frictional
angle (ϕ) in this study. β0, βi, βii, and βij are the regression coefficients, the first is a constant,
and the following three denote the linear, quadratic and interactive coefficients, respectively.
Xi and Xj are the independent influencing variables, represented by moisture content, bulk
density, and fractional dimension in this study. Xi

2 and Xij denote the secondary and
interactive effects of the independent variables.

It is noted that although two shear strength indices (c and ϕ) are investigated herein,
they are both component indices obtained by linear fitting of uniquely determined shear
strengths of GRSS specimens under different normal stresses controlled by the three inde-
pendent variables. There may be some mathematical or physical correlation between the
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two indices, but currently no definitive agreement in the academic community. This study,
therefore, excluded the interaction between the two shear strength indices and conducted
univariate multivariable regression analysis based on RSM experimental design.

2.2.3. Analysis of Variance (ANOVA)

The multivariable ANOVA is employed herein since the interaction between the
two dependent shear strength indices is not taken into account. The amount that each
independent parameter contributes to the dependent parameters may be determined using
analysis of variance (ANOVA). The F-test is usually performed for this purpose to calculate
the weighted contribution of each factor. The contribution of the variance from various
sources to the total variance is analyzed to determine the magnitude of the influence of
controllable factors on the study results, that is, the total variance is decomposed into the
components of the individual variance, and then the significance test is utilized to make an
appropriate judgement [24,29].

3. Results
3.1. Experimental Data

Based on BBD design method, a total of 13 sets of direct shear tests were launched.
The variation in the responding shear strength parameters with three factors are presented
in Table 5.

Table 5. BBD design layout and corresponding response of shear strength of GGRS.

Run ω/% ρ/g · cm−3 D
Response

c/kPa ϕ/◦

1 24 1.4 2.55 11.99 19.99
2 18 1.2 2.55 10.53 17.55
3 18 1.6 2.55 17.29 29.82
4 30 1.4 2.7 11.98 19.63
5 24 1.6 2.4 16.98 30.33
6 24 1.2 2.7 13.29 22.16
7 18 1.4 2.7 13.94 23.23
8 24 1.2 2.4 13.25 22.09
9 30 1.6 2.55 15.23 25.39
10 30 1.2 2.55 9.95 15.53
11 24 1.6 2.7 15.68 25.52
12 18 1.4 2.4 14.56 24.27
13 30 1.4 2.4 12.16 18.96

3.2. Modeling Shear Strength Parameters

Two responding models were developed to explore the interaction between the inde-
pendent variables, namely, moisture content (ω), bulk density (ρb), and fraction dimension
(D), as well as their impact on the response shear strength parameters, involving cohesion
(c) and fractional angle (ϕ), as presented in Equations (4) and (5).

c = 493.3725 − 0.38391ω − 75.01726ρd − 335.606351D − 0.21944ωρd + 0.24074ωD − 7.61111ρdD
−0.00157ω2 + 39.58333ρd

2 + 66.37037D2 (4)

ϕ = 772.43111 − 0.94492ω − 94.77477ρd − 534.01451D − 0.34529ρd + 0.68405ωD − 34.39506ρdD
−0.013189ω2 + 75.69213ρd

2 + 110.11934D2 (5)

For verifying if the developed response surface regression model is reliable and stable,
the ANOVA analysis was carried out herein, and the results are shown in Tables 6 and 7.
According to F-test, the larger the F-value, the greater the evidence that there is a difference
between the group means. Moreover, p-value corresponding to the F-value, is also available
for determining whether the difference between group means is statistically significant.
If the p-value is less than α = 0.05, the null hypothesis of the ANOVA could be rejected
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and it suggests that the related parameter is significant and the data will be credible when
the probability level is >95% [30]. Therefore, the responding models are significant and
reliable due to the p-values of the two models. Meanwhile, the F-values of the two models
are 6.62 and 7.07, respectively, indicating that the model is statistically significant and able
to capture the relationship between dependent strength and each influencing factor.

Table 6. ANOVA analysis for cohesion response surface regression model.

Source Sum of Squares Degree of Freedom Mean Squares F-Value p-Value Performance

Model 61.79 9 6.87 6.62 0.0255 significant
A-w 7.84 1 7.84 7.57 0.0403 significant
B-pb 46.34 1 46.34 44.71 0.0011 significant
C-D 0.84 1 0.84 0.81 0.4103 insignificant
AB 0.33 1 0.33 0.31 0.5993 insignificant
AC 0.22 1 0.22 0.21 0.6640 insignificant
BC 0.24 1 0.24 0.24 0.6475 insignificant
A2 8.459 × 10−3 1 8.459 × 10−3 8.161 × 10−3 0.9315 insignificant
B2 6.60 1 6.60 6.37 0.0529 insignificant
C2 5.87 1 5.87 5.67 0.0631 insignificant

Residual Error 5.18 5 1.04
Total 66.97 14

Table 7. ANOVA analysis for friction angle response surface regression model.

Source Sum of Squares Degree of Freedom Mean
Squares F-Value p-Value Performance

Model 228.63 9 25.40 7.07 0.0222 significant
A-w 33.78 1 33.78 9.40 0.0279 significant
B-pb 167.30 1 167.30 46.53 0.0010 significant
C-D 3.60 1 3.60 1.00 0.3628 insignificant
AB 0.81 1 0.81 0.22 0.6558 insignificant
AC 1.78 1 1.78 0.50 0.5131 insignificant
BC 5.00 1 5.00 1.39 0.2914 insignificant
A2 0.59 1 0.59 0.17 0.7012 insignificant
B2 24.15 1 24.15 6.72 0.0487 significant
C2 16.17 1 16.17 4.50 0.0874 insignificant

Residual Error 17.98 5 3.60
Total 246.61 14

To better verify the accuracy of the model, predicted R2 is employed to reflect the
quality of the model. The predicted shear strength parameters versus the actual values
obtained from the direct shear tests are plotted in Figure 6. It depicts a great agreement of
the datum, with the R2 of 0.9226 and 0.9271 for c and ϕ values, respectively. It provides the
further proves for the accuracy of the response model. As depicted in Figure 6, all the c and
ϕ data points fall into the 95% prediction band, 53.3% of the c data points are within the
95% confidence band and 46.6% of the ϕ data points are within the 95% confidence band,
indicating that the regression equations have a significant prediction effect.
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Figure 6. Predicted shear strength parameters versus actual values obtained from direct shear tests:
(a) predicted c values versus measured c values; (b) predicted ϕ values versus measured ϕ values.

Employing the above model, the contribution of the three independent variables, three
interactive coefficients, and three quadratic coefficients on the shear strength parameters
were all taken into account. The impact of these coefficients can also be captured from
Tables 6 and 7. With regard to the responding model of c values, Table 6 indicates that the
p-value for ρb (0.0011) is the least and the p-value for ω (0.0403) is relatively large, indicating
that they both have significant effects, and the influence of ρd is much larger than that of
ω. In contrast, the third variable, fractal dimension D, the interactive coefficients (ω × ρb,
ω × D, and ρb × D), and the quadratic coefficients (ω2, ρb

2, and D2) have p-values greater
than 0.05, indicating that the impact is insignificant. With regard to the responding model
of ϕ values, Table 7 indicates that the independent variables (ρd and ω) and the quadratic
coefficient of ρb

2 all have significant effects due to the low p-values, which is different
from that of the c value. A closer inspection of the p-values shows that ρb has the most
pronounced influence, followed by ω and ρb

2. Besides, the rest of the coefficients have
insignificant effects.

3.3. The Effect of Independent Variable and Their Interaction on the Shear Strength

For visual comparison of the multivariate analysis, Figures 7–9 depict the contour and
response surface of cohesion plots obtained by Equation (4). The three-dimensional (3D)
and two dimensional (2D) plots of the response surface are used to describe the interactive
effect of the independent influence variables on the cohesion of GGRS. For each interactive
scenario when two independent variables were varied, the other was kept constant at its
intermediate value. In the 2D plots, the straight lines which were perpendicular to the
contours were employed to determine which independent factor plays a dominant role. If
the straight line is at an angle of 45 to the X-axis (Y-axis), it indicates that the interactive
effect of the two independent variables is pronounced and the roles of them are almost
equivalent. If the straight line is parallel or approximately parallel to the X-axis (Y-axis), it
indicates that the role of the factor represented by the X-axis (Y-axis) plays a dominant role,
and the interactive effect of the two factors is unimpressive.
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Figure 7. 3D and 2D response surface plots of the interactive effect of moisture content and bulk
density on cohesion: (a) 3D plot; (b) 2D plot.

Figure 8. 3D and 2D response surface plots of the interactive effect of bulk density and fractal
dimension on cohesion: (a) 3D plot; (b) 2D plot.

Figure 9. 3D and 2D response surface plots of the interactive effect of moisture content and fractal
dimension on cohesion: (a) 3D plot; (b) 2D plot.
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Figure 7 depicts the effect of bulk density and moisture content on the cohesion of
GGRS. Typically, the increasing of bulk density and decreasing of moisture content enhance
the cohesion significantly. Lines AB and CD present two distinct effects of the variables
for high and low bulk density, respectively. Line AB, with an angle of 12◦ to the Y-axis,
indicates that the enhancement effect of bulk density is much more pronounced than that of
the moisture content when it has a high bulk density (close or greater than 1.4 g·cm−3), and
the interaction of the two variables is insignificant. On the contrary, Line CD indicating the
effect at low bulk density takes a large deflection and has an angle of 7.8◦ to the X-axis. It
indicates that a low bulk density (1.20~1.45 g·cm−3) may weaken its effect, and the effect of
moisture content becomes dominant with negligible interactive impact of the two variables.

Figure 8 indicates that the cohesion is decreased with the increasing and decreasing of
fractal dimension and an intermediate value of fractal dimension is related to the minimum
cohesion with the same bulk density. In contrast, the increasing of bulk density enhanced
the cohesion greatly. Notably, Line EF has an inclination of 33.2◦ to the x-axis representing
the bulk density, indicating that the interaction of the two variables is significant, and the
bulk density is the dominant factor herein.

A similar pattern to the effect of fractal dimension in Figure 8 can also be observed in
Figure 9, whereby an intermediate value of fractal dimension is associated with the mini-
mum cohesion with the same moisture content. Moreover, it also presents that increasing
moisture content has a decreasing effect on cohesion considerably, regardless of the value
of the fractal dimension. Line GH has an inclination of 4.2◦ to the X-axis, representing the
moisture content, indicating that interaction of moisture content and fractal dimension is
inconspicuous.

The 3D response surface and 2D plots of the quadratic model for the effect of moisture
content, bulk density, and fractal dimension on the internal friction angle are presented in
Figures 10–12 based on Equation (5).

As indicated by Figure 10, the internal friction angle decreases with the decreasing
bulk density and increasing moisture content. From the 2D plot, Lines IJ and KL show
the distinct effect for high and low bulk density, respectively. As indicated by Line IJ,
with an angle of 10.6◦ to the Y-axis, the enhancement effect of bulk density is dominant
when it has a high value (close to or greater than 1.4 g·cm−3), and the interactive effect is
non-significant herein. Whereas a low bulk density (1.20~1.45 g·cm−3) may weaken the
effect of bulk density and the effect of moisture content becomes dominant since Line KL
deflects greatly towards the X-axis, with an angle of 6.3◦ to the X-axis, indicating that the
interactive effect of the two variables become significant.

Figure 11 shows that the internal friction angle is reduced as the fractal dimension
increases and decreases, and that a midpoint in the fractal dimension is associated with the
minimal value of the internal friction angle at the same bulk density. On the other hand,
the internal friction angle was substantially improved by an increase in bulk density. The
bulk density is the major factor in this situation, as shown by Line MN’s inclination of 31.5◦

to the X-axis. This also indicates that the two factors interact significantly.
Comparing with Figure 11, Figure 12 shows that the effect of fractal dimension shares

a similar pattern; namely, that the increasing and deceasing of fractal dimension has a
decreasing effect on the internal friction angle and an intermediate fractal dimension
is associated with the minimum internal friction angle with the same moisture content.
Moreover, the inclination of OP towards the X-axis is 4.5◦, indicating that the increasing
effects of moisture content are much greater than the effect of fractal dimension and the
interactions are insignificant.
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Figure 10. 3D and 2D response surface plots of the interactive effect of bulk density and moisture
content on internal friction angle: (a) 3D plot; (b) 2D plot.

Figure 11. 3D and 2D response surface plots of the interactive effect of bulk density and fractal
dimension on internal friction angle: (a) 3D plot; (b) 2D plot.

Figure 12. 3D and 2D response surface plots of the interactive effect of moisture content and fractal
dimension on internal friction angle: (a) 3D plot; (b) 2D plot.
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3.4. Validation of the Regression Model

To validate the applicability of the strength model based on RSM and ANOVA, physical
parameter tests and direct shear tests were conducted for the remaining four landslides
(GLX, QLQ, ZLM, and CLH) with in-situ GGRS specimens. Meanwhile, the geotechnical
survey data of five other landslides, namely, the Mensijia landslide in Wenquan town
(MLW), the Jieling Village landslide in Muzidian town (JLM), the Sanmahe Village landslide
in Caohe town (SLC), the Mianyangfan Village landslide in Kuanghe town (MLK), and the
Xintianpu landslide in Baliwan town (XLB), were collected as well. The influence factors
and the shear strength parameters, as well as the predicted shear strength parameters of the
GGRS from the aforementioned nine landslides, are presented in Table 8. The comparison
of the actual experimental values and predicted values are shown in Figure 13. It is evident
that the experimental and predicted values are highly compatible, with the R2 of 0.9471 and
0.9535, for cohesion and internal friction angle, respectively. As depicted in Figure 13, all
the c and ϕ data points fall into the 95% prediction band, 77.8% of the c and ϕ data points
fall into the 95% confidence band. These observations indicated that the proposed strength
model is significantly effective and applicable for the GGRS distributed in the study area.

Table 8. Experimental results of predicted and experimental values.

Test Group w ρb D
Measured Predicted

c ϕ c ϕ

GLX 24.7 1.322 2.66 12.13 20.76 11.72 19.43
QLQ 13.1 1.617 2.74 21.25 29.13 19.26 30.83
ZLM 30 1.157 2.64 13.67 19.45 11.41 18.70
CLH 20.1 1.5 2.75 16.26 32.32 15.86 26.01
MLW 35.7 1.047 2.77 15.13 27.17 15.82 26.62
JLM 18.8 1.505 2.57 14.32 24.26 14.19 23.94
SLC 27.4 1.463 2.54 12.81 20.44 12.06 19.97
MLK 21.8 1.363 2.49 11.73 19.69 12.01 20.04
XLB 26.1 1.456 2.70 13.84 22.98 13.43 22.14

Figure 13. Predicted shear strength parameters versus actual values obtained from direct shear tests
and collected data: (a) predicted c values versus actual c values; (b) predicted ϕ values versus actual
ϕ values.

4. Discussion

The current study found that although there are slight differences in the degree of
variation, the effect of the individual factors and their interactions on the cohesion and
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internal friction angle share a very similar pattern. Of these, bulk density has the greatest
effect, followed by moisture content, while the effect of the fractal dimension of grain size
has the least. One unanticipated finding was that the increasing moisture content has a
considerable weakening effect on both cohesion and internal friction angle. This finding
is contrary to previous studies which have suggested that the moisture only affects the
cohesion, whereas it has an insignificant effect on the internal friction angle [31]. A possible
explanation for this might be stated as follows. Owing to the larger moisture content, the
orientation of fine particles during the shearing process is more pronounced, and leads
to the weakening of interparticle bonding, and the reduction in larger pores between the
agglomerates and the growth of smaller pores. Combined with the lubricating effect of
free water, it leads to the reduction in both cohesion and internal friction angle as two
inseparable components of the shear strength [32]. Moreover, the discrepancy could be
attributed to the different fine grain content of the studied fine samples. The high content
of fines results in more significant bond weakening effect and lubrication effect by free
water, which in turn affects the interparticle friction and manifests in the reduction in the
internal friction angle component.

Meanwhile, contrary to expectations from the ANOVA that there is no significant
interaction of the variables, the further analysis of the responses surface indicated that the
interaction between bulk density and fractal dimension is more considerable, and bulk
density has a certain interaction with moisture content, while the interactive action between
moisture content and fractal dimension is negligible. This might be related to the definition
of bulk density, which corresponds to the density of a soil when it is completely waterless
in its pores. Its conversion relationship with other variables is [33]

ρb =
ρ

1 + ω
=

Gs

1 + e
(6)

where ρ is the natural density; Gs is the specific gravity, which is associated with the mineral
composition and particle gradation; and e is the porosity.

It is noticeable that bulk density is naturally dependent on the moisture content and
particle gradation (fractal dimension in the current study), and therefore coincides with the
results of the above analysis. Thereby, it is further demonstrated that relying on ANOVA
solely fails to yield robust findings, and the response surface model successfully captures
this interactive effect, even if it is not significant in terms of manifesting in p-values. This
finding, while preliminary, suggests that the interaction of the key factors is necessary, and the
proposed response surface model provides an effective solution for shear strength estimation.

Future studies on the current topic are therefore recommended. Firstly, as noted
above, this study regarded the shear strength indices as unrelated dependent variables
and performed univariate multivariable regression analysis. The multivariate regression
analysis may be facilitated in the further study considering the covariance matrix analysis
among the dependent variables; and the other multivariate analysis, such as principal
component analysis, cluster analysis, and MANOVA may be adopted to capture more
fresh results [34]. Secondly, due to the drawbacks of the direct shear test, the further study
may be implemented by the triaxial compression or ring shear apparatus, with emphasis
on observing the change in stress-strain during the test, as well as stiffness and residual
shear strength. Moreover, the shear strength of the geomaterials in the study area can
be estimated based on the estimation model so that stability analysis can be launched to
analyze the spatial-temporal landslide hazard [35,36].

5. Conclusions

This study performed a series of laboratory experiments to investigate the main contri-
bution of individual physical variables, moisture content, bulk density, and fractal dimension
of grain size, and their interaction to the shear strength parameters of GGRS of colluvial
landslides in the Huanggang area, China. The conclusions can be drawn as follows.
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Firstly, employing RSM approach and ANOVA analysis, a prediction model for the
shear strength parameters of GGRS is proposed based on the factorial model of multiple
quadratic regression equations considering the individual and interacting effects of the
considered three variables, moisture content, bulk density, and fractal dimension of grain
size. With regard to either cohesion or internal friction angle, bulk density has the greatest
effect, followed by moisture content, while the effect of the fractal dimension of grain size
is the least. Combined with the response surface plots, other than the interaction of bulk
density and fractal dimension of grain size, the interaction of other variables is insignificant.

Secondly, the prediction model for the GGRS is validated by performing laboratory
experiments to the GGRS sampled from other colluvial landslides with the same parent
rock, as well as the collected data. The model is proved to be significant and applicable to
the same kind of GGRS of the area.

This statistical analysis explored the variables at three separate levels and assess the
efficacy of each parameter and the interactive coefficients comprehensively. The further study
may extend the experimental design method to CCD to explore the possibility of extreme
value. Moreover, the statistical method can be applied to more influencing variables and more
objective properties, e.g., the permeability and compression index, to obtain more sophisticated
observations. Besides, the proposed prediction model for GGRS can be applied to assess the
regional landslide stability considering the infiltration process of the rainfall on the surface.
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