
Citation: Li, X.; Yi, Z.; Li, R.; Wang,

X.-A.; Li, H.; Yang, X. SM2-Based

Offline/Online Efficient Data

Integrity Verification Scheme for

Multiple Application Scenarios.

Sensors 2023, 23, 4307. https://

doi.org/10.3390/s23094307

Academic Editor: Xiaojie Wang

Received: 14 March 2023

Revised: 17 April 2023

Accepted: 23 April 2023

Published: 26 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

SM2-Based Offline/Online Efficient Data Integrity Verification
Scheme for Multiple Application Scenarios
Xiuguang Li 1,2 , Zhengge Yi 3, Ruifeng Li 2, Xu-An Wang 2 , Hui Li 1,* and Xiaoyuan Yang 2,3

1 State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710126, China;
lixiuguang00@126.com

2 Cryptographic Engineering College, Chinese People’s Armed Police Force Engineering University,
Xi’an 710086, China; rfli46@163.com (R.L.); wangxazjd@163.com (X.-A.W.); yxyangyxyang@163.com (X.Y.)

3 Key Lab of the Armed Police Force for Network and Information Security, Xi’an 710086, China;
yi257172@163.com

* Correspondence: lihui@mail.xidian.edu.cn

Abstract: With the rapid development of cloud storage and cloud computing technology, users
tend to store data in the cloud for more convenient services. In order to ensure the integrity of
cloud data, scholars have proposed cloud data integrity verification schemes to protect users’ data
security. The storage environment of the Internet of Things, in terms of big data and medical big
data, demonstrates a stronger demand for data integrity verification schemes, but at the same time,
the comprehensive function of data integrity verification schemes is required to be higher. Existing
data integrity verification schemes are mostly applied in the cloud storage environment but cannot
successfully be applied to the environment of the Internet of Things in the context of big data storage
and medical big data storage. To solve this problem when combined with the characteristics and
requirements of Internet of Things data storage and medical data storage, we designed an SM2-based
offline/online efficient data integrity verification scheme. The resulting scheme uses the SM4 block
cryptography algorithm to protect the privacy of the data content and uses a dynamic hash table
to realize the dynamic updating of data. Based on the SM2 signature algorithm, the scheme can
also realize offline tag generation and batch audits, reducing the computational burden of users. In
security proof and efficiency analysis, the scheme has proven to be safe and efficient and can be used
in a variety of application scenarios.

Keywords: cloud storage; data integrity; public auditing; SM2

1. Introduction

Cloud storage technology is convenient and flexible, its use growing rapidly at home
and abroad [1]. Big data from Internet of Things (IoT) devices and medical big data also use
cloud storage technology to provide services. However, after users have stored data in the
cloud, although they can thereby access convenient storage and management services, they
also lose the power to control the data directly. Therefore, ensuring data integrity in the
cloud has become a hot research topic for scholars [2]. Data integrity verification technology
uses cryptography-related technology to design appropriate schemes that convince users
that their data, when stored in the cloud server, is secure and complete, by means of a
series of interactions between the auditor and the cloud server. Using this technique can
effectively deter cloud service providers (CSP) from deliberately concealing the issues
of data loss or corruption from users due to their fear of damaging their reputations. It
also effectively stops users from unreasonably making accusations or claims against CSPs
simply because of suspicion, thus effectively protecting the legitimate rights of both users
and CSPs [3].

IoT devices have been widely used and have become a convenient and universal access
terminal for Internet services. However, IoT devices have limited storage space and weak

Sensors 2023, 23, 4307. https://doi.org/10.3390/s23094307 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23094307
https://doi.org/10.3390/s23094307
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5576-9210
https://orcid.org/0000-0003-2070-4913
https://doi.org/10.3390/s23094307
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23094307?type=check_update&version=1

Sensors 2023, 23, 4307 2 of 16

computing power to support complex data computing and big data storage [4]. Therefore,
the cloud, with its powerful computing potential and storage capacity, is generally used to
expand the functions of IoT devices so that IoT devices can obtain massive data storage
and strong data analysis capabilities. As one of the main service areas of cloud computing,
the cloud storage mode of IoT device data allows IoT users to store their data in the cloud
to compensate for the lack of storage space on IoT devices [5]. However, with the loss of
the physical ownership and control of outsourced data, IoT device users are concerned
about the integrity of their data. Therefore, it is necessary to conduct an integrity audit
on the data of IoT devices using the cloud storage mode. Compared with general cloud
audit schemes, the design of data audit schemes for the IoT has higher requirements [6].
First, public verification is required. IoT devices are often resource-constrained and need
to support complex calculations; therefore, audit schemes require a third-party auditor
(TPA) to be able to verify data integrity on behalf of the users. Second, privacy protection is
needed. Data privacy protection is the most important problem in the IoT’s cloud auditing
scheme. Over the duration of the scheme’s implementation, the contents of the challenge
file should remain confidential to the TPA. Many IoT-embedded devices will generate a
large quantity of personal and private data information. If this sensitive information is
exposed in the integrity verification process, the privacy of IoT users may be disclosed
to the integrity verifier or to the public. Third, the scheme is required to be lightweight.
Computing capacity, storage capacity, bandwidth, and other resources of IoT devices are
often greatly limited. Thus, audit schemes with lower computing costs are more suitable
for the IoT. Fourth, a batch audit is required. There are many types and numbers of IoT
devices. The audit scheme must support batch audits for multiple users to quickly verify
the integrity of the massive amount of IoT data.

The sources of healthcare-derived big data mainly include clinical big data generated
during patients’ medical treatment, health-related big data generated by wearable human
health-monitoring devices, and biological big data generated by life sciences research and
medical institutions. However, despite the large amount of data stored in medical databases,
it is still not easy to comprehensively record information on all diseases. Since electronic
medical records are not fully available, a large amount of data comes from manual records.
Biases and incomplete content arising from the recording process, uncertainty in textual
expressions, and incomplete data storage are the root causes of incomplete medical and
health big data, so it is crucial to audit the integrity of medical data [7]. In addition, the
integrity audit scheme of medical data needs to achieve privacy protection. Detailed per-
sonal information and the health status of patients are often directly recorded in healthcare
big data, and these sensitive forms of data require greater privacy protection. Finally, dy-
namic update capabilities are also necessary. Patients’ consultation and onset times involve
process changes, while the waveform and image data of the medical examination are time
series. The patient’s health status is not static but is always in a state of dynamic change.

Motivation. We believe that it is essential and urgent to design a data integrity
verification scheme that can be better applied to the cloud storage environment of IoT data
and medical data, and the most appropriate scheme must meet the following functions:

(1) Public auditing: anyone can perform the audit. Generally, experienced and skilled
TPAs are entrusted by the users to perform the audit task.

(2) Dynamic updating of cloud data: users can insert, delete, and modify the data stored
in the cloud at any time.

(3) Privacy protection: the TPA cannot know the contents of the user data. It is also
preferable that CSP should not know the contents of the user data.

(4) Lightweight computation: the users’ computational overhead should be as small
as possible.

(5) Batch audits for multiple users: the most appropriate scheme is able to implement
batch audits for multi-user data.

However, we found that most existing cloud storage schemes do not meet the above
five conditions well. Therefore, we designed an efficient offline/online data integrity

Sensors 2023, 23, 4307 3 of 16

verification scheme. The proposed scheme is not only applicable to the integrity audit of
cloud data but is also applicable to the integrity verification of IoT data and medical data.

2. Related Works

In early remote data integrity verification schemes, the auditor needs to download all
data from the cloud and use the locally stored metadata to confirm the integrity, which
requires high communication and calculation costs and takes a long time to achieve,
resulting in a great waste of computing power. In 2007, Ateniese et al. [8] proposed the
first provable data possession (PDP) scheme. Their scheme divided the data files into
blocks. The auditor only needed to download partial data blocks from the CSP to verify
the integrity of all data, with a high probability. For 1,000,000 4 KB blocks, assuming that
1% of the blocks have been deleted or tampered with by the CSP, the auditor only needs to
verify the integrity of 460 blocks to judge the integrity of all data with a greater than 99%
confidence probability. In 2007, Juels et al. [9] first proposed the proofs of a retrievability
scheme to audit data. Their scheme used error correction codes and sampling detection
technology to recover the damaged data after detecting that the integrity of the cloud data
was damaged. However, their scheme does not support public auditing, and the number
of audits is limited.

With the increasing demands of users, scholars have expanded various functions based
on the scheme proposed by Ateniese et al. In their study [8], a dynamic data updating
function is added to the cloud audit scheme to enable users to modify the data stored in
the cloud more flexibly. If the cloud data are directly modified, the tag and index will
not match, and subsequent verification work cannot be completed. Therefore, various
appropriate data structures are proposed to achieve dynamic data updates. In order to
prevent malicious auditors from colluding with CSPs or stealing users’ data privacy, the
random mask technology and blockchain technology are combined in cloud audit schemes
to achieve security goals. In order to enable auditors to audit the data integrity of more
than one user at a time, the batch audit function is added to the cloud audit scheme, which
improves the efficiency of large-scale audits. In meeting the needs of one user after another,
cloud data audit schemes gradually become more mature. However, with cloud storage
technology, the existing cloud audit schemes are no longer fully applicable to the cloud
storage environment for IoT and medical data.

The cloud audit scheme proposed in [10] constructs a multi-leaf authentication method
based on the Merkle tree. The scheme can simultaneously authenticate multiple leaf nodes
and realize batch data updates. The proposed scheme also supports log auditing. Users
can verify whether the auditors perform their audit work honestly by checking the log files
generated by auditors. However, the scheme does not mention comprehensive privacy
protection, and there is a security problem wherein attackers can forge data tags to pass the
audit. Hou et al. [11] designed a public audit protocol supporting blockless verification and
batch verification practices; the protocol uses a chameleon certification tree to implement
the efficient dynamic operations of outsourcing data, reduces the computational cost caused
by data updates, and further improves audit efficiency. Nevertheless, the scheme does not
describe how to achieve privacy protection for users and requires the computation of many
bilinear pairs during the upload block verification and bulk audit phases. Based on the BLS
signature, Mishra et al. [12] used a binomial binary tree and an indexed hash table data
structure to construct an efficient and dynamically updated cloud audit scheme. However,
the scheme cannot achieve batch audits.

Fan et al. [13] built a flexible auditing scheme that supports efficient dynamic updating
based on the alliance blockchain. However, the scheme does not consider the batch audits
of large-scale users. The ID-based offline/online PDP protocol that was constructed in [14]
is based on an offline/online signature. The scheme supports batch verification and entire
dynamic data operation but cannot realize data content privacy protection for cloud servers.
The audit scheme introduced in [15] is based on an ID with compressed cloud storage, and
it only uses encrypted data blocks in a self-verified way to audit the cloud data. Xu et al. [16]

Sensors 2023, 23, 4307 4 of 16

introduced the concept of transparent integrity auditing. They proposed a concrete scheme,
based on the blockchain, which does not rely on third-party auditors while freeing users
from high communication costs in data integrity auditing.

Ji et al. [17] proposed an ID-based data integrity verification scheme with the desig-
nated auditor. In their scheme, only the auditor designated by the user could join the audit
task, which improved the scheme’s security compared with the previous ID-based audit
schemes. However, the scheme needed to be more comprehensive. Li et al. [18] proposed
an audit scheme based on a redactable signature. CSP can transform the signature directly,
without the additional sanitizer, while sharing sensitive data. The signature can also be
used to authenticate the source of sharing data. Lin et al. [19] proposed a consortium
blockchain-based audit protocol. This protocol can check the abnormal behavior of audi-
tors, but the scheme needs to be more comprehensive to achieve batch audits. In addition,
during the audit process, the above schemes used numerous high-cost operations, such
as the power index, point hash function, and bilinear mapping, thereby incurring high
computing costs; thus, it cannot be applied to the environment of IoT data and medical
data cloud storage completely.

Our Contributions. In this paper, we propose an efficient offline/online data in-
tegrity verification scheme for multiple application scenarios. Our contributions can be
summarized as follows:

(1) Based on the SM2 signature algorithm and the SM4 block encryption algorithm, we
have constructed an offline/online remote data audit scheme. The scheme supports
dynamic data updates, comprehensive privacy protection, and batch audit capability.
Based on the advantages of offline tags and scheme design, our scheme has low
computational overheads and is suitable for lightweight environments.

(2) We have carried out a security analysis and proof of the scheme. The scheme is
resistant to forgery attacks from the storage side and achieves comprehensive privacy
protection; even the storage side cannot obtain the real content of the data.

(3) We analyzed the scheme’s efficiency and compared the functions and computing costs
with the existing schemes, proving the comprehensiveness of the scheme’s functions
and its high efficiency.

Organization. We have organized the rest of this paper as follows. Section 3 introduces
the system model and the security model. The background knowledge used in the scheme’s
construction process and defines the proposed scheme’s system and security model are
introduced in Section 4. In Section 5, the concrete scheme is described. We analyze the
scheme’s performance and compared it with other schemes in Section 6. In Section 7, we
conclude our work. We analyze the security of the scheme in Appendix A.

3. The System Model and Security Model
3.1. System Model

The system model of the scheme is shown in Figure 1. Three interacting entities are
included: the CSP provides data storage services to users for payment, but it is not trusted
and may delete data from the cloud or pry into the data privacy of its users for profit. The
data owner (DO) is the owner of the data, uploading the data to the cloud to save their
own storage overhead, but does not want the data privacy to be compromised. The TPA
is a semi-honest auditor commissioned by users. They will faithfully perform the task of
auditing the integrity of the data in the cloud, on the one hand, but on the other hand, they
are curious about the content of the data.

The operation process of the proposed audit scheme includes the following algorithms:

(1) Setup: the CSP runs the algorithm, which inputs the security parameter, λ, and
generates the public parameters {E, G, q, g}.

(2) KeyGen: the DO runs the algorithm, which outputs the private key, ks, and the public
key, kp.

Sensors 2023, 23, 4307 5 of 16

(3) OffTagGen: the DO runs the algorithm, which inputs ks and the random numbers di,
l, outputting the offline tags, r′i , s′i.

(4) OnTagGen: the DO runs the algorithm, which inputs r′i , s′i and data blocks mi, then
outputs the online tags ri, si.

(5) ChalGen: the TPA runs the algorithm, which inputs the random number π and
outputs the indexes,

{
ij
}
(1≤j≤c).

(6) ProofGen: the CSP runs the algorithm, which inputs the
{

mij , rij , sij , ij

}
(1≤j≤c)

and

outputs the proof {ρ, s, r}.
(7) VerifyProof: the TPA runs the algorithm, which inputs the proof {ρ, s, r} and outputs

“true” or “false” to indicate the integrity of the data.
Sensors 2023, 23, x FOR PEER REVIEW 5 of 18

CSP

TPA

DO

Dynamic Updates

Secure Data TransferOnTagGen

KeyGen/OffTagGen

Setup

VerifyProof

ProofGen

Figure 1. System model.

The operation process of the proposed audit scheme includes the following algo-

rithms:

(1) Setup: the CSP runs the algorithm, which inputs the security parameter, , and gen-

erates the public parameters { , , , }E G q g .

(2) KeyGen: the DO runs the algorithm, which outputs the private key,
sk , and the pub-

lic key, pk .

(3) OffTagGen: the DO runs the algorithm, which inputs
sk and the random numbers

id , l , outputting the offline tags, ' , 'i ir s .

(4) OnTagGen: the DO runs the algorithm, which inputs ' , 'i ir s and data blocks
im ,

then outputs the online tags ,i ir s .

(5) ChalGen: the TPA runs the algorithm, which inputs the random number and out-

puts the indexes, (1){ }j j ci .

(6) ProofGen: the CSP runs the algorithm, which inputs the (1){ , , , }
j j ji i i j j cm r s i and

outputs the proof { , , }s r .

(7) VerifyProof: the TPA runs the algorithm, which inputs the proof { , , }s r and out-

puts “true” or “false” to indicate the integrity of the data.

3.2. Security Model

In the existing data integrity audit schemes, security analysis often considers the CSP

to be unreliable; it will forge tags in an attempt to pass the audit. Therefore, we mainly

prove the unforgeability of the current scheme in the security analysis; this means that if

the DO’s data are corrupted, this must be detected by the interaction between the CSP and

TPA when executing the scheme. That is, the CSP cannot forge integrity evidence and pass

the data integrity audit under the condition that the data security is damaged; thus, it

must carefully maintain the cloud data. We can define the unforgeability of the scheme

with the following game:

Game: Assuming that C is the challenger, C runs the Setup algorithm to gener-

ate the system parameters and sends the system parameters to an adversary, A . In this

security model, we assume that the adversary A has great privileges, although these

privileges are unlikely to be possessed in a real situation. In Appendix A, we will show

that even if the adversary, A , has all the privileges assumed herein, he/she is unable to

break the auditing scheme proposed in this paper, thus demonstrating that the scheme

has high security strength. Except for the target user that adversary A wants to attack,

he/she can inquire about any other user’s information. Specifically, A can ask the follow-

ing predictor:

Figure 1. System model.

3.2. Security Model

In the existing data integrity audit schemes, security analysis often considers the CSP
to be unreliable; it will forge tags in an attempt to pass the audit. Therefore, we mainly
prove the unforgeability of the current scheme in the security analysis; this means that if
the DO’s data are corrupted, this must be detected by the interaction between the CSP and
TPA when executing the scheme. That is, the CSP cannot forge integrity evidence and pass
the data integrity audit under the condition that the data security is damaged; thus, it must
carefully maintain the cloud data. We can define the unforgeability of the scheme with the
following game:

Game: Assuming that C is the challenger, C runs the Setup algorithm to generate the
system parameters and sends the system parameters to an adversary, A. In this security
model, we assume that the adversary A has great privileges, although these privileges
are unlikely to be possessed in a real situation. In Appendix A, we will show that even
if the adversary, A, has all the privileges assumed herein, he/she is unable to break the
auditing scheme proposed in this paper, thus demonstrating that the scheme has high
security strength. Except for the target user that adversary A wants to attack, he/she can
inquire about any other user’s information. Specifically, A can ask the following predictor:

(1) Public key query: When A queries the public key of IDw, C runs the KeyGen algorithm
to generate kwp and returns kwp to A.

(2) Private key query: When A queries the public key of IDw, C runs the KeyGen algo-
rithm to generate kws and returns kws to A.

(3) Tags query: A can obtain the tag of mwi under the public key kwp of IDw.

Based on the above query, after A is challenged, if A outputs the aggregate tag
{ρ∗w, s∗w, r∗w} with the ID∗w, kwp

∗, and the following conditions are met, then A wins the
game. That is, our scheme is forgery-resistant.

Condition 1: The forged aggregation tags {ρ∗w, s∗w, r∗w}meet the verification equations.
Condition 2: There is no interruption of the public key query.
Condition 3: All the blocks m∗wi of ID∗w have been queried tags.

Sensors 2023, 23, 4307 6 of 16

4. Preliminaries
4.1. Chinese Commercial Cryptography Algorithm

In 2010, the State Cryptography Administration of China released the elliptic curve-
based SM2 cryptographic algorithm. The SM2 algorithm has high cryptographic complexity,
fast processing speed, lower machine performance consumption, better performance, and
more security. Its security has been proven by the authors of [20], and SM2 is more
secure against generalized key substitution attacks. In 2012, the Security Commercial Code
Administration Office of China released the SM4 block cipher standard. This is similar to
AES-128, with simplified round key generation, and it is mainly used for data encryption.
The encryption algorithms and decryption algorithms both use 32 rounds of a nonlinear
iterative structure, the S box is a fixed 8-bit input and 8-bit output, the number of calculation
rounds is large, and nonlinear changes are added, which make them more effective in
defending against key-leaking Trojans [21]. The SM2/4 algorithm has been incorporated
into the ISO/IEC international standard. Given its excellent security and performance,
it is believed that it will be recognized or adopted by more and more organizations and
individuals in China or outside of China.

Our scheme uses the SM2 digital signature algorithm to construct the audit scheme
and the specific steps of the SM2 digital signature algorithm are as follows [22]. To facilitate
understanding, we define and explain the various notations that appear in this paper in
Table 1.

Table 1. Notations used in this paper.

Notations Descriptions

λ The system initialization parameter.
E The elliptic curve.
G The additive cyclic group.
q A large prime number.
g G.
ks The user’s secret key.
kp The user’s public key.
Z∗q The prime field.
di, m′i , l Random numbers.
Di, t Intermediate parameters.
r′i , s′i Offline tags.
M The user’s data file.
(m1 . . . mn) n data blocks.
ID The identity of the file.
ri, si Online tags.
ti The timestamps of mi.
vi The version numbers of mi.
n The number of total data blocks.
c The number of challenged blocks.
per The pseudo-random function.
π The input parameter of per.
xi, yi The coordinates of Di.
ρ, s, r The proof of data possession.

(1) Key generation: the selected elliptic curve equation is y2 = x3 + ax + b. Let g be the
base point on the elliptic curve; the integer ks ∈ Z∗q is randomly selected as the private
key, then the public key kp = ks · g is calculated.

(2) Signature: Let the data to be signed be m. The signer first selects a random integer
d ∈ Z∗q , sets d · g = (x1, y1), and computes r = m + x1, s = (1 + ks)

−1(d− rks); the
signature of the message m is {r, s}.

(3) Verification: After receiving m and {r, s}, the verifier calculates t = r + s,
(x1, y1) = sg + tkp, and r′ = x1 + m. If the values of r′ and r are equal, the signa-
ture is correct.

Sensors 2023, 23, 4307 7 of 16

4.2. Dynamic Hash Table

Our scheme uses the dynamic hash table data structure proposed in Reference [23]
to achieve a dynamic update of the data in the cloud. The dynamic hash table is a two-
dimensional data structure, as shown in Figure 2.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 18

1(...)nm m n data blocks.

ID The identity of the file.

,i ir s Online tags.

it The timestamps of
im .

iv The version numbers of
im .

n The number of total data blocks.
c The number of challenged blocks.
per The pseudo-random function.

 The input parameter of per .

,i ix y The coordinates of
iD .

, ,s r The proof of data possession.

(1) Key generation: the selected elliptic curve equation is
2 3y x ax b= + + . Let g be

the base point on the elliptic curve; the integer *
s qk Z is randomly selected as the

private key, then the public key p sk k g= is calculated.

(2) Signature: Let the data to be signed be m . The signer first selects a random integer
*
qd Z , sets ()1 1,d g x y = , and computes

1r m x= + , () ()
1

1 s ss k d rk
−

= + − ; the

signature of the message m is { , }r s .

(3) Verification: After receiving m and { , }r s , the verifier calculates t r s= + ,

()1 1, px y sg tk= + , and
1'r x m= + . If the values of 'r and r are equal, the signa-

ture is correct.

4.2. Dynamic Hash Table

Our scheme uses the dynamic hash table data structure proposed in Reference [23]

to achieve a dynamic update of the data in the cloud. The dynamic hash table is a two-

dimensional data structure, as shown in Figure 2.

Figure 2. Dynamic hash table.

The table includes both file and data block elements. In the file element, NO. indi-

cates the index value of the corresponding file, while ID indicates the identification of

the corresponding file and a pointer of the first data block of this file. In the data block

element,
it indicates the timestamp of the data block, and

iv indicates the version num-

ber of the data block. The version number is initially set to 1 and its value is incremented

Figure 2. Dynamic hash table.

The table includes both file and data block elements. In the file element, NO. indicates
the index value of the corresponding file, while ID indicates the identification of the
corresponding file and a pointer of the first data block of this file. In the data block element,
ti indicates the timestamp of the data block, and vi indicates the version number of the data
block. The version number is initially set to 1 and its value is incremented by 1 for each
change of the data block. The data block elements in the dynamic hash table are connected
by a chain table, and each data block element is a node in the chain table, while each node
includes the version information of the data block, the timestamp, and a pointer to the
next node. Once the dynamic hash table is established, operations such as search, insert,
deletion, and modification can be performed at either the file level or the data block level.

4.3. Elliptic Curve Discrete Logarithm Problem

The elliptic curve discrete logarithm problem (ECDLP): Let G be an additive cyclic
group of elliptic curves of the order of the large prime q and set g ∈ G as a generator.
ECDLP means that, given g, a · g ∈ G, an attacker A calculates a ∈ Z∗q . The probability that
the attacker A can solve the ECDLP in polynomial time is negligible:

Pr
[

A(ag, g) = a : a R← Z∗q
]
≤ ε (1)

where ε represents the negligible probability; that is, it is computationally infeasible to
solve the ECDLP.

5. SM2-Based Offline/Online Efficient Data Integrity Verification Scheme

In this section, we give a detailed description of the proposed scheme.

(1) Setup(λ)→ (E, G, q, g) : the CSP inputs the security parameter λ and generates the
public parameters {E, G, q, g}. E : y2 = x3 + ax + bmodp is the elliptic curve, p and q
are large prime numbers, G is an additive cyclic group of order q defined on E, and g
is the generator of the group, G.

(2) KeyGen→ (ks, kp) : the DO randomly selects ks ∈ Z∗q as the private key and calculates
kp = ks · g ∈ G as the public key.

Sensors 2023, 23, 4307 8 of 16

(3) OffTagGen(ks, di, l)→ (r′i , s′i) : we set the number of blocks for the file to n, and
the block processing can improve the calculation efficiency and realize sampling
verification. The DO randomly selects

{
di, l ∈ Z∗q

}
1≤i≤n

, calculates Di = di · g ∈ G,

and sets the coordinates of Di to {xi, yi}. For i ∈ [1, n], the DO calculates:

r′i = xi + l (2)

s′i = (1 + ks)
−1(di − r′iks) (3)

and obtains the offline tag
{

r′i , s′i
}

1≤i≤n.
(4) OnTagGen({ r′i , s′i

}
, mi)→ {ri, si} : the DO uses the SM4 block cipher algorithm

to encrypt the data file M with identity ID, and then divides M into n blocks as{
mi ∈ Z∗q

}
1≤i≤n

, for each data block mi. The DO generates the corresponding times-

tamp ti and version number vi, and calculates:

ri = mi + r′i (4)

si = s′i − ks(1 + ks)
−1mi. (5)

The DO receives the online tag {ri, si}1≤i≤n, then sends {ID, i, mi, ri, si, ti, vi}1≤i≤n to
CSP, sends {ID, i, ti, vi, Di, l}1≤i≤n to TPA, and finally delete the local data.

(5) ChalGen(π)→
{

ij
}

: the TPA selects the random number π ∈ Z∗q and sends it to the
cloud server. Both parties take π as input, run the same pseudo-random function, per,
and obtain the random c numbers

{
ij
}
(1≤j≤c) in [1, n] as the indexes of the challenged

data blocks.
(6) ProofGen(

{
mij , rij , sij , ij

}
(1≤j≤c)

)→ proof : after the CSP receives the audit request

and generates the indexes of the challenged data blocks, it calculates ρ = ∑c
j=1 mij ,

s = ∑c
j=1 sij , and r = ∑c

j=1 rij , and sends the proof {ρ, s, r} to the TPA as the proof of
data possession.

(7) VerifyProof(ρ, s, r, kp, Dij , xij)→ true/false : the TPA receives the proof {ρ, s, r}, cal-
culates t = r + s,D = ∑c

j=1 Dij , x = ∑c
j=1 xij , and verifies whether the following

equations hold:
s · g + t · kp = D (6)

x + ρ + cl = r. (7)

If Equations (6) and (7) hold, the DO is informed that the data integrity is not compro-
mised. The correctness of them is derived as follows:

s · g + t · kp

= s · g + (r + s)ks · g
= ∑c

j=1 sij(1 + ks) · g + ∑c
j=1 rij ks · g

= ∑c
j=1 (dij · g− r′ij

ks · g− ksmij · g + (mij + r′ij
)ks · g)

= D

(8)

x + ρ + cl
= ∑c

j=1 xij + ∑c
j=1 mij + cl

= ∑c
j=1 (xij + mij + l)

= ∑c
j=1 (r

′
ij
+ mij)

= r

(9)

Sensors 2023, 23, 4307 9 of 16

(8) DynamicUpdate: our scheme enables dynamic update operations on the cloud data,
including insertion, deletion, and modification. Since the number of data blocks
involved in the dynamic update is small, offline tags are not required in the dy-
namic update process. When a data block, mi, needs to be modified to mj, the DO
selects a random number, dj, to calculate Dj = dj · g ∈ G, where the coordinate
of Dj is set to

{
xj, yj

}
. Then, vj and tj are generated for the data block mj, and

the tags rj = mj + xj + l and sj = (1 + ks)
−1 · (k j − rj · ks) are calculated. Finally,{

ID, i, mj, rj, sj
}

and
{

ID, j, Dj, tj, vj
}

are sent to the CSP and TPA, respectively. After
receiving

{
ID, i, Dj, tj, vj

}
, the TPA finds the i− th node of the linked list correspond-

ing to the file M in the dynamic hash table, and then replaces vi and ti with vj and tj.
After receiving

{
ID, i, mj, rj, sj

}
, the CSP finds the location of mi and replaces mi, ri, si

with mj, rj, sj.

When the DO needs to insert the data block mj in front of the data block mi, they first
select a random number dj to calculate Dj = dj · g and set the coordinate of Dj as (xj, yj).
Then, they generate vj and tj for data block mj and calculate the tags rj = mj + xj + l,
sj = (1 + ks)

−1 · (k j − rj · ks). Finally, the DO sends
{

ID, i, mj, rj, sj
}

and
{

ID, i, Dj, tj, vj
}

to
the CSP and TPA, respectively. After receiving

{
ID, i, Dj, tj, vj

}
, the TPA finds the i-th node

of the linked list corresponding to the file M in the dynamic hash table and inserts a new
node after the i− th node with the content vj, tj. After receiving

{
ID, i, mj, rj, sj

}
, the CSP

finds the location of mi, ri, and si according to i, ID, and inserts mj, rj, sj in front of them.
When the data block mi needs to be deleted, {ID, i} is sent to the CSP and TPA. After

receiving {ID, i}, the TPA deletes the i− th node of the linked list corresponding to the
file M in the dynamic hash table. After receiving {ID, i}, the CSP deletes mi, ri, and si
according to i.

(9) BatchAudit: the scheme can implement a batch audit for multi-user cloud data. Each
DO {uw}1≤w≤x randomly selects the private key, kws ∈ Z∗q , and calculates the public

key,kwp = kws · g ∈ G. The DO {uw}1≤w≤x randomly selects
{

d′wi, lw ∈ Z∗q
}

1≤i≤n
,

calculates Dwi = dwi · g ∈ G, and sets the coordinates of Di to {xwi, ywi} for i ∈ [1, n],
calculates: r′wi = xwi + lw, s′wi = (1 + kws)

−1(dwi − r′wikws), and obtains the offline
tag

{
r′wi, s′wi

}
1≤i≤n. The DO uw uses the SM4 block cipher algorithm to encrypt

the data file Mw with the identity, IDw, and then divides Mw into n blocks, ex-

pressed as
{

mwi ∈ Z∗q
}

1≤i≤n
; for each data block mwi, the DO uw generates the cor-

responding timestamp twi and version number vwi, and calculates: rwi = mwi + r′wi,

swi = s′wi − kws(1 + kws)
−1mwi, as the online tag {rwi, swi}1≤i≤n, then sends

{IDw, iw, mwi, rwi, swi, vwi, twi}1≤i≤n to the CSP, sends {IDw, iw, twi, vwi, Dwi, lw}1≤i≤n
to the TPA, and finally deletes the local data. The TPA selects a random number π as
the parameter of per and sends it to the CSP. Both sides run the same pseudo-random
function, per, and obtain the random number iw

j (1≤j≤c) as the index of the challenged

data block. After the CSP generates the indexes of the challenged data blocks, it cal-
culates ρ = ∑x

w=1 ∑c
j=1 mwij , s = ∑x

w=1 ∑c
j=1 swij , and r = ∑x

w=1 ∑c
j=1 rwij , then {ρ, s, r}

will be sent to the TPA as the proof. The TPA receives the proof, computes t = r + s,
D = ∑x

w=1 ∑c
j=1 Dwij , and x = ∑x

w=1 ∑c
j=1 xwij , and verifies the following equations:

sg + ∑x
w=1 tkwp = D (10)

x + ρ + ∑x
w=1 lw = r. (11)

Sensors 2023, 23, 4307 10 of 16

If Equations (10) and (11) hold, the TPA informs the total x DOs that data integrity has
not been compromised. The correctness of them is derived as follows:

sg + ∑x
w=1 tkwp

= ∑x
w=1 ∑c

j=1 swij g + ∑x
w=1 (kws∑c

j=1 rwij g + swij g)
= ∑x

w=1 ((∑
c
j=1 swij g + kwsswij g) + ∑c

j=1 rwij kwsg)
= ∑x

w=1 (∑
c
j=1 (1 + kws)swij g + ∑c

j=1 rwij kwsg)
= ∑x

w=1 (∑
c
j=1 (dwij g− r′wij

· kwsg− kwsmwij g + rwij kwsg))

= ∑x
w=1 (∑

c
j=1 (dwij g− r′wij

· kwsg− kwsmwij g + rwij kwsg))

= D

(12)

x + ρ + c∑x
w=1 lw

= ∑x
w=1 ∑c

j=1 xwij + ∑x
w=1 ∑c

j=1 mwij + c∑x
w=1 lw

= ∑x
w=1 (∑

c
j=1 xwij + ∑c

j=1 mwij + clw)
= ∑x

w=1 (∑
c
j=1 (xwij + mwij + lw))

= r

(13)

6. Performance Analysis

In this section, the computational overhead of the scheme and the advantage of the
offline/online tags are first analyzed, then we compare the functions of our scheme with
existing schemes [10–14], which proves that our scheme is more suitable for the IoT data
storage environment and medical data storage environment. The schemes in Refs. [10–14]
are novel cloud data audit schemes proposed in recent years. They are not out of date and,
at the same time, they have been tested by scholars in the past two years. Then, we compare
the computational overhead of our scheme with the schemes in Refs. [10–14] numerically.
Finally, we experimentally verify the results of the numerical analysis of computational
overhead to visualize the performance of our scheme.

We set G1 and G2 to be the additive cyclic group of E : y2 = x3 + ax + bmodp and the
multiplicative cyclic group. p is a 512-bit prime number and q is a 160-bit prime number.
The experiment was run on a 64-bit Windows 10 operating system with an i5 CPU, 2.5 GHz
main frequency, and a 4 GB memory environment, using the JPBC library. After selecting a
Type A elliptical curve and defining each operation, we ran each operation 10,000 times to
obtain the average time overhead. The meaning of each operation and the corresponding
time cost are shown in Table 2. To simplify the description, n is used here to denote the
total number of data blocks, and c is used to denote the number of challenged data blocks.
Because of the large values of n and c, we omit the operations’ single occurrence in our
analysis of the calculation overhead.

In the OffTagGen phase, the user needs to compute Di = di · g and r′i = xi + l, so the
computational overhead is about n|MG1|+ n|AZ|. In the OnTagGen phase, the user needs
to compute ri = mi + r′i and si = s′i − ks(1 + ks)

−1mi, so the computational overhead is
about n|MZ|+ 2n|AZ|. In the ProofGen phase, the CSP computes ρ = ∑c

j=1 mij , s = ∑c
j=1 sij ,

and r = ∑c
j=1 rij , and the computational overhead is about 3c|AZ|. In the VerifyProof phase,

after computing t = r + s, D = ∑c
j=1 Dij , and x = ∑c

j=1 xij , the auditor also verifies the
equations sg + tkp = D and x + ρ + cl = r, and the computational overhead is about
c|AZ|+c|AG1|. After using the offline/online tags, the computational overhead of the user
in the scheme is about n|MG1|+ 3n|AZ|+ n|MZ|. If offline/online tags are not used, the
user needs to calculate Di = di · g, ri = mi + xi + l and si = (1 + ks)

−1 · (di − ri · ks); the
computational overhead of the user is about n|MG1|+ 3n|AZ|+ 2n|MZ|.

We compared our scheme with the existing certificateless schemes; the function com-
parison is shown in Table 3. As can be seen from Table 3, although other schemes are novel,
their functions are not comprehensive. Our proposed scheme is the most comprehensive
and the most suitable for the cloud storage environment of IoT data and medical data.

Sensors 2023, 23, 4307 11 of 16

Table 2. Time cost of each operation.

Symbols Description Time Cost/ms

|AZ| computational cost of an addition on Z∗q 0.0003
|MZ| computational cost of a multiplication on Z∗q 0.0006
|EZ| computational cost of an exponentiation on Z∗q 0.0226
|AG1| computational cost of an addition on G1 0.0055
|MG1| computational cost of a doubling on G1 0.7179
|MG2| computational cost of a multiplication on G2 0.0511
|HZ| computational cost of a hash operation to Z∗q 0.0002
|HG2| computational cost of a hash operation to G2 1.1268
|EG2| computational cost of an exponentiation on G2 0.8107
|P| Bilinear pair operations 5.8853

Table 3. Function comparison of each scheme.

Dynamic Update Batch Audit Offline Tags Privacy Protection Against the Cloud

Scheme [10] Yes Yes No No
Scheme [11] Yes Yes No No
Scheme [12] Yes Yes No Yes
Scheme [13] Yes No No Yes
Scheme [14] Yes Yes Yes No
Our scheme Yes Yes Yes Yes

The numerical computational overhead comparison of our scheme and other existing
schemes is shown in Table 4. In the current cloud data audit schemes, the calculation
overhead of the ProofGen and VerifyProof stages is borne by the CSP and TPA, respectively,
while the calculation overhead of the TagGen stage is borne by the users themselves; the
users only need to bear the calculation overhead in the TagGen stage. Because of the
strong computing capability of the CSP and TPA, in the design of cloud data audit schemes,
more emphasis should be placed on reducing the computing cost of the user side, that
is, reducing the computing cost of the audit scheme in the TagGen stage. It can be seen
from Table 4 that in the TagGen stage, the computational overhead of this scheme and the
scheme in [14] is the smallest and is significantly smaller than other schemes. Therefore,
this scheme and the scheme in [14] are more user-friendly and can be applied to equipment
with lower computational power, which is more reasonable and efficient in its design. At
the ProofGen stage, the computational overhead of our scheme is also significantly lower
than that of other schemes. In the case where the number of challenged data blocks, c,
increases gradually, the computational overhead of the other schemes increases at a faster
and more dramatic rate than that of this scheme, and the advantages of our scheme are
more significant.

Table 4. Comparison of the computational overhead.

TagGen GenProof VerifyProof

Scheme [10] n(|HZ|+ |MG2|+ 3|EG2|+
s|MZ|+ s|AZ|) ≈ 2.4924n

cs|MZ|+ cs|AZ|
≈ 0.009c

c(|MZ|+ |AZ|) + s(|EG2|+ |MG2|)
+2|P| ≈ 0.0009c + 2|P|

Scheme [11] n(|HG2|+ 3|EG2|+ |MG2|)
≈ 3.61n

c(|MZ|+ |AZ|+
|EG2|+ |MG2|) ≈ 0.8627c

c(|H|+ 2|MG2|+ 2|EG2|) + 2|P|
≈ 1.7238c + 2|P|

Scheme [12] n(|HG2|+ |EG2|
+|EZ|) ≈ 1.9601n

c(|MZ|+ |HG2|+ 2|EG2|+
2|MG2|+ |AZ|) ≈ 2.0406c 2|P|

Scheme [13] n(s + 1)(|EG2|+ |MG2|)
+n|HG2| ≈ 10.6066n

cs(|MZ|+ |AZ|) + c|MG2|
+c|EG2| ≈ 0.8708c

(c + s)(|MG2|+ |EG2|)
+2|P|+ c|HG2| ≈ 1.9886c + 2|P|

Scheme [14] n(2|AZ|+ |MZ|)
≈ 0.0012n

c(2|MZ|+ |AZ|+ |EZ|)
≈ 0.0241c

c|AZ|+ c|MZ|+ 3|P|
≈ 0.0009c + 3|P|

Our scheme n(2|AZ|+ |MZ|)
≈ 0.0012n

3c|AZ|
= 0.0009c

c|AZ|+ c|AG1|
≈ 0.0058c

Sensors 2023, 23, 4307 12 of 16

In order to test the performance of the scheme in terms of practical application and
more intuitively compare the computational cost of each scheme, each scheme is run within
the experimental environment, and the time costs in the stages of TagGen, ProofGen, and
VerifyProof are recorded, as shown in Figures 3–5. The number of sectors s is set at 10 [23].

Sensors 2023, 23, x FOR PEER REVIEW 14 of 18

Figure 3. The time cost of the TagGen phase (Schemes 1-5 correspond to references [10–14], respec-

tively).

Figure 4. The time cost of the GenProof phase (Schemes 1-5 correspond to references [10–14], re-

spectively).

Figure 5. The time cost of the VerifyProof phase (Schemes 1-5 correspond to references [10–14],

respectively).

According to the above performance analysis, our scheme has more comprehensive

functions and less time cost at each stage, especially in the TagGen stage, so it is more

compatible with lightweight devices. Therefore, our scheme is more suitable for the IoT

storage environment and medical data storage environment.

Figure 3. The time cost of the TagGen phase (Schemes 1–5 correspond to references [10–14], respectively).

Sensors 2023, 23, x FOR PEER REVIEW 14 of 18

Figure 3. The time cost of the TagGen phase (Schemes 1-5 correspond to references [10–14], respec-

tively).

Figure 4. The time cost of the GenProof phase (Schemes 1-5 correspond to references [10–14], re-

spectively).

Figure 5. The time cost of the VerifyProof phase (Schemes 1-5 correspond to references [10–14],

respectively).

According to the above performance analysis, our scheme has more comprehensive

functions and less time cost at each stage, especially in the TagGen stage, so it is more

compatible with lightweight devices. Therefore, our scheme is more suitable for the IoT

storage environment and medical data storage environment.

Figure 4. The time cost of the GenProof phase (Schemes 1–5 correspond to references [10–14], respectively).

Sensors 2023, 23, x FOR PEER REVIEW 14 of 18

Figure 3. The time cost of the TagGen phase (Schemes 1-5 correspond to references [10–14], respec-

tively).

Figure 4. The time cost of the GenProof phase (Schemes 1-5 correspond to references [10–14], re-

spectively).

Figure 5. The time cost of the VerifyProof phase (Schemes 1-5 correspond to references [10–14],

respectively).

According to the above performance analysis, our scheme has more comprehensive

functions and less time cost at each stage, especially in the TagGen stage, so it is more

compatible with lightweight devices. Therefore, our scheme is more suitable for the IoT

storage environment and medical data storage environment.

Figure 5. The time cost of the VerifyProof phase (Schemes 1–5 correspond to references [10–14], respectively).

Sensors 2023, 23, 4307 13 of 16

Figure 3 shows the time cost of each scheme in the TagGen phase when the total
number of data blocks is set to 2000, 4000, 6000, 8000, and 10,000, respectively. It can
be concluded that the time cost of each scheme increases as the number of data blocks
increases, but the time costs of the scheme in [14] and of our scheme do not increase
significantly as the number of data blocks increases. This is due to the use of exponential
operations in Refs. [10–13], which consume a significant amount of computational capacity.
However, in our proposed scheme, the computation of tags is divided into two stages:
OffTagGen and OnTagGen. For the users, their computation burden should mainly take
into account the online tag computation. In our scheme, the online tag computation only
requires simple addition and multiplication operations, resulting in a small computation
overhead. Even with a large amount of data, it will not impose a significant computation
burden on users. Under the conditions of the same number of data blocks, the time cost of
the schemes in Refs. [10–13] is significantly higher than that of the scheme in Ref. [14] and
in this scheme.

The time cost of the GenProof and VerifyProof phases is shown in Figures 4 and 5,
when the number of challenged blocks is set to 200, 400, 600, 800, and 1000, respectively. It
can be concluded that in the GenProof stage, the time cost of the schemes in Refs. [10,14]
and our scheme is relatively low, and ours is the lowest. Scheme [12] has the highest time
cost. In the VerifyProof stage, the time cost of our scheme and the schemes in Refs. [10,12,14]
are significantly lower than that of the schemes in Refs. [11,13]. With the increase in the
number of data blocks, the audit efficiency of our scheme becomes more prominent.

According to the above performance analysis, our scheme has more comprehensive
functions and less time cost at each stage, especially in the TagGen stage, so it is more
compatible with lightweight devices. Therefore, our scheme is more suitable for the IoT
storage environment and medical data storage environment.

7. Conclusions

In this paper, we constructed an efficient SM2-based offline/online data integrity
verification scheme for IoT and medical data. In the stage of preprocessing data of the
scheme, users use the SM4 symmetric encryption algorithm to encrypt data. We used
the encrypted data to generate tags and then uploaded them to the cloud, thus achieving
full data privacy protection. In the scheme, users employ the SM2 signature algorithm
to construct data tags in the uploading data stage. The scheme divided tags into offline
parts and online parts. Users can calculate the offline tags in advance to reduce computing
costs. The scheme uses a dynamic hash table to support the dynamic update of cloud
data and realizes batch audits of multi-user data. It can adapt to the IoT and medical
data storage environment. The theoretical safety analysis proves the scheme’s safety. The
high level of efficiency of the proposed scheme is demonstrated by comparing it with five
existing schemes in terms of efficiency. In future work, we will focus on adding more
functions to the existing audit schemes to meet the increasing needs of users in the cloud
storage environment.

Author Contributions: X.L. and Z.Y. contributed equally to this work; X.L. was responsible for the
writing of the article and the construction of the scheme. Z.Y. was responsible for the derivation of
the formulas in the article and gave some significant ideas. R.L. was responsible for the validation
and formal analysis. X.-A.W. was responsible for the collecting of resources related to this article. H.L.
was responsible for the verification of the security of this article. X.Y. revised the finished manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China [62172436]
and [62102452].

Data Availability Statement: All relevant data has been provided in the article. If someone have any
other needs, he or she can contact the authors by email.

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding
the present study.

Sensors 2023, 23, 4307 14 of 16

Appendix A

In this section, we provide a provable security analysis of our scheme via the follow-
ing theorems.

Theorem A1. (Unforgeability): Under the random prediction model, it is assumed that ad-
versary A breaks the proposed scheme with a nonnegligible advantage ε within time t. The ex-
ecution times of A accessing the public key query, private key query, and tags query are qpk,
qsk, and qt, respectively. Then there is an algorithm C, which can solve the DL problem by

calculating ε′ > ε
(

1
1−qpk

)qpk n(n−1)···(n−c+1)
qt(qt−1)···(qt−c+1) in time t′ < t + tinv + (3qt + 1)ta + 2qttm + qttM,

where tsm and tinv represent the scalar multiplication time on G1 and the inverse operation time on
Z∗q , respectively.

Proof. A is the adversary and C is the DL problem challenger. Given that (g, B)B=bg∈G, the
goal of C is to use A to solve the DL problem to compute b.

C runs the Setup algorithm to generate the system parameters and sends the system
parameters to A. A can ask the following predictor:

Public key query: C holds the list F =
{

IDw, kws, kwp, cw
}

; the initial list is empty.
When A queries the public key of IDw, if F has the public key of IDw, then kwp is returned.
Otherwise, C randomly selects cw ∈ {0, 1}, the probability of cw = 0 is ζ = 1/qpk; if cw = 0,
the challenge is terminated. If cw 6= 0, C selects Bw ∈ Z∗q , returns Bw to A as the public key
kwp, then adds

{
IDw, kws, kwp, cw

}
to F.

Private key query: C holds the list E = {IDw, kws} and the initial list is empty. When
A queries the partial private key of IDw, if E has IDw, then kws is returned. Otherwise, C
selects kws ∈ Z∗q , returns kws to A, then adds E = {IDw, kws} to E.

Tags query: C holds the list {IDw, mwi, rwi, swi, dwi, lw} and the initial list is empty.
When A queries the tag of (ID w, mwi, kwp), if L has {IDw, mwi, rwi, swi, dwi, lw}, then rwi and
swi are returned. Otherwise, C randomly selects dwi, lw ∈ Z∗q , calculates Dwi = dwig, and
sets the coordinates of Dwi to (xwi, ywi), then calculates rwi = mwi + xwi + lw,
swi = (1 + kws)

−1 · (ki − ri · kws), returns rwi, swi to A, and adds {IDw, mwi, rwi, swi, dwi, lw}
to L. �

Challenge: Let ID∗w be a user’s identity, where ID∗w has never been queried as the
private key. Let all blocks m∗wi of ID∗w have been queried tags and where C has queried the
public key of ID∗w. C runs the ChalGen algorithm to select the random number π ∈ Z∗q and
send it to A. C and A take π as the input, run the same pseudo-random function, per, and
obtain the random c numbers ij(1≤j≤c) in [1, n] as the indexes of the challenged data blocks.

Forge: A calculates ρ∗w = ∑c
j=1 m∗wij

, s∗w = ∑c
j=1 s∗wij

, and r∗w = ∑c
j=1 r∗wij

, and sends

ρ∗w, s∗w, r∗w to C; C calculates Dw = ∑c
j=1 Dwij and xw = ∑c

j=1 xwij . A wins the game if
{ρ∗w, s∗w, r∗w} pass the Equations (A1) and (A2):

s∗wg + (s∗w + r∗w)Bw = Dw (A1)

xw + ρ∗w + clw = r∗w. (A2)

Therefore:
s∗wg + (s∗w + xw + ρ∗w + clw)Bw = Dw
(s∗w + xw + ρ∗w + clw)Bw = ∑c

j=1 d∗wij
g− s∗wg

Bw = ∑c
j=1 (dwij

− s∗wij
)(s∗w + xw + ρ∗w + clw)−1g

(A3)

So C can calculate:

b = ∑c
j=1 (dwij − s∗wij

)(s∗w + xw + ρ∗w + clw)
−1 (A4)

Sensors 2023, 23, 4307 15 of 16

and solve the DL problem.
We define the terms as follows. Event E1 indicates that there is no interruption in the

public key query. Event E2 indicates that the forged aggregation tags {ρ∗w , s∗w, r∗w} are valid.
Event E3 indicates that all the blocks m∗wi of ID∗w have been queried tags. Therefore:

AdvDL
C = Pr[E1E2E3] ≥ ε

(
1

1− qpk

)qpk n(n− 1) · · · (n− c + 1)
qt(qt − 1) · · · (qt − c + 1)

(A5)

and C uses the time t′:

t′ < t + tinv + (3qt + 1)ta + 2qttm + qttM (A6)

We can reach the following conclusion: under the random prediction model, if A
can break our scheme with a non-negligible ε within t, then there is an algorithm C that

can solve the DL problem by the advantage ε′ > ε
(

1
1−qpk

)qpk n(n−1)···(n−c+1)
qt(qt−1)···(qt−c+1) in time

t′ < t + tinv + (3qt + 1)ta + 2qttm + qttM.

Theorem A2. (Privacy protection): The scheme supports privacy protection for the user’s data
and a private key against both the CSP and TPA.

Proof. In the OnTagGen stage of the scheme, the user first employs the SM4 block encryp-
tion algorithm to encrypt the original data file and obtains the encrypted data blocks, mi.
The online tags are calculated using the encrypted data block, mi, and the uploaded data
are also the encrypted data. Therefore, even if the cloud stores a large quantity of data
and tags, it is impossible to know the original data content. In the VerifyProof stage, TPA
is unable to calculate the original data value from the aggregate data obtained and the
aggregate tag. As a result, entities in the scenario other than the users cannot know the
contents of the users’ data. �

The user’s private key, ks, is only related to {si}(1≤i≤n) in {ID, i, ti, vi, mi, ri, si}(1≤i≤n),
stored at the cloud server. Therefore, the following system of equations will be listed when
the cloud server tries to obtain the private key:

s1 = (1 + ks)
−1 · (d1 − r1 · ks)

s2 = (1 + ks)
−1 · (d2 − r2 · ks)

...
sn = (1 + ks)

−1 · (dn − rn · ks)

(A7)

ks and di are unknown to CSP. Since there are n + 2 unknowns in n equations, the number
of unknowns is always more than the number of equations so the private key ks cannot
be calculated.

References
1. Ji, Y.; Shao, B.; Chang, J.; Bian, G. Flexible identity-based remote data integrity checking for cloud storage with privacy preserving

property. Clust. Comput. 2021, 25, 337–349. [CrossRef]
2. Gudeme, J.R.; Pasupuleti, S.; Kandukuri, R. Certificateless Privacy Preserving Public Auditing for Dynamic Shared Data with

Group User Revocation in Cloud Storage. J. Parallel Distrib. Comput. 2021, 156, 163–175. [CrossRef]
3. Li, J.; Yan, H.; Zhang, Y. Certificateless Public Integrity Checking of Group Shared Data on Cloud Storage. IEEE Trans. Serv.

Comput. 2021, 14, 71–81. [CrossRef]
4. Tian, Y.; Zhang, Z.; Xiong, J.; Chen, L.; Ma, J.; Peng, C. Achieving graph clustering privacy preservation based on structure

entropy in social IoT. IEEE Internet Things J. 2022, 9, 2761–2777. [CrossRef]
5. Li, Q.; Xia, B.; Huang, H.; Zhang, Y.; Zhang, T. TRAC: Traceable and Revocable Access Control Scheme for mHealth in 5G-enabled

IIoT. IEEE Trans. Ind. Inform. 2021, 18, 3437–3448. [CrossRef]
6. Xiong, J.; Ma, R.; Chen, L.; Tian, Y.; Li, Q.; Liu, X.; Yao, Z. A personalized privacy protection framework for mobile crowdsensing

in IIoT. IEEE Trans. Ind. Inform. 2020, 16, 4231–4241. [CrossRef]

https://doi.org/10.1007/s10586-021-03408-y
https://doi.org/10.1016/j.jpdc.2021.06.001
https://doi.org/10.1109/TSC.2018.2789893
https://doi.org/10.1109/JIOT.2021.3092185
https://doi.org/10.1109/TII.2021.3109090
https://doi.org/10.1109/TII.2019.2948068

Sensors 2023, 23, 4307 16 of 16

7. Zhang, X.; Huang, C.; Zhang, Y.; Zhang, J.; Gong, J. LDVAS: Lattice-Based Designated Verifier Auditing Scheme for Electronic
Medical Data in Cloud-Assisted WBANs. IEEE Access 2020, 8, 54402–54414. [CrossRef]

8. Ateniese, G.; Burns, R.; Curtmola, R.; Herring, J.; Kissner, L.; Peterson, Z.; Song, D. Provable Data Possession at Untrusted
Stores. In Proceedings of the 14th ACM Conference on Computer and Communications Security (CCS ‘07), Alexandria, VA, USA,
29 October–2 November 2007; pp. 598–609.

9. Juels, A.; Kaliski, B.S. Pors: Proofs of retrievability for large files. In Proceedings of the 14th ACM Conference on Computer and
Communications Security, Alexandria, VA, USA, 29 October–2 November 2007; pp. 584–597.

10. Guo, W.; Zhang, H.; Qin, S.; Gao, F.; Jin, Z.; Li, W.; Wen, Q. Outsourced Dynamic Provable Data Possession with Batch Update for
Secure Cloud Storage. Future Gener. Comput. Syst. 2019, 95, 309–322. [CrossRef]

11. Hou, G.; Ma, J.; Liang, C.; Li, J. Efficient Audit Protocol Supporting Virtual Nodes in Cloud Storage. Trans. Emerg. Telecommun.
Technol. 2020, 32, e3911. [CrossRef]

12. Mishra, R.; Ramesh, D.; Edla, D.R. BB-tree based secure and dynamic public auditing convergence for cloud storage. J. Supercomput.
2020, 77, 4917–4956. [CrossRef]

13. Fan, K.; Li, F.; Yu, H.; Yang, Z. A Blockchain-Based Flexible Data Auditing Scheme for the Cloud Service. Chin. J. Electron. 2021,
30, 1159–1166.

14. Rabaninejad, R.; Asaar, M.R.; Attari, M.A.; Aref, M. An identity-based online/offline secure cloud storage auditing scheme. Clust.
Comput. 2020, 23, 1455–1468. [CrossRef]

15. Yang, Y.; Chen, Y.; Chen, F.; Chen, J. An Efficient Identity-Based Provable Data Possession Protocol with Compressed Cloud
Storage. IEEE Trans. Inf. Forensics Secur. 2022, 17, 1359–1371. [CrossRef]

16. Li, S.; Xu, C.; Zhang, Y.; Du, Y.; Chen, K. Blockchain-Based Transparent Integrity Auditing and Encrypted Deduplication for
Cloud Storage. IEEE Trans. Serv. Comput. 2023, 16, 134–146. [CrossRef]

17. Ji, Y.; Shao, B.; Chang, J.; Xu, M.; Xue, R. Identity-based remote data checking with a designated verifier. J. Cloud Comput. 2022,
11, 7. [CrossRef]

18. Li, S.; Han, J.; Tong, D.; Cui, J. Redactable Signature-Based Public Auditing Scheme with Sensitive Data Sharing for Cloud Storage.
IEEE Syst. J. 2022, 16, 3613–3624. [CrossRef]

19. Lin, Y.; Li, J.; Kimura, S.; Yang, Y.; Ji, Y.; Cao, Y. Consortium Blockchain-Based Public Integrity Verification in Cloud Storage for
IoT. IEEE Internet Things J. 2022, 9, 3978–3987. [CrossRef]

20. Yang, A.; Nam, J.; Kim, M.; Choo, K.K.R. Provably-Secure (Chinese Government) SM2 and Simplified SM2 Key Exchange
Protocols. Sci. World J. 2014, 2014, 825984. [CrossRef] [PubMed]

21. Wang, D.; Wu, L.; Zhang, X. Key-leakage hardware Trojan with super concealment based on the fault injection for block cipher of
SM4. Electron. Lett. 2018, 54, 810–812. [CrossRef]

22. Yan, J.; Lu, Y.; Chen, L.; Nie, W. A SM2 Elliptic Curve Threshold Signature Scheme without a Trusted Center. KSII Trans. Internet
Inf. Syst. (TIIS) 2016, 10, 897–913.

23. Tian, H.; Chen, Y.; Chang, C.; Jiang, H.; Huang, Y.; Chen, Y.; Liu, J. Dynamic-Hash-Table Based Public Auditing for Secure Cloud
Storage. IEEE Trans. Serv. Comput. 2017, 10, 701–714. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2020.2981503
https://doi.org/10.1016/j.future.2019.01.009
https://doi.org/10.1002/ett.3911
https://doi.org/10.1007/s11227-020-03456-y
https://doi.org/10.1007/s10586-019-03000-5
https://doi.org/10.1109/TIFS.2022.3159152
https://doi.org/10.1109/TSC.2022.3144430
https://doi.org/10.1186/s13677-022-00279-5
https://doi.org/10.1109/JSYST.2022.3159832
https://doi.org/10.1109/JIOT.2021.3102236
https://doi.org/10.1155/2014/825984
https://www.ncbi.nlm.nih.gov/pubmed/25276863
https://doi.org/10.1049/el.2018.1153
https://doi.org/10.1109/TSC.2015.2512589

	Introduction
	Related Works
	The System Model and Security Model
	System Model
	Security Model

	Preliminaries
	Chinese Commercial Cryptography Algorithm
	Dynamic Hash Table
	Elliptic Curve Discrete Logarithm Problem

	SM2-Based Offline/Online Efficient Data Integrity Verification Scheme
	Performance Analysis
	Conclusions
	Appendix A
	References

