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Abstract: Image quality assessment of 360-degree images is still in its early stages, especially when it
comes to solutions that rely on machine learning. There are many challenges to be addressed related
to training strategies and model architecture. In this paper, we propose a perceptually weighted
multichannel convolutional neural network (CNN) using a weight-sharing strategy for 360-degree
IQA (PW-360IQA). Our approach involves extracting visually important viewports based on several
visual scan-path predictions, which are then fed to a multichannel CNN using DenseNet-121 as the
backbone. In addition, we account for users’ exploration behavior and human visual system (HVS)
properties by using information regarding visual trajectory and distortion probability maps. The
inter-observer variability is integrated by leveraging different visual scan-paths to enrich the training
data. PW-360IQA is designed to learn the local quality of each viewport and its contribution to the
overall quality. We validate our model on two publicly available datasets, CVIQ and OIQA, and
demonstrate that it performs robustly. Furthermore, the adopted strategy considerably decreases the
complexity when compared to the state-of-the-art, enabling the model to attain comparable, if not
better, results while requiring less computational complexity.

Keywords: 360-degree images; CNNs; scan-path; JND; blind image quality assessment

1. Introduction

Image quality assessment (IQA) is the process of evaluating the visual quality of
an image, taking into account various visual factors, human perception, exploration be-
havior, and aesthetic appeal. The goal of IQA is to determine how well an image can
be perceived by human users [1]. IQA is performed objectively using mathematical and
computational methods or subjectively by asking human evaluators to judge and rate the
visual content. IQA is a challenging and versatile task, as it differs from one application to
another and requires a deeper understanding of perception and user behavior to design
consistent methodologies. This is especially true for emerging media such as 360-degree
(also known as omnidirectional) images that require particular attention to ensure that
users can perceive these images accurately and effectively.

360-degree images provide users with the ability to look in any direction of the 360◦

environment, creating an immersive experience when viewed through head-mounted
displays (HMDs) or other specialized devices. As the user gazes in a particular direction,
the HMD display renders a portion of the content corresponding to the current field of
view (FoV) from the spherical representation, which is effectively a 2D rendered window as
illustrated in Figure 1. The next viewport depends on the user’s head movement along the
pitch, yaw, and roll axes. This exploration behavior makes processing 360-degree images
challenging, particularly for quality assessment, as HVS perception requires appropriate
considerations. Additionally, 360-degree images require a sphere-to-plane projection for
processing, storage, or transmission, which introduces geometric distortions that must be
taken into account when designing IQA methodologies or dealing with 360-degree images,
in general [2].
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Rendered
viewport

Figure 1. 360-degree images viewed using head-mounted devices. Only the current field of view is
rendered as a viewport.

Convolutional neural networks (CNNs) have been successfully used in various fields,
including quality assessment, due to their good performance. For 360-degree quality
assessment, CNN-based models often adopt the multichannel paradigm, in which multiple
CNNs are stacked together to calculate the quality score from selected viewports. However,
this architecture can be computationally complex [3] and may not fully consider the non-
uniform contribution of each viewport to the overall quality. To address these issues, end-
to-end multichannel models that learn the relationship among inputs and the importance
of each viewport have been proposed. These models tend to better agree with the visual
exploration and quality rating by observers. Moreover, viewport sampling, combined
with an appropriate training strategy, may further improve the robustness of the model.
A previous study designed a multichannel CNN model for 360-degree images that considers
various properties of user behavior and the HVS [4]. However, the model has significant
computational complexity.

In contrast to our previous model, this paper introduces a novel approach for 360-
degree image quality assessment, called the Perceptually Weighted 360-degree IQA model
(PW-360IQA). The proposed model is a multichannel CNN with a weight-sharing strategy,
which significantly reduces complexity compared to state-of-the-art models while main-
taining higher accuracy. PW-360IQA considers different perceptual characteristics of the
HVS, such as visual exploration trajectories and distortion probability maps by utilizing
both scan-paths and just-noticeable differences (JNDs). The model first extracts viewports
on the spherical content of the 360-degree images based on visual scan-path predictions to
reproduce the actual viewed content and avoid severe geometric distortions. Then, moti-
vated by the effectiveness of well known pre-trained CNN models and the observations
found in [3], we use DenseNet-121 [5] to extract visual features from the selected viewports
and predict their visual quality. To adaptively learn the contribution of each viewport to
the overall quality score, a viewport weight estimation is incorporated by fusing learned
JND features and visual scan-path attributes such as fixation duration and fixation order.
Finally, PW-360IQA estimates a quality score distribution for each input 360-degree image,
from which the ultimate score is derived using an adaptive pooling strategy. The primary
contributions of this work are:
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• The use of the weight sharing strategy to reduce the complexity of the model and
improve the robustness of the multichannel CNN.

• Instead of predicting a single score per 360-degree image, a quality score distribution
is predicted by taking advantage of the variability of the visual scan-paths.

• Inspired by the way opinion scores are gathered and processed, we define an agreement-
based pooling method to derive the final quality scores.

2. Related Work
2.1. Traditional Models

As 360-degree content has become more popular, a few 360-degree IQA models have
been proposed based on the rich literature on 2D-IQA. In particular, Yu et al. [6] introduced
the spherical peak signal-to-noise ratio (S-PSNR) which computes the PSNR on a spherical
surface rather than in 2D. The weighted spherical PSNR (WS-PSNR) [7] uses the scaling
factor of the projection from a 2D plane to the sphere as a weighting factor for PSNR
estimation. Similarly, Chen et al. [8] extended the structural similarity index (SSIM) [9] by
computing the luminance, contrast, and structural similarities at each pixel in the spherical
domain (S-SSIM). The latter uses the same weights as the WS-PSNR. Zakharchenko et al.
proposed to compute PSNR on the Craster parabolic projection (CPP) [10] by re-mapping
pixels of both pristine and distorted images from the spherical domain to CPP. In contrast,
some works, such as those in [11–13], incorporate saliency-based weight allocation in the
computation of PSNR. Following the trend of adapting 2D models to the 360-IQA domain,
Croci et al. [14] proposed extending traditional 2D-IQA metrics such as PSNR and SSIM to
360-degree patches obtained from the spherical Voronoi diagram of the content. The overall
quality score is computed by averaging the patch scores. This framework is expanded
in [15] by incorporating visual attention as prior to sample Voronoi patches. In a similar
vein, the approach proposed by Sui et al. [16] also employs 2D-IQA models for 360-IQA.
Specifically, the approach maps 360-degree images to moving camera videos by extracting
sequences of viewports along visual scan-paths, which represent possible visual trajectories
and generate the set of viewports. The resulting videos are evaluated using several 2D-IQA
models, including PSNR and SSIM, with temporal pooling across the set of viewports.

Most traditional 360-degree IQA methods leverage the rich literature on 2D IQA and
focus on measuring signal fidelity, which may not adequately capture the perceived visual
quality due to the unique characteristics of omnidirectional/virtual reality perception.
Furthermore, these models typically obtain the fidelity degree locally using pixel-wise
differences, which may not fully account for global artifacts. Additionally, the computation
is performed on the projected content, which can introduce various geometric distortions
that further affect the accuracy of the IQA scores.

2.2. Learning-Based Models

Deep-learning-based solutions, particularly convolutional neural networks (CNNs),
have shown impressive performances in various image processing tasks, including IQA.
In the context of 360-degree IQA, CNN-based methods have emerged, and they have
shown promising results with the development of efficient training strategies and adaptive
architectures. The multichannel paradigm is the primary architecture adopted for 360-
degree IQA, and viewport-based training is one of the most commonly used strategies.
A multichannel model consists of several CNNs running in parallel, with each CNN
processing a different viewport, and the quality scores are obtained by concatenating the
outputs of these CNNs. The end-to-end model is trained to predict a single quality score
based on several inputs. However, a major drawback of this approach is the number of
channels or CNNs, which can significantly increase the computational complexity and
may affect the robustness of the model [3]. To mitigate this drawback, some techniques
such as weight sharing across channels can be helpful. In contrast to multichannel models,
a few attempts have been made to design patch-based CNNs for 360-degree image quality
assessment, which can reduce the computational complexity. In the following section,
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we provide a literature review of works that have used different CNN architectures for
360-degree IQA.

2.2.1. Patch-Based Models

Patch-based solutions for 360-degree IQA are mainly used to address the limited
availability of training data. By sampling a large number of patches from 360-degree
images, the training data can be artificially augmented. Patch-based models consider each
input as a separate and individual content item. This makes the training data rich and
somehow sufficient for training CNN models. Based on this idea, Truong et al. [17] used
equirectangular projection (ERP) content to evaluate the quality of 360-degree images,
where patches of 64 × 64 are sampled according to a latitude-based strategy. During
validation, an equator-biased average pooling of patches’ scores is applied to estimate
the overall quality. Miaomiao et al. [18] integrated saliency prediction in the design of
a CNN model combining the spatial saliency network (SP-NET) [19] for saliency feature
extraction, and ResNet-50 [20] for visual feature extraction. The model is trained using
cube-map projection (CMP) faces as patches, and is then fine-tuned directly on ERP images.
Yang et al. [21] proposed to use ResNet-34 [20] as a backbone where input patches are
enhanced using a wavelet-based enhancement CNN and used as references to compute
error maps. All these models used projected content to sample the input patches, not taking
into account the geometric distortions generated by such a projection nor the relevance of
the patch content. Moreover, labeling each patch individually using mean opinion scores
(MOSs) regardless of its importance may not accurately reflect the overall quality of the
360-degree image. This is because the local (patch) perceptual quality may not always
be consistent with the global (360-degree image) quality due to the large variability of
image content over the sphere and the complex interactions between the content and the
distortions [22].

2.2.2. Multichannel Models

In the literature, several multichannel models have been proposed for 360-degree
IQA. For instance, Sun et al. [23] developed the MC360IQA model, which uses six pre-
trained ResNet-34 [20] models. Each channel corresponds to one of the six faces of the
CMP, and a hyper-architecture is employed, where the earliest activations are combined
with the latest ones. The outputs are concatenated and regressed to a final quality score.
Zhou et al. [24] followed a similar approach by using CMP faces as inputs and proposed to
use the Inception-V3 [25] model with shared weights to reduce complexity. However, the
authors chose not to update the different weights of the pre-trained model, thereby losing
the benefits of weight sharing. Kim et al. [26] proposed a model that uses 32 ResNet-50 to
encode visual features of extracted 256× 256 patches from the ERP images. The 32 channels
are augmented with a multi-layer perceptron (MLP) to incorporate patches’ locations using
their spherical positions. However, the resulting model is highly complex. It should be
noted that predicting quality based on ERP content is not ideal due to severe geometric
distortions. Xu et al. [27] proposed the VGCN model, which exploits the dependencies
among viewports by incorporating a graph neural network (GNN) [28]. This approach
allows for modeling the relationships between viewports in a more effective way. The
VGCN model uses twenty ResNet-18 [20] as channels for the sampled viewports, along
with a subnetwork based on the deep bi-linear CNN (DB-CNN) [22] that takes ERP images
as input. This makes the model significantly complex. Building on the VGCN architecture,
Fu et al. [29] proposed a similar solution that models interactions among viewports using
a hyper-GNN [30].

As previously mentioned, the use of a higher number of channels in a multichannel
model can significantly increase its complexity. Additionally, the learned features from
each channel are concatenated automatically, requiring perceptual guiding to consider the
importance of each input with respect to the MOS. Relying solely on the CNN to fuse the
different representations may not be sufficient. Therefore, a more effective approach is
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to assist the model in automatically weighting each input based on its importance and
significance with respect to various HVS characteristics. In the following section, we
describe a multichannel 360-IQA model designed to accurately estimate the contribution of
each input by considering different HVS characteristics.

3. Proposed 360-Degree IQA Methodology

In this section, we introduce our perceptually weighted 360-degree IQA model (PW-
360IQA). The training data are divided into three categories: (1) visual content of chosen
viewports, (2) corresponding JND probability maps, and (3) visual trajectory information.

3.1. Data Preparation

It is widely acknowledged that 360-degree images in the projected (plane represen-
tation) format are subject to geometric distortions caused by the projection process [3,31].
Moreover, the projected content does not correspond to the actual item viewed by users us-
ing HMDs. To overcome these issues, we leverage spherical (or radial) content to generate
viewports that correspond to the HMD displayed content.

To improve the selection of important viewports from 360-degree images, a visual
scan-path is used. This approach is based on the fact that the HVS focuses on salient
details when viewing images, resulting in eye fixations [32]. By predicting possible visual
trajectories, a visual scan-path model provides insight into the user behavior. Incorporating
this information into the design of image quality assessment (IQA) models can be useful.
In this study, the scan-path model proposed by Sun et al. [33] is used to generate ten virtual
observers (VOs), each consisting of eight ordered fixation points (FPs). These FPs are used
as the center of 256× 256 viewports (VPs), which are fed to our model as the first category
of input data (i.e., the visual content). The scan-path model also provides information about
the order and duration of each FP, denoted as FOr and FD, respectively. FOr represents the
temporal progress of the visual trajectory, while FD indicates the length of time a VP is
likely to be focused on. The longer the duration of fixation, the more influence it may have
on the observers’ judgment. This information constitutes the second category of data given
to our model.

To account for the varying sensitivity of different regions in a scene to distortion and
the perceptual impact of such distortions on viewports, we use just-noticeable difference
(JND) probability maps, denoted as JNDmap, for each VP. These maps provide information
about the distribution of degradation over a viewport and across different ones in the
same scene. To compute these maps, we utilize the model developed by Wu et al. [34] for
2D images since the viewports are considered as 2D images. Figure 2 shows samples of
viewports along with their corresponding JND maps, illustrating the variation in distortion
probability values depending on the complexity of each region. Flat regions are more
susceptible to visible distortions compared to more complex ones. The JND maps constitute
the third category of data given to our model.
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Figure 2. (Top) Examples of extracted viewports and (Bottom) their corresponding JND probabil-
ity maps.

As previously mentioned, each 360-degree image I is represented as a set of data, con-
sisting of Vpi, JNDmapi, [FOr, FD], where i ∈ 1 . . . N. The use of different virtual observers
(VOs) enables us to account for the diversity of human scan-paths. By considering different
VOs, we can mimic exploration behavior and subjective ratings, where each VO explores
the same scene differently. Such differences are expressed by (i) the evolution of the visual
trajectories and (ii) the fixation duration. Figure 3 depicts examples showing the variability
of the generated scan-paths for the same image. As can be seen, each scan-path appears to
be distinct compared to the others, and the fixations tend to be located in the equatorial
region, mimicking the way users explore 360-degree scenes. Therefore, for I, we generate
m visual scan-paths (SPs) representing the VOs:

SPs(I) = {VO0, VO1, . . . , VOm}. (1)

Scan-path 1 Scan-path 2 Scan-path m
Virtual observer 1 Virtual observer 2 Virtual observer m

...

...

Figure 3. Different scan-paths considered as virtual observers (VOs). Each scan path is composed of
eight ordered fixations. The radius of each fixation reflects the fixation duration. Blue represents the
first viewed viewport and red corresponds to the last viewport.

3.2. PW-360IQA Model

Figure 4 depicts the architecture of the PW-360IQA model, which adopts a multi-
channel design with eight channels, each corresponding to a viewport extracted from the
360-degree image. Given a set of viewports Vpi ∈ R+ with i ∈ {0 . . . N} extracted from
a 360-degree image, the model takes four inputs including visual content, JND probability
map JNDmap ∈ R+, fixation order and fixation duration [FOr, FD] ∈ R+. These inputs are
fed to the local quality predictor (LQP), which consists of eight LQP modules running in
parallel, one for each channel. The LQP module fuses the learned representations and out-
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puts a weighted quality score for each Vpi denoted as WQVpi . Finally, the model predicts
a weighted arithmetic mean of the local quality scores for each VO, representing a quality
score distribution (QSD):

QSDI = { f (VO1), f (VO2), . . . , f (VOm)}, (2)

where f (.) represents the model PW-360IQA, and f (VOi) is obtained as follows:

f (VOi) =
∑N

i=1 WQVpi

∑N
i=1 WVpi

, (3)

where WQVpi is obtained by:

WQVpi = WVpi ×QVpi . (4)

Local quality
predictor

Local quality
predictor

Local quality
predictor

. 

. 

. 

Shared Weights

Quality score  
distribution

Figure 4. Architecture of the proposed PW-360IQA. ⊕ refers to the summation of WQVpi .

The weight sharing technique is used to reduce the number of parameters to train
and to encourage the model to learn the relationships among the input data from the
N viewports. In weight sharing, the learned weights of the LQP module are updated
identically for the eight channels using back-propagation. This means that each LQP
is considered as a sub-network, and the weights are computed taking into account the
learned relationship among input data from the N viewports. By sharing weights across
sub-networks, the model requires fewer data and is less likely to over-fit. The architecture
of the PW-360IQA model is inspired by the “Siamese Network” [35], where the eight LQPs
are considered as mirrored models. This is because each sub-network essentially produces
a representation of its input, and since the inputs of each LQP are of the same composition,
it appears natural to use the same model to process similar inputs. This allows the LQPs
to share the same weights and biases, making it easier to train the model and reduce the
number of parameters.

The final quality score of I is computed using agreement-based pooling. This method
involves discarding scores that are far from the median of the quality score distribution
QSDI and only aggregating those within a certain agreement interval. The idea behind this
approach is to mimic how subjective ratings are obtained, where only scores that are in
agreement with each other are considered for computing the mean opinion score (MOS).
Scores that do not agree are detected using the standard deviation σ(.) of QSDI . Specifically,
a score is rejected only if it falls outside the interval [−λ ∗ σ(QSDI),+λ ∗ σ(QSDI)], where
λ ∈ R+ is a positive real number that determines the appropriate agreement range with
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respect to the variability of QSDI . The resulting quality score distribution with the retained
scores is denoted as QSD′I . Formally, the final score pMOS is obtained as:

pMOSI =
1

| QSD′ | ∑
j∈QSD′

QSD′Ij
. (5)

3.2.1. Local Quality Predictor

The proposed PW-360IQA model utilizes the LQP module as its main component, as
depicted in Figure 4. The LQP module is composed of three parts, and its architecture is
shown in Figure 5. The first part is the visual feature extractor (VFE) where a pre-trained
CNN model is used to encode visual features from the input viewports (VPs). In this
work, the DenseNet-121 model [5] is selected based on our previous research on CNNs
for 360-degree IQA [3]. The study involved a comparison of several pre-trained models
across different architectures and paradigms, encompassing various CNN architectures and
image representations. Specifically, the study assessed seven models, including ResNet-
18/34/50 [20], Vgg-16/19 [36], DenseNet-121 [5], and Inception-V3 [25], in terms of visual
feature encoding for 360-degree IQA. The results indicate that DenseNet-121 and ResNet-
50 are the top-performing models, with DenseNet-121 achieving superior results while
exhibiting less complexity than ResNet-50. In addition, when the same configuration was
used, involving viewports and the multichannel architecture, DenseNet-121 outperformed
ResNet-50 significantly.

FC(32) +
ReLU

FC(8) +
ReLU

JND features extractor

Concat

Visual features extractor

CNN backbone

...

...

WEM

QEM

FC(256) +
Dropout +

ReLU

...

FC(1) +
Sigmoid

FC(256) +
Dropout +

ReLU

...

FC(1) +
Linear

Figure 5. Local quality predictor (LQP) architecture. WEM and QEM stand for the weight and quality
estimation modules, respectively, and ⊗ refers to the weighting function of QVpi .

The DenseNet-121, pre-trained on the ImageNet [37] dataset, is a neural network
composed of dense blocks, where in each block the layers are densely connected, with
L(L + 1)/2 direct connections, L being the number of layers. Each layer in DenseNet
receives additional input from all preceding layers and concatenates them with its own
feature maps before feeding them to the subsequent layers. This allows the model to reuse
low-level features at later stages. The VFE provides a feature representation thanks to
DenseNet-121 feature encoding, from which a feature vector V fVpi ∈ R+ is derived using
of global average pooling (GAP). The latter goes to a quality estimation module (QEM)
composed of fully connected (FC) layers with 256 neurons, followed by rectified linear
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unit (ReLU) activation function and a dropout for regularization. Another FC layer with
a single neuron and a linear activation function is used to deliver the quality score QVpi .

The second part of the LQP module is the JND features extractor (JND-FE) illustrated
in Figure 6. It takes the JND probability map JNDmapVpi ∈ R+ of Vpi as input and outputs
a feature vector JND fi

∈ R+. It comprises two convolutional blocks (Conv Block) with 32
and 64 filters, respectively. Each block is composed of two Conv layers with 3× 3 filter
size, followed by a batch normalization (BN) layer [38], and then a ReLU activation. BN
is used to make the model faster, more stable, and more robust to bad initialization. It is
recommended to place BN right after the Conv layers and before ReLU, which helps to
produce activations with a stable distribution [38]. All convolutions are used with zero
padding to preserve more features and produce an output of the size of the input. After
the second activation, a pooling stage is performed where average and max poolings are
applied on the refined feature maps F obtained from the second activation. The average
pooling is applied to account for spatial statistics, whereas max pooling is used to gather
distinctive features. The kernels in all pooling layers are of 2× 2 size. Two feature maps are
obtained at this stage, Favg and Fmax, after applying average and max poolings, respectively.
These feature maps are then concatenated to obtain the output features F′ of each Conv
Block. Thereby, F′ is computed as follows:

F′ = Concat([Avg2×2(F); Max2×2(F)]). (6)

Each Conv block outputs features of shape D× H ×W, where H, W, and D stand for
the height, width, and dimension in terms of the number of channels of the deep features
F′, respectively. D is the sum of the number of channels from Favg and Fmax. The produced
feature representation by the second Conv block is spatially reduced by the GAP layer to
derive the JND feature vector JND fi

.

Conv2D 3x3
+ BN + Relu

Concat

Avg
Pooling

Max
Pooling

Concat

GAPConv Block (32) Conv Block (64)

Figure 6. JND feature extractor (JND-FE) architecture. JND fi
∈ R+ represents the feature vector of

the JND features. GAP refers to global average pooling.

The third part is a multi-layer perceptron (MLP) that takes the visual trajectory related
information, i.e., [FOr, FD], as input. It is composed of two FC layers of 32 and 8 neurons,
respectively. Each layer is followed by a ReLU activation function. The encoded features are
then concatenated with JND fi

from the JND-FE, before being fed to the weight estimation
module (WEM). The latter has the same structure as QEM, except for the final activation
used to deliver the weights. Here, a sigmoid activation function is used to estimate the
probability of a given VP to be of high or low importance. Therefore, the weight of VPi is
obtained as follows:

WVpi = σ(WEM(Concat([MLP([FOr, FD]i), JND fi
]))). (7)

For the end-to-end training of the PW-360IQA model, we used the Huber loss [39],
known to be differentiable everywhere and robust to outliers. Hence, the model is then
trained to minimize the following loss function:
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Lδ(y, ŷ) =
{ 1

2 (y− ŷ)2 f or |y− ŷ| ≤ δ,
δ|y− ŷ| − 1

2 δ2 otherwise.
(8)

4. Experimental Results

In this section, the experimental datasets and evaluation protocols are described.
Then, the proposed model is compared with the state-of-the-art quality assessment metrics,
followed by an ablation study with a focus on the model design.

4.1. Experimental Setup
4.1.1. Datasets

The training and evaluation of the PW-360IQA model are performed on two publicly
available 360-IQA datasets, namely OIQA [40] and CVIQ [23]. Details regarding each
dataset are given in the following and a summary is provided in Table 1.

OIQA: This includes 320 distorted 360-degree images derived from 16 pristine ones. The
used distortions include JPEG compression (JPEG), JPEG 2000 compression (JP2K),
Gaussian blur (BLUR), and Gaussian white noise (WN). Each distortion type is
applied at five different levels of distortion, resulting in a total of 20 versions for each
pristine image.

CVIQ: This includes 16 pristine 360-degree images and their corresponding 528 distorted
versions. Only compression-related distortions are used to generate this dataset,
namely JPEG with quality factors ranging from 50 to 0, as well as H.264/AVC (AVC)
and H.265/HEVC (HEVC) with quantization parameters (QPs) ranging from 30 to
50. Each distortion was applied at eleven levels, resulting in a total of 33 distorted
versions for each pristine image.

Table 1. Summary of the used 360-degree image databases.

Database OIQA [40] CVIQ [23]

Ref images 16 16

Distorted images 320 528

Distortion type (distortion levels) JPG(5)/WGN(5) JP2K(5)/BLR(5) JPG(11)/AVC(11) HEVC (11)

Number of observers 20 (M: 15, F: 5) 20 (M: 14, F: 6)

HMD HTC Vive HTC Vive

4.1.2. Implementation Details

PW-360IQA was implemented using TensorFlow and trained on a server equipped
with an Intel Xeon Silver 4208 2.1GHz, 192G RAM, and an Nvidia Tesla V100S 32G GPU. The
batch size was set to 8 and the Adam optimizer [41] was used with β1 = 0.9 and β2 = 0.999,
following the recommendation in [41] to prevent adverse effects on optimization. The
learning rate was initially set to 1 × 10−3 . To provide a complete assessment of the
selected datasets, a five-fold cross-validation approach was adopted. Each fold was trained
using early stopping techniques by monitoring the validation loss, which ensured that
the training stopped when no improvement was observed, thereby avoiding overfitting.
During training, the datasets were randomly divided into training, validation, and testing
sets. The distorted images derived from the same pristine one were allocated to the same
set to avoid an unreliable assessment.

4.1.3. Evaluation Metrics

To evaluate the performance of our model, we used three performance evaluation
criteria commonly recommended by the ITU [42]. These included the Pearson linear
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correlation coefficient (PLCC) for accuracy evaluation, the Spearman rank-order correlation
coefficient (SRCC) for monotonicity evaluation, and the root mean squared error (RMSE) for
prediction error evaluation. PLCC and SRCC values close to 1 indicate good performance,
while values close to 0 indicate poor performance. Lower RMSE values correspond to fewer
prediction errors.

4.2. Performance Comparison

To demonstrate the effectiveness of our proposed model, we conducted a compari-
son with state-of-the-art 2D and 360-degree IQA models, including both traditional and
learning-based models. The selected models were PSNR, SSIM, BRISQUE [43], S-PSNR [6],
WS-PSNR [7], SSP-BOIQA [44], MC360IQA [23], and Zhou et al. [24]. We evaluated the
overall and individual distortion performances in terms of PLCC, SRCC, and RMSE, and
the results are summarized in Table 2 for CVIQ and Table 3 for OIQA. The performances of
the proposed model are reported as the median of five folds. Table 2 also illustrates the
complexity comparison in terms of the model capacity, i.e., the number of parameters.

Based on the results in Table 2, it can be concluded that the PW-360IQA model achieved
the best overall performance on the entire CVIQ dataset, with an accuracy of 0.95. This
outperformed both 2D-based and 360-degree IQA models, including the multichannel
MC360IQA model and the Zhou et al. model, with improvements of approximately
0.09%/4% in terms of PLCC/SRCC and 5.3%/4.2%, respectively. This is achieved with
a significantly low complexity of 7.4M compared to 22M and 29M, respectively. Zhou
et al. also applied the weight-sharing technique; however, the model considers only the
visual content. For the PW-360IQA, the adopted strategy and architecture appear robust. In
terms of accuracy on individual distortions, the proposed model performed competitively
with state-of-the-art models, achieving high accuracy on JPEG and AVC with PLCC/SRCC
values of 0.971/0.947 and 0.933/0.938, respectively. However, a relatively low accuracy
is obtained on HEVC, depicting a difficulty to generalize to some distortions. A scatter
plot in Figure 7 shows the distribution of the predictions via the proposed model vs. MOS,
where the distribution of predictions for JPEG is more linearly concentrated around the
diagonal than for AVC and HEVC. This supports the obtained scores in Table 2.
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Figure 7. Scatter plots of pMOS vs. MOS of the proposed PW-360IQA model on CVIQ.
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Table 2. Performance comparison with state-of-the-art models on the CVIQ dataset. The Best performance is highlighted in bold and the second-best is underlined.

ALL JPEG H.264/AVC H.265/HEVC Complexity

Ref. Model PLCC↑ SRCC↑ RMSE↓ PLCC↑ SRCC↑ RMSE↓ PLCC↑ SRCC↑ RMSE↓ PLCC↑ SRCC↑ RMSE↓ # Params↓
FR PSNR 0.7320 0.7662 9.0397 0.7342 0.8643 8.5866 0.7572 0.7592 8.0448 0.7169 0.7215 8.3279
FR SSIM 0.8857 0.8972 6.2140 0.9334 0.9749 3.7986 0.9451 0.9457 4.0165 0.9220 0.9232 4.6219
NR BRISQUE 0.7448 0.7641 9.0751 0.8489 0.9091 7.1137 0.7193 0.7294 8.4558 0.7151 0.7104 8.4646
FR S-PSNR 0.7467 0.7741 8.9066 0.7520 0.8772 8.1974 0.7690 0.7748 7.8743 0.7389 0.7428 8.0515
FR WS-PSNR 0.7498 0.7755 8.8816 0.7604 0.8802 8.1019 0.7726 0.7748 7.8143 0.7430 0.7469 7.9974
NR SSP-BOIQA 0.8900 0.8561 6.9414 0.9155 0.8533 6.8471 0.8850 0.8611 7.0422 0.8544 0.8410 6.3020
NR MC360IQA 0.9506 0.9139 3.0935 0.9746 0.9316 2.6388 0.9461 0.9244 2.6983 0.9126 0.8985 3.2935 22 M
NR Zhou et al. 0.9020 0.9112 6.1170 0.9572 0.9611 5.6014 0.9533 0.9495 3.8730 0.9291 0.9141 4.5252 29 M

NR PW-360IQA 0.9518 0.9507 4.4200 0.9716 0.9478 5.2499 0.9337 0.9385 4.8085 0.8818 0.8496 5.5504 7.4 M

Table 3. Performance comparison with state-of-the-art models on the OIQA dataset. The Best performance is highlighted in bold and the second-best is underlined.

All JPEG JP2K WGN BLUR

Ref. Model PLCC↑ SRCC↑ RMSE↓ PLCC↑ SRCC↑ RMSE↓ PLCC↑ SRCC↑ RMSE↓ PLCC↑ SRCC↑ RMSE↓ PLCC↑ SRCC↑ RMSE↓
FR PSNR 0.6910 0.6802 10.388 0.8658 0.8291 7.8570 0.8492 0.8421 7.9357 0.9317 0.9008 4.6392 0.6357 0.6374 10.250
FR SSIM 0.8892 0.8798 6.5814 0.9409 0.9346 5.3193 0.9336 0.9357 5.3829 0.9026 0.8846 5.4965 0.9188 0.9238 5.2404
NR BRISQUE 0.8424 0.8331 11.261 0.9160 0.9392 8.9920 0.7397 0.6750 15.082 0.9553 0.9372 3.4270 0.8663 0.8508 9.6970

FR S-PSNR 0.7153 0.7115 10.052 0.8703 0.8285 7.7319 0.8555 0.8489 7.7811 0.9190 0.8846 5.0329 0.6929 0.6917 9.5736
FR WS-PSNR 0.6985 0.6932 10.294 0.8607 0.8278 7.9919 0.8435 0.8322 8.0719 0.9221 0.8853 4.9415 0.6609 0.6583 9.9652
NR SSP-BOIQA 0.8600 0.8650 7.3131 0.8772 0.8345 7.6201 0.8532 0.8522 7.5013 0.9054 0.8434 5.4510 0.8544 0.8623 6.8342
NR MC360IQA 0.9247 0.9187 4.6247 0.9279 0.9190 4.5058 0.9324 0.9252 4.5825 0.9344 0.9345 3.7908 0.9220 0.9353 4.5256
NR Zhou et al. 0.8991 0.9232 6.3963 0.9363 0.9405 5.6911 0.9200 0.9343 5.8862 0.9682 0.9570 3.3304 0.9252 0.9200 4.9721

NR PW-360IQA 0.9135 0.9155 5.7900 0.9585 0.9107 3.9219 0.9398 0.9107 5.4711 0.9196 0.8929 4.9893 0.9232 0.9386 5.3673



Sensors 2023, 23, 4242 13 of 17

Table 3 summarizes the performance comparison of different IQA models on the
OIQA dataset. The results show that the overall performances on OIQA are relatively
low compared to those on CVIQ, which could be attributed to the smaller size of the
training dataset in OIQA compared to CVIQ (see Table 1). Despite this, the proposed
PW-360IQA achieved robust performances on OIQA, although it scored slightly worse than
MC360IQA on the entire dataset. The model’s good performance on individual distortions,
such as JPEG and JP2K, where it achieved accuracy of 0.958 and 0.939, respectively, can be
supported by the scatter plot in Figure 8, which shows a linearly concentrated distribution
around the diagonal. For WGN and BLUR, the points are more spread out, reflecting lower
but still competitive performances. Overall, PW-360IQA’s performance across the different
distortions in OIQA is quite competitive with state-of-the-art models, and considering
the model’s relatively low complexity, it achieves a good trade-off between complexity
and performance.
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Figure 8. Scatter plots of pMOS vs. MOS of the proposed PW-360IQA model on OIQA.

4.3. Ablation Study

To thoroughly evaluate the proposed 360-degree IQA methodology, an ablation study
is conducted, focusing on both model design and quality score estimation. The aim is
to analyze the contribution of each component of the proposed model and assess its
effectiveness. A detailed assessment of the results is presented in the following sections.

4.3.1. Model Architecture

PW-360IQA takes various types of inputs as described in Section 3.2. To evaluate the
effectiveness of each input and the corresponding module, an analysis of the performances
in terms of accuracy, monotonicity, prediction error, and induced complexity is undertaken
through an ablation study. Five versions of the PW-360IQA model are benchmarked. First,
the quality score is predicted using solely regressed visual content from eight viewports
retrieved based on the virtual observer (VO) scan-path. Second, the weight estimation
module (WEM) outlined in Section 3.2.1 is included by incorporating visual trajectory
information (MLP), distortion detection probability maps (JND), and a combination of MLP
and JND. These versions are compared to the final version of PW-360IQA, where weight
sharing among local quality predictors (LQPs) is used. The performances of these versions
are summarized in Table 4.
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Table 4. Ablation results on the architecture of the model. The best performance is highlighted in
bold and the second-best is underlined.

Weights Sharing VFE MLP JND
CVIQ OIQA Complexity

PLCC↑ SRCC↑ RMSE↓ PLCC↑ SRCC↑ RMSE↓ # Params↓

No

3 7 7 0.9261 0.8988 4.4364 0.8819 0.8886 6.6685 58.3 M
3 3 7 0.9473 0.9409 4.5000 0.8884 0.8913 6.4900 58.4 M
3 7 3 0.9423 0.9214 4.7900 0.8914 0.8920 6.4100 59.3 M
3 3 3 0.9372 0.9274 4.9600 0.8989 0.8865 6.2000 59.3 M

Yes 3 3 3 0.9518 0.9507 4.4200 0.9135 0.9155 5.7900 7.4 M

Based on the results, it is clear that using only VFE resulted in the worst performances
on both CVIQ and OIQA datasets. This highlights the ineffectiveness of relying on a multi-
channel model to learn the interaction and contribution of each viewport. Therefore, it is
necessary to assist the model in completing this task, as demonstrated by the improvement
achieved when weight estimation is included. Incorporating fixation order and duration
for each viewport led to PLCC (resp. SRCC) values of 0.9473 (resp. 0.9409) on CVIQ,
corresponding to a gain of 2.3% (resp. 4.6%). On OIQA, a slight improvement was also
observed compared to CVIQ. The nature of the datasets seems to influence the robust-
ness of the model, as JND features resulted in a slight drop in performance on CVIQ but
an improvement on OIQA. This can be attributed to the diversity of distortions present
in OIQA compared to CVIQ. By combining both visual trajectory information and JND
features, similar behavior was observed, supporting the previous observations. The accu-
racy of the PW-360IQA model is improved on both datasets when weight sharing among
LQPs is incorporated. The PLCC/SRCC/RMSE shifted from 0.9372/0.9274/4.9600 to
0.9518/0.9507/4.4200 on CVIQ and from 0.8989/0.8865/6.2000 to 0.9135/0.9155/5.7900 on
OIQA. This clearly showcases the efficacy of such an architecture for multichannel models,
as the same amount of training data leads to a significant improvement in performance
with reduced complexity. The capacity of the model is reduced from the 59.3 M parameter
to 7.4 M.

4.3.2. Quality Score Estimation

The PW-360IQA model generates a QSD for each 360-degree image, as described
in Section 3.2. To obtain a representative quality score from QSDs, an agreement-based
pooling method is used. This method is compared to a simple average pooling and
the Minkowski mean. The performances in terms of PLCC and SRCC on CVIQ and
OIQA datasets are provided in Figure 9 and 10, respectively. For the proposed pooling
method, the value of λ is set to [1, 1.5, 2, 2.5, 3] to investigate its impact on the perfor-
mances. In the case of the Minkowski mean, the P parameter is varied over the range
[1/32, 1/16, 1/8, 1/4, 1/2, 2, 4, 8, 16, 32] to evaluate its influence on the results.
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Figure 9. Performances in terms of PLCC and SRCC of the quality score estimation based on the
predicted QSD on CVIQ. (yellow) using average pooling, (red) agreement-based pooling, and (green)
Minkowski mean.
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Figure 10. Performances in terms of PLCC and SRCC of the quality score estimation based on the
predicted QSD on OIQA. (yellow) using average pooling, (red) agreement based pooling, and (green)
Minkowski mean.

Based on the results obtained on CVIQ, it is obvious that the agreement-based pooling
method outperforms the other methods in terms of accuracy. The λ parameter has a signifi-
cant impact on the correlation performance, with increasing monotonicity and accuracy
up to λ = 2.5. The best performance is achieved with λ = 2.5. The Minkowski mean
method exhibits stable PLCC/SRCC, which decreases as P increases. These results suggest
that the scores within the SQD are highly consistent, indicating that the model predicts
similar scores for each VO. Regarding the performances on OIQA, the agreement-based
pooling appears less sensitive to the λ value compared to CVIQ. The Minkowski mean
shows a similar behavior where the performances are stable, except with P = 32. This is
probably due to the scores’ range in SQD. The PW-360IQA can predict scores that are quite
close, indicating a good fitting of the input data to the MOS.

5. Conclusions

In this paper, a novel multichannel convolutional neural network solution with weight
sharing for 360-degree image quality assessment is presented. The proposed PW-360IQA
model takes advantage of three types of inputs: (a) visually significant viewports extracted
from spherical representations of the images, (b) visual trajectory attributes generated using
visual scan paths, and (c) distortion probability maps based on just-noticeable difference.
The model consists of eight channels, each delivering a weighted quality score for the
corresponding viewports. The model is trained to predict a quality score distribution
composed of ten scores, from which an overall quality is derived using an agreement-
based pooling method. The obtained performances show the efficiency of the proposed
model architecture and training strategy. Additionally, the PW-360IQA outperforms state-
of-the-art models while showing a significantly reduced complexity compared to other
multichannel models. Finally, the weight sharing architecture significantly contributes to
the model’s performance improvement.
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