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Abstract: Transhumeral amputees experience considerable difficulties with controlling a multifunc-
tional prosthesis (powered hand, wrist, and elbow) due to the lack of available muscles to provide
electromyographic (EMG) signals. The residual limb motion strategy has become a popular alterna-
tive for transhumeral prosthesis control. It provides an intuitive way to estimate the motion of the
prosthesis based on the residual shoulder motion, especially for target reaching tasks. Conventionally,
a predictive model, typically an artificial neural network (ANN), is directly trained and relied upon
to map the shoulder–elbow kinematics using the data from able-bodied subjects without extracting
any prior synergistic information. However, it is essential to explicitly identify effective synergies and
make them transferable across amputee users for higher accuracy and robustness. To overcome this
limitation of the conventional ANN learning approach, this study explicitly combines the kinematic
synergies with a recurrent neural network (RNN) to propose a synergy-space neural network for
estimating forearm motions (i.e., elbow joint flexion–extension and pronation–supination angles)
based on residual shoulder motions. We tested 36 training strategies for each of the 14 subjects,
comparing the proposed synergy-space and conventional neural network learning approaches, and
we statistically evaluated the results using Pearson’s correlation method and the analysis of variance
(ANOVA) test. The offline cross-subject analysis indicates that the synergy-space neural network ex-
hibits superior robustness to inter-individual variability, demonstrating the potential of this approach
as a transferable and generalized control strategy for transhumeral prosthesis control.

Keywords: transfer learning; forearm motion prediction; kinematic synergies; prosthesis control;
rehabilitation robotics

1. Introduction

Amputation of the upper limb at any level can considerably affect an individual’s
ability to perform the activities of daily living (ADLs). The proficiency for such activities
decreases with higher amputation levels [1]. The general requirements of prosthetic users
can be primarily summarized as intuitive control, ease of use, and sensory feedback [2,3].
With the advancements in robotics and sensor technologies, very sophisticated and state-
of-the-art upper extremity prostheses such as the DEKA arm [4] and modular prosthetic
limb [5] are currently available. However, one of the persistent drawbacks is the interface
between the prosthetic device and the user, attributable to the growing gap between the
control methods and hardware improvements for prosthesis development.

In the myoelectric control domain, which is the most widely used control approach for
prosthetic arms [6], the number of input signals a user can provide is always less than the
degree of control (DOC). The DOC refers to the number of functions of a prosthetic device
controllable by the user. Hence, this issue is even more critical for the case of transhumeral
amputees as they can only provide electromyography (EMG) signals from the upper arm.
However, they must control a prosthesis with numerous active degrees of freedom (DOFs),
such as a powered elbow, wrist, and hand. As feasible solutions, surgical innovations such
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as targeted muscle reinnervation (TMR) [6] and advanced signal processing techniques,
such as pattern recognition [7], have been employed to classify more significant numbers
of distinct commands from residual muscle activities.

Although such measures allowed transhumeral amputees better control over their mul-
tifunctional prosthetic arms, the control was slow, sequential, and unnatural as physiologi-
cally appropriate muscles were unavailable. Such counter-intuitive control strategies and a
lack of functionality are often the reasons for the high rejection rates of these devices [8,9].
Furthermore, the calibration requirements and signal sensitivity issues associated with
EMG-based control also challenge its continuous daily use.

Numerous investigations have been conducted to explore alternative solutions, such
as those based on myokinetic signals [10] using the residual kinetic activity of the limb,
ultrasound signals [11], mechanomyography [12] using vibrations caused by muscle con-
tractions as the control signals, and the residual limb motion strategy [13,14]. Bio-inspired
learning approaches based on studying the central nervous system (CNS) and human
motor control abilities have also been employed to develop more natural and intuitive arm
control strategies [15].

Concerning the target reaching task or control of the prosthetic elbow joint motion
in transhumeral amputees, the ideal case would involve the prosthetic device acting as a
natural extension of the human body. A promising scheme to achieve this is automatically
controlling the prosthetic elbow joint based on the natural relationships between the arm
joints. Analyses of such joint coordination approaches have shown evidence that recurrent
patterns exist in the joint kinematics for upper limb movements while performing reaching
or grasping tasks. For example, between the elbow flexion and humeral inclination during
reaching [16], between the hand azimuth and movement direction during grasping [17], as
well as a variety of many other arm movements in ADLs [18]. These patterns are referred
to as synergies.

In the present study, we have also focused on a synergistic method for intuitive control
of the prosthetic elbow joint for transhumeral amputees. The majority of previous such
motion-based approaches using residual limb motion rely on ANNs [19,20] to identify and
model the shoulder–elbow kinematic relationship, as inductive learning (IL) applied in [21]
and radial basis function networks (RBFNs) used in [22,23]. The ANN is typically trained
to map the shoulder kinematics (provided as input) to the elbow or forearm kinematics
(provided as output) through supervised learning. To the best of our knowledge, in such
previous approaches, no prior synergistic information is extracted from the motion data
used for training the ANNs. This type of approach, in simplistic terms, can be represented
as in Figure 1a and is hereafter referred to as “direct estimation”. However, the direct
estimation method has a limitation due to its sensitivity to inter-individual variability. As a
result, the performance of the model drops significantly when applied across multiple
users, making it less suitable for generalization and transferability.
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Figure 1. Cont.
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Figure 1. Illustration of the idea of this study: (a) a simplistic representation of direct estimation
method; (b) the proposed synergy-space neural network method. Here, SHθx, SHθy, and SHθz are
the shoulder kinematics, and FAθx and FAθy represent the forearm orientations. The PCA blocks
symbolize the process of synergy extraction, where W represents the synergistic components and C is
the corresponding activation signal matrix. The predictive model is the trained RNN that outputs the
predicted activation signals Cp, with the cross-operator representing the matrix multiplication of the
incoming values.

Transfer Learning Framework for Transhumeral Amputees

This paper presents the concept of the synergy-space neural network, whereby we
explicitly combine the kinematic synergies with the learning system to address the limi-
tation of the direct estimation method, aiming for a more robust and transferable control
strategy. Synergies have been observed to be repeatable and shared across similar tasks
and subjects. Therefore, we extract the synergistic information from the movement data
and incorporate only the most significant synergy components in the learning process,
enabling more precise and efficient training of the ANN while taking advantage of the
shared nature of these synergies enhancing the transferability of the model. The idea is to
train the ANN to predict the corresponding activation signals (see Equation (1)), which
estimates the forearm motion when combined with the extracted synergy matrix. Because
the ANN is trained using the most significant synergy components, the synergy-space
neural network can learn particular features common to the arm movement tasks, allowing
for better cross-subject transferability. In addition, using a smaller number of synergy
components aids the ANNs in learning good policies by reducing the dimensionality of the
state space. Lastly, being a synergistic approach, it allows for the kinetically natural and
energy-efficient motion estimation of the arm movements.

Figure 1b illustrates the overall workflow of the proposed synergy-space neural
network approach. We first extract the spatial synergy components and their corresponding
time-varying activation signals from the source data (see Equation (1)) using the principal
component analysis (PCA). Long short-term memory (LSTM), a particular type of recurrent
neural network (RNN), is then trained to predict the extracted time-varying activation
signals based on input shoulder kinematics. Finally, the forearm motions are estimated
using Equation (2), where the extracted activation signals C are replaced with the LSTM-
predicted signals Cp. Introduced by Hochreiter and Schmidhuber [24], the reason for using
LSTM is its ability to learn long-term dependencies. LSTMs have internal mechanisms
called gates that regulate the flow of information to handle the vanishing gradient problem
in RNNs, making them very suitable for time-series prediction such as motion data or, in
our case, time-varying activation signals. This paper proposes and evaluates the synergy-
space neural network for forearm motion estimation, comparing its performance with the
direct estimation approach. The contributions made in this paper are as follows:

• The implementation of the proposed synergy-space neural network as a transferable
model for forearm motion estimation using residual shoulder kinematics during
horizontal reaching movements.
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• Personalized LSTM Models Evaluation: To validate the proposed methodology and
its better learning capability through a detailed comparison between the performance
of the synergy-space neural network and the direct estimation approach.

• Cross-Subject Evaluation: To demonstrate the strength of the synergy-space neural network
as a transferable decoder, indicating its ability to handle inter-individual variabilities.

The remainder of this paper consists of the following sections. Section 2 gives the
background into synergies and their characteristics. Section 3 explains the materials and
methods employed to achieve our objectives, describing the experimental protocol, synergy
extraction, LSTM training and analysis, and evaluation strategy. Section 4 demonstrates the
validity of the proposed method through the experimental results. Section 5 discusses the
findings and limitations. Lastly, Section 6 concludes this paper and gives future direction.

2. Motor Synergies

Humans can generate coordinated, efficient, and sophisticated movements by fully
utilizing the dynamics of their complex musculoskeletal systems. The need to control and
perpetually adjust a large number of DOFs is expected to be computationally formidable.
To manipulate the inherently redundant musculoskeletal system for voluntary movement
generation, the CNS must simultaneously activate and coordinate many muscles, each
comprising thousands of motor units. Neuroscience researchers have proven that the
concept of motor synergies exists within the CNS [25–27], whereby it simplifies control by
combining several DOFs into synergies and significantly reducing the burden on the CNS.

There are numerous interpretations of this concept; most commonly, the CNS uses a
considerably small set of instructions to control a large group of muscles for movement
generation. Owing to the co-activation of a set of muscles using fewer neural commands,
i.e., motor synergies, the EMG activities of these muscles tend to be spatially and temporally
correlated, which is referred to as muscle synergies. At the same time, this covariation of
the muscle activation imparts a certain level of coordination among closely related joints,
coupling the angular movements in various joints, referred to as kinematic synergies [28].
Having excess DOFs allows the CNS the flexibility to use only those DOFs that align well
with the task demands [29], enabling sophisticated and synergistic motion generation.
This may explain the ability of humans to naturally perform complex movements in an
energy-efficient manner without too much effort. Moreover, it also suggests that using a
synergistic approach for motion estimation may allow more natural movement generation.

In various investigations, a wide range of motor behaviors has been explained and are
suggested to be produced by synergies. The comprehensive analysis in [30] by d’Avella
characterized the muscle synergies of healthy arm movements for a variety of upper limb
reaching tasks spanning various directions, such as horizontal, up, and frontal. The original
EMG envelopes for these highly variable upper limb movements were reconstructed using
a reduced set of muscle synergies, which were observed to be repeatable and shared
across directions and subjects. In the case of prosthesis control, this may be useful for
developing a generalized and transferable control model using data from able-bodied
subjects. The authors in [31] analyzed the kinematic synergies of various arm postures
during unrestrained and natural catching movements, where the subjects were tasked
to catch a ball thrown toward them along 16 different trajectories. The results show that
3 synergies were sufficient to represent approximately 90% of the variance in the recorded
data for 10 joint angles, corresponding to 7 DOFs of the arm and 3 DOFs of the shoulder
girdle. The analysis in [32] also featured similar results using joint angular velocities during
reaching motions. These results justify that fewer kinematic synergies, with certain losses in
accuracy depending on the number of synergies, can be used to represent and reconstruct
the natural reaching movements of the human arm.

Many studies have identified synergies (i.e., motor primitives) at the electromyo-
graphic, kinetic, and kinematic levels during the last few decades. The calculations for
extracting various types of synergies have been formalized by authors in [33–36]. In the
present study, we used spatial synergies extracted from the joint angular movement data
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of the arm. The idea of inter-joint coordination during reaching movements of the human
arm reflects that a set of DOFs potentially shows instantaneous covariations. Such types of
movement primitives, implying the assumption that the ratios of the signals characterizing
different DOFs remain constant over time [33], are referred to as spatial synergies. The spa-
tial synergy decomposition is performed as in (1), where the source signals are represented
by xl(t) at a time point t in trial number l, and N is the number of extracted spatial synergy
components. wn indicates the spatial pattern of the kinematic synergies that are assumed
to be invariant over the trials, whereas cl

n(t) are the corresponding activation signals that
vary for each trial. We can rewrite (1) in a simplified matrix form as (2) after ignoring the
residuals term, where X represents the source signals, W defines the synergy components,
and C is the corresponding activation signal matrix.

xl(t) =
N

∑
n=1

wn · cl
n(t) + residuals (1)

X = W · C (2)

For the analysis, we used the principal component analysis (PCA) method, which
is one of the most widely used algorithms for solving (2); its core idea is to minimize
the reconstruction errors E in (3) with respect to W and C, where ‖ · ‖F indicates the
Frobenius norm.

E2 = ‖X−W · C‖2
F (3)

3. Materials and Methods
3.1. Data Acquisition

Fourteen healthy right-handed subjects (thirteen males and one female) volunteered
for this investigation. The subjects were 20–28 years old, with no known upper limb
neuromuscular disorders. All subjects had given informed consent prior to participation in
this experiment.

To record the motion data of a subject’s arm movements during reaching tasks, we
used Perception neuron pro, an inertial measurement unit (IMU) sensor-based full-body
motion capture system. Although the accuracy of this system is inferior to that of optical
cameras, it is possible to capture motions without spatial constraints from anywhere within
the communicable range of the device. The device uses individual sensors called neurons,
each housing an IMU, attached to different body parts (Figure 2a). We used a total of eight
sensors. Figure 2b shows the placement of each neuron—three on each arm (placed on the
forearm, upper arm, and shoulder) and one each on the chest and lower back. The subjects
can quickly wear the sensors using straps so that no additional preparations, such as special
clothes, are necessary.

(a) (b)

Figure 2. Neuron pro sensor placements for capturing the required motion data: (a) subjects wearing
neuron sensors; (b) green spots marking the placements of the sensors for the upper body mode of
neuron pro because only arm movement data are required.
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The sensor system communicates with the axis neuron pro software that processes
raw motion data to formulate a 3D skeletal model in real time. Motion information from
the developed skeletal model, such as the position and angle of each joint, can be obtained
at a sampling frequency of 120 Hz. In our experiments, the data under consideration
were the three shoulder orientation angles along X, Y, and Z axes, i.e., internal–external
rotation, flexion–extension, and abduction–adduction of the shoulder joint, and two forearm
orientation angles, i.e., pronation–supination and flexion–extension of the elbow joint;
hereafter, these are referred to as SHθx, SHθy, and SHθz and FAθx and FAθy, respectively.

3.2. Experimental Protocol

Bearing in mind that the purpose of a prosthetic device is to assist the user with their
ADLs, we designed the workspace based on a routine activity by considering the user’s
everyday environment instead of constrained movements in a laboratory or restricted envi-
ronment. Reaching for objects placed on a table is a common scenario in daily life, which
also targets arm movements in the horizontal plane only, specifically on the top surface of
a table. A 40 cm × 40 cm target grid (Figure 3a) with a start/rest point and 8 numbered
points was placed in a horizontal position on the surface of a table. The target numbered
point to be reached was projected on the screen in front of the subject. The timing and color
of the displayed numbers were controlled automatically to produce more consistent and
regular movements, based on which the subjects had to perform the required reaching tasks.
The subjects were provided instructions at the beginning of the experiments and allowed
time to familiarize themselves with the environment. Therefore, no verbal commands
or communications were required during the experiments, thus making the procedures
easier to follow. Eight healthy subjects participated in these behavioral experiments. They
were tasked with performing reaching movements to explore the top surface of a table
placed before them while sitting straight on a chair, as shown in Figure 3b. All the subjects
performed two sets of tasks, and kinematic data were acquired for the reaching movements
of only the right arm as follows:

(a) (b)

Figure 3. Experimental setup for the target reaching tasks: (a) target grid with a subject’s right hand
at the start point; (b) complete experimental setup for the target reaching tasks.

• Dataset 1: with multiple (15 times) repetitive reaching movements toward each target point.
• Dataset 2: with reaching movements toward random target points (35 movements in total).

Dataset 1 with multiple repetitive movements was first used to extract the kinematic
synergies and later as the training data for the neural network. Afterward, dataset 2, with
reaching movements toward random target points, was used to cross-validate the trained
neural network.
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3.3. Kinematic Synergy Extraction

PCA has been used in numerous studies to investigate natural movements, such as
catching [31] or reaching [32] tasks, where it was successful in representing the observed
physiological complexities using fewer numbers of principal components (PCs) or synergies.
One reason for this is that when capturing variances, the PCA uses a more intuitive method
to exploit the coupling of the DOFs. Another important reason is that it considers linear
correlations among the DOFs, which can be regarded as the minimal model of inter-joint
coupling, i.e., a linear approach to explaining complex behaviors.

In this study, we performed a synergistic analysis using PCA as we are working with
kinematic synergies. Dataset 1 was first segmented to acquire the data of interest, i.e., one
individual reaching movement from the onset of the reaching motion until returning to the
start/rest point (as in Figure 4). We then averaged the segmented data over the 15 trials
for the same reaching movement, e.g., for target point 7. The averaged data were then
low-pass filtered using a sixth-order Butterworth filter with a cutoff frequency of 10 Hz to
remove motion artifacts and finally normalized to translate the angular values within the
range of −1 to +1. For each subject, this averaged, filtered, and normalized dataset X (4)
was obtained comprising submatrices xm

j (tmax) with joint angular values during reaching
motions. Here, m = 8 represents the total number of target points for the reaching tasks,
j = 5 is the number of DOFs or joint angles under consideration, and tmax refers to a
particular sample time for which the joints’ angular values were obtained. The X having
size j× (m ∗ tmax) is fed to the PCA algorithm, which then provides the PCs. Each PC is a
synergy representing the covariation of the joint angular configurations. The total number
of PCs or synergy components “N” (1) is equal to the number of DOFs or joint angles under
consideration, which is equal to five here. Figure 5a represents the extracted kinematic
synergy component matrix (graphical representation) for one of the subjects.
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Figure 4. The first 5 rows represent the shoulder and elbow joints’ angular values normalized between
−1 and +1. It comprises the source data (solid black curves) of subject one and its reconstructions using
all five synergies (red dotted curves) and only two synergies (green dotted curves). The last two rows
represent the corresponding activation signals C (C1 and C2 in the case of two synergies).



Sensors 2023, 23, 4188 8 of 20

X =


x1

1(tmax) · · · x4
1(tmax) · · · x8

1(tmax)
x1

2(tmax) · · · x4
2(tmax) · · · x8

2(tmax)
...

. . .
...

. . .
...

x1
5(tmax) · · · x4

5(tmax) · · · x8
5(tmax)

 (4)

We retained the minimum of the most significant PCs that explain at least > 85%
of the total variance. Figure 5b presents the variations of the PCs for subject 1. We can
observe that the first synergy accounts for more than 75% of the variance, and the sum
of the first two synergies can account for more than 90% of the overall variance in the
source data. Following our set criteria, it suggests that we can adequately approximate
the original data using only the first two synergies that capture a large portion of the
variance. Thus, the subject’s original movements can be reconstructed with an acceptable
loss in accuracy. Figure 4 represents the difference in the reconstructed data for one of the
subjects when represented using all five synergies (shown in red) and when using only
two synergies (shown in green). It can be seen that the red curve is an exact match for the
original movement data (shown in black). In contrast, the green curve still represents the
original data reasonably accurately. The last two rows show the activation signals C (in
blue) in the case of two synergies, i.e., C1 and C2. Based on these observations, using the
synergy-space neural network approach, it is plausible to use only the first two synergies
to estimate the forearm motions.
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Figure 5. Example of the kinematic synergies of subject 1. (a) The spatial synergies extracted from
the training data. The notations SHθx, SHθy, SHθz, FAθx, and FAθy indicate the axis of the degree of
freedom. (b) Bar plot showing the importance of each principal component in explaining the variance
in the source data.

3.4. LSTM Training

In the present work, we trained a neural network to predict the extracted activation sig-
nals based on shoulder kinematics. As both sets of data are time-series signals, it is necessary
to use an ANN that suitably processes the time-series or sequential data. Different ANN
architectures have been employed in various studies to determine inter-joint coordination
during human arm movements. The authors in [37] used a radial basis function network
(RBFN)-based neural network, whereas [38] used a time-delayed adaptive neural network
(TDANN) to estimate the distal joint angles. In this study, we used LSTM, a particular type
of RNN capable of handling long-term dependencies. LSTMs have internal mechanisms
called gates that regulate the flow of information to handle the vanishing gradient problem
in RNNs, thus making them very suitable for multivariate time-series forecasting.

We used python’s machine learning library, Keras, to implement the LSTM model.
There are various parameters in the neural network, and the estimation accuracy may
change depending on the settings of these parameters. Therefore, we first tested the
learning efficiency and estimation accuracy of the LSTM model by varying the parameters,
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such as the batch input size, number of LSTM hidden layers, number of nodes in each
layer, and number of training epochs. These parameters affect the learning and estimation
efficiencies of the model. The batch size controls the number of samples shown to the
network before the weight updates are applied. If the input batch size is large, the model
can quickly process the entire training dataset; however, it can overlook certain features
during training that might be crucial to learning.

On the other hand, we can increase the complexity and expressiveness of the model
by optimizing the number of LSTM hidden layers and the number of neurons in each
layer. Even in the case of using only a single hidden layer, the LSTM model can learn the
characteristics of the time-series data. The efficiency can be improved by stacking multiple
layers. However, if the model is made more complex than necessary, the training may not
be effective. Similarly, if we increase the number of nodes, the model requires more time
for learning with no significant change in accuracy. The same is also true for the number of
training epochs. Estimating the time-varying activation signals is classified as a regression
problem, so we use the mean squared error (MSE) as the loss function and Adam as the
optimization function, as has been widely used in similar studies.

Lastly, to avoid the overfitting problem, a dropout rate of 10% is used in each layer,
whereby 10% of the neurons are dropped randomly. Supervised learning is then carried out,
where the neural network develops the regression model based on the input–output pairs.
As for the training data, at a single time step, we can apply a total of six inputs to the model:
the SHθx, SHθy, and SHθz angle of the shoulder joint and their respective derivatives
SHθ̇x, SHθ̇y, and SHθ̇z (i.e., shoulder joint angular velocities). It is also possible to input
multiple time-step data to the LSTM model at a time using the last few time-step data to
predict the output for the current time step. This can improve the estimation accuracy at
the cost of increasing calculations. We used the ten previous time-step data as inputs to the
model (Figure 6). The model outputs were the activation signals, which in the case of two
synergies are C1p and C2p.

X(t-1)
X(t-2)
X(t-3)
X(t-4)
X(t-5)
X(t-6)
X(t-7)
X(t-8)
X(t-9)

X(t-10)

Input Data Set
(Shoulder Kinemtics)

Time-Steps Data

𝑥(𝑡)
LSTM 

Predictive 
Model

𝐶!(𝑡)

Input Output

Figure 6. Input dataset creation: 10 previous time-steps data are combined and provided as the input
x(t) to the LSTM model to predict the output Cp(t) at the current time step t.

3.5. Analysis Strategy

In the present work, we compared the performances of the synergy-space neural network
approach, where the shoulder kinematics are mapped to synergistic activation signals, with
the direct estimation approach, wherein the neural network is used to map the shoulder
kinematics to the forearm kinematics. To thoroughly investigate this comparison, we devised
a comprehensive strategy to train and test 36 different LSTM models for each subject and
analyze the performances. The devised strategy was based on the following criteria.

3.5.1. Learning Methodology

First, we devised a scenario based on our proposed learning methodology for the
LSTM model. This defines the approach chosen for training the network, that is, either
synergy-space or direct estimation. Three strategies were devised based on the number of
synergistic components used and the learning approach.
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• Synergy-Space estimation using 2 synergies components:
In this case, we first extract the synergies W and their corresponding activation
signals C from the reaching motion data considering five DOFs of the arm, i.e., SHθx,
SHθy, SHθz, FAθx, and FAθy. Subsequently, we train the LSTM model to predict two
activation signals C1 and C2 based on the shoulder kinematics provided as inputs.
The predicted activation signals C1p and C2p are then used along with the synergy
matrix W to estimate the required forearm motions.

• Synergy-space estimation using 1 synergy component:
In this case, we extracted the synergies W and their corresponding activation signals
C from the reaching motion data considering only two DOFs of the forearm, i.e., FAθx
and FAθy. We then trained the LSTM model to predict only one of the activation
signals C1, providing the shoulder kinematics as the input. Finally, the predicted
activation signal C1p and the synergy matrix W are used to estimate the required
forearm motions.

• Direct estimation:
For direct estimation, no prior information or synergistic components are extracted
from the reaching motion data recorded during arm movements. The LSTM model is
directly trained to predict FAθx and FAθy angles of the elbow joint based on the input
shoulder kinematics.

3.5.2. Number of LSTM Hidden Layers

As noted previously, a single layer of LSTM can learn the necessary features of the
time-series data. By stacking multiple layers of LSTMs, this ability can be enhanced. Thus,
to verify the appropriate number of hidden layers for our task, we tested three scenarios
with varying numbers of hidden LSTM layers in our model. For each learning methodology
mentioned earlier, we constructed and trained three different models, namely M1, M2, and
M3, having one, two, and three hidden LSTM layers, respectively.

3.5.3. Number of Inputs

As previously mentioned, we can apply a total of six inputs to our model, represented
by SHθx, SHθy, SHθz, SHθ̇x, SHθ̇y, and SHθ̇z. However, various combinations of these
signals can also be used as inputs. This consideration was based on the fact that the level
of residual limb movement control would vary for the user depending on the severity of
the amputation. In addition, wearing a prosthetic socket can limit the range and types of
movements the user can perform. In many cases, the shoulder internal rotation motion is
the most difficult to perform for amputees. The other reason was to test whether there is any
advantage to using shoulder joint angular velocities as the inputs. We created four different
training scenarios with different numbers of inputs to the LSTM models. The combined
and total numbers of inputs for each scenario are shown in Table 1.

Table 1. Training Scenarios based on No. of Inputs.

No. of Inputs
Signal Combination

SHθx SHθy SHθz SHθ̇x SHθ̇y SHθ̇z

2 X X
3 X X X
4 X X X X
6 X X X X X X

Note: Xcell means signal used as input

3.6. Evaluation
3.6.1. RMSE

For the evaluation of the trained LSTM model, the estimated forearm orientation
angles (i.e., pronation–supination FAθx and flexion–extension FAθy angles of the elbow
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joint) were compared to the actual forearm orientation angles captured using the neuron
pro system. Figure 7 presents a sample of the continuous signal plot comparing the actual
vs. estimated forearm motions during one of the scenarios tested for subject 5. To assess
the performance of the joint angle estimations, the standard metric used is the root mean
squared error (RMSE) [38] as given in Equation (5), where x̂t is the predicted joint angle, xt
is the actual joint angle at data point t, and N is the total number of data points.

To calculate the RMSE value, we used the “mean_squared_error” metric from the
scikit-learn library for python and applied the square root. In the case of multiple outputs,
this metric gives an average value of the RMSE.

RMSE =

√√√√ 1
N

N

∑
t=0

(x̂t − xt)2 (5)
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Figure 7. Sample of the joint angular value plots of the actual vs. estimated forearm motions using
two synergies, one synergy, and direct estimation learning methodologies for one of the tested
scenarios of subject 5.

3.6.2. Pearson Correlation Coefficient

Pearson’s correlation method analyzes the linear relationship between two variables
and provides a coefficient value as a measure of the correlation strength. The Pearson
correlation coefficient is denoted by r and can have a value between +1 and −1. Table 2
presents the detailed interpretation of the Pearson correlation coefficient.

Table 2. Interpretation of Pearson Correlation Coefficient.

Range of r Degree of Relationship

−1.0 ≤ r ≥ −0.7 A strong negative linear relationship
−0.7 ≤ r ≥ −0.3 A distinct negative linear relationship
−0.3 ≤ r ≥ −0.1 A weak negative linear relationship
−0.1 ≤ r ≥ +0.1 Not a linear relationship
+0.1 ≤ r ≥ +0.3 A weak positive linear relationship
+0.3 ≤ r ≥ +0.7 A distinct positive linear relationship
+0.7 ≤ r ≥ +1.0 A strong positive linear relationship

We used the “corrcoef” function from python’s NumPy library, which uses the actual
and estimated values of forearm orientation angles (as in Figure 7) to compute the Pearson
correlation coefficient.
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3.6.3. Analysis of Variance (ANOVA) Test

To statistically verify the differences between the results obtained using the synergy-
space neural network and direct estimation methods, we performed the analysis of variance
(ANOVA) test. The ANOVA compares three or more populations to ascertain whether the
variability between group means is larger than the variability in the observations within
the groups. A significance level or threshold is chosen, and a p-value less than the threshold
is interpreted as evidence of the difference between the population means. In this study,
the p-value indicates significant differences between the learning strategies’ results.

To show the pertinence of each learning methodology, we perform the ANOVA test
using the RMSE values obtained by comparing the estimated and actual forearm motions for
the various LSTM models trained using the synergy-space and direct estimation approaches.
We chose a significance level of 0.05, one of the standard choices. Suppose the calculated p-
value is less than the threshold. In that case, the statistically significant ANOVA is followed
up with the Tukey HSD (honest significant difference), a post hoc test pinpointing which
learning methodology exhibits a statistically significant difference.

3.6.4. Cross-Subject Analysis

As discussed previously, one of the characteristics of the synergies is that they are
shared among similar tasks to some extent. This suggests that a generalized or transferable
control model can be developed based on the synergy-space neural network approach using
the data recorded from healthy subjects. Therefore, cross-subject testing was performed to
test this assumption for the robustness of the learning methodologies.

For the case of the synergy-space method, we performed the cross-subject analysis
using, for example, subject A’s input data fed to the LSTM models trained using the other
subjects’ data and then employing subject A’s synergy matrix for the forearm motion
prediction. However, for the case of the direct estimation method, the cross-subject analysis
was performed using, for example, subject A’s input data fed to the LSTM models trained
using the other subjects’ data for subject A’s forearm motion prediction.

The evaluations were performed by calculating the RMSE values to compare the
estimated motions with the actual measured values. For the cross-subject analysis, we used
model M2 with six inputs (i.e., best-case scenario) and model M2 with two inputs (i.e.,
worst-case scenario). The ANOVA was then performed to statistically verify the difference
between the cross-subject results based on the synergy-space and direct estimation ap-
proaches.

4. Results

In this study, we trained and evaluated 36 different LSTM models for each of the
14 subjects. The training strategy was devised based on three different learning methodolo-
gies. We constructed 3 separate LSTM models and trained each model using 4 different
combinations of the input signals (i.e., 3× 3× 4 = 36).

The acquired RMSE values of the estimated forearm motions (FAθx and FAθy) for
some subjects are shown as bar plots in Figure 8. It was observed that, overall, there are
no significant differences in the results based on the learning methodology. This suggests
that even with the reduced state-space representation, the synergy-space neural network
is capable of keeping the performance similar to that of the direct estimation method.
However, we see notable differences when using combinations of two and three inputs,
implying that shoulder internal–external rotations (SHθz) as the input significantly increase
the estimation accuracy, which is the case in all the training scenarios. On the other hand,
the joint angular velocities as the inputs provided a minor increase in the accuracy, as is
visible when comparing the RMSE values based on the number of inputs 2 and 4 and also 3
and 6. However, no marked differences were observed in the performance based on the
number of hidden LSTM layers among the models M1, M2, and M3. These observations
are valid for all the subjects included in the study.
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Figure 8. Results of the forearm motion estimations (FAθx and FAθy) for all tested scenarios for subjects
1, 2, and 8, where each bar represents the calculated RMSE. The bars are first divided into M1, M2, and
M3 based on the number of LSTM hidden layers in the model. The golden, blue, and gray bars represent
the errors in the estimations when using two synergies, one synergy, and direct estimation learning
approaches, respectively. The number inside the bar represents the number of inputs to the LSTM model
(Table 1), whereas the error bar represents the standard deviation of estimation error values.

Regarding the minor differences for all the trained scenarios for each subject in the
study, we obtained three general result types. First, similar to subject 1 (Figure 8), the
synergy-space method (using 2 synergies) produced the lowest RMSE values with an
overall RMSE and standard deviation value of 10.88◦ and 2.09◦, respectively, for all the
tested scenarios. Second, similar to subject 2 (Figure 8), we obtained almost similar RMSE
values having some variations from an overall RMSE and standard deviation value of
7.55◦ and 1.16◦, respectively, for all the learning methodologies. Lastly, similar to subject 8
(Figure 8), the direct estimation method had the lowest RMSE values with an overall RMSE
and standard deviation value of 3.99◦ and 1.47◦, respectively, for all the tested scenarios.
We only selected the scenarios trained using model M2 for further analyses, i.e., with
two hidden LSTM layers, as it produced the best overall results.

4.1. Personalized LSTM Models Evaluation

To evaluate the personalized LSTM models and compare the different learning method-
ologies, we used the LSTM model M2, which has two hidden LSTM layers and six inputs
(Table 1). The average RMSE values obtained for the estimated FAθx and FAθy were 4.24◦

and 9.75◦, 6.08◦ and 9.86◦, and 5.84◦ and 7.40◦ for the two-synergy, one-synergy, and direct
estimation methods, respectively.

We first employed Pearson’s correlation coefficient to quantify the estimation perfor-
mance of the different learning methodologies. Table 3 shows a mostly strong positive
linear correlation (+0.7 ≤ r ≥ +1.0) for the personalized LSTM models. Furthermore, even
for the few cases of a distinct or weak linear relation (highlighted cells in Table 3), the trend
is similar for all the learning methodologies, suggesting a similar overall performance.
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Table 3. Pearson’s correlation coefficients “r” for Model M2 with 6 inputs.

Subject No.

Learning Methodology

Direct Estimation 1 Synergy 2 Synergies

FE PS FE PS FE PS

1 0.91 0.75 0.91 0.78 0.94 0.75
2 0.95 0.89 0.92 0.89 0.96 0.90
3 0.96 0.60 0.89 0.86 0.92 0.70
4 0.96 0.71 0.91 0.70 0.97 0.71
5 0.98 0.90 0.98 0.89 0.98 0.92
6 0.97 0.83 0.93 0.76 0.95 0.84
7 0.90 0.86 0.89 0.86 0.92 0.89
8 0.97 0.38 0.93 0.67 0.96 0.51
9 0.94 0.63 0.96 0.51 0.94 0.57

10 0.91 0.31 0.92 0.29 0.88 0.34
11 0.93 0.56 0.96 0.28 0.94 0.45
12 0.98 0.80 0.98 0.83 0.97 0.81
13 0.96 0.35 0.92 0.30 0.94 0.42
14 0.96 0.70 0.92 0.57 0.95 0.65

Note: FE = flexion–extension, PS = pronation–supination. Highlighted cells mark weak correlation.

To show the pertinence of each learning methodology, we calculated the p-value using
the ANOVA between the results of the training strategies using the RMSE values of the
estimated forearm motions. The statistical ANOVA test associated with the RMSE values
obtained for the three learning methodologies is reported in Table 4. The ANOVA provided
evidence that there was no statistically significant difference, F(2, 39) = 1.705, p = 0.195.
The summary of the ANOVA test results is shown in Table 5. As the p-value corresponding
to the F Statistic is greater than the threshold value of 0.05, this is interpreted as there is no
significant difference between the population means and eliminates the need to perform
any post hoc or multiple comparison corrections test, such as the Tukey HSD. Thus, we can
say that the three training strategies tend to produce similar RMSE values, and there is no
significant difference between their performances for subject-specific or personalized LSTM
models. This further validates that the proposed synergy-space approach for mapping the
inter-joint coordination for each subject’s personalized ANN models performs on par with
the direct estimation method even with reduced dimensionality.

Table 4. Descriptive statistics of RMSE values obtained for different learning methodologies using
model M2 scenarios only.

Learning Methodology Count Sum Average Variance

Direct Estimation 14 86.756 6.197 4.672
1 Synergy 14 107.930 7.709 7.335

2 Synergies 14 108.972 7.784 7.748

Table 5. ANOVA summary table for the results using model M2 scenarios only.

Source of Variation SS df MS F Statistic p-Value F Critical

Between Methodologies 22.452 2 11.226 1.705 0.195 3.238
Within Methodology 256.826 39 6.585

Total 279.278 41
Note: SS = Sum of Squares, df = Degrees of Freedom, MS = Mean Square.

4.2. Cross-Subject Evaluation

With transhumeral amputees, the target application of this study, it is impossible to
measure the elbow joint or forearm motion information. Therefore, testing the transferabil-
ity of the trained predictive models is crucial.
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Figure 9 shows a box plot summarizing the RMSE values for each subject’s cross-
subject evaluations using the LSTM model M2 with six inputs. The box size reflects the
range where 75% of the sample values lie, with a smaller box size indicating less variation
in the estimation performance. The results demonstrate that the synergy-space neural
network, particularly when using two synergies, exhibits stronger robustness to inter-
individual variability compared to the direct estimation method. This may be attributed
to the shared nature of the synergies across similar tasks and subjects, which enables
the network to learn features common to the human arm’s reaching task. The descriptive
statistics associated with the RMSE values obtained for the cross-subject testing are reported
in Table 6, where the proposed synergy-space RNN exhibited an average reduction of 50%
in the variation in the RMSE compared to the direct estimation method (highlighted cells in
Table 6). These results demonstrate the effectiveness of the proposed synergy-space RNN
in achieving better transferability during the cross-subject evaluation.
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RMSE (Degrees)
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Figure 9. The box plot shows RMSE values for each subject’s cross-subject evaluation. The box size
represents the range of 75% of the values, and the solid vertical golden line inside the box represents
the median, with the black diamond marker indicating the mean value. Outliers are represented by
circular markers, and the whiskers show the maximum and minimum values. A smaller box size
represents minor variation in results and better transferability.
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Table 6. Descriptive statistics of the RMSE values obtained for different learning methodologies
during cross-subject evaluation using model M2 with 6 inputs.

Learning Methodology Count Sum Average Variance

Direct Estimation 196 2157.122 11.006 42.696
1 Synergy 196 2025.910 10.336 19.789

2 Synergies 196 1895.985 9.673 18.365
Note: Highlighted cells mark the least values of average and variance.

To statistically verify whether the difference in learning methodologies affected the
performance during the cross-subject evaluations, we again calculated the p-values using
the ANOVA between the results using the RMSE values of the estimated forearm motions.
The ANOVA yielded a statistically significant effect, F(2, 585) = 3.227, p = 0.040. Table 7
shows the summary of the ANOVA test results. As the p-value corresponding to the F
Statistic is lower than the threshold value of 0.05, this suggests that the performance of
one or more learning methodologies is significantly different. We further evaluated the
nature of the differences between the three population means, i.e., to check which learning
methodology tends to perform differently from the others.

Table 7. ANOVA summary table for the cross-subject evaluation using model M2 with 6 inputs.

Source of Variation SS df MS F Statistic p-Value F Critical

Between Methodologies 173.962 2 86.981 3.227 0.040 3.011
Within Methodology 15,765.779 585 26.950

Total 15,939.741 587
Note: SS = Sum of Squares, df = Degrees of Freedom, MS = Mean Square.

The statistically significant ANOVA was followed-up with the Tukey HSD (honest
significant difference), a post hoc test pinpointing which learning methodology exhibits
a statistically significant difference. The post hoc Tukey HSD test results are reported in
Table 8. The p-values corresponding to the Q Statistic are lower than 0.05 in the cases when
comparing the direct estimation method with the synergy-space neural network approach
(when using two synergies), suggesting a significant difference in the performance of the
two approaches.

Table 8. Post hoc Tukey HSD test results for the cross-subject evaluation using model M2 with 6 inputs.

Group Pair Q Statistic p-Value Q Critical

Direct Estimation vs. 1 Synergy 1.805 0.411
Direct Estimation vs. 2 Synergies 3.593 0.030 3.323

1 Synergy vs. 2 Synergies 1.788 0.418

Similar results were also obtained for the cross-subject evaluations using the LSTM
model M2 with two inputs only, presented in Tables 9–11. Even when using only two
inputs (considering limited shoulder internal rotation motion (Table 1)) the proposed
synergy-space method had about 40% less variation in the RMSE compared to the direct
estimation method (highlighted cells in Table 9). The evaluation of the cross-subject analysis
suggests that the synergy-space approach is more robust and may provide the possibility
of developing a transferable model for prosthesis control.
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Table 9. Descriptive statistics of the RMSE values obtained for different learning methodologies
during cross-subject evaluation using model M2 with 2 inputs.

Learning Methodology Count Sum Average Variance

Direct Estimation 196 2792.539 14.248 41.462
1 Synergy 196 2646.628 13.503 24.561

2 Synergies 196 2440.454 12.451 23.557
Note: Highlighted cells mark the least values of average and variance.

Table 10. ANOVA summary table for the cross-subject evaluation using model M2 with 2 inputs.

Source of Variation SS df MS F Statistic p-Value F Critical

Between Methodologies 319.323 2 159.661 5.347 0.004 3.011
Within Methodology 17,468.049 585 29.860

Total 17,787.372 587
Note: SS = Sum of Squares, df = Degrees of Freedom, MS = Mean Square.

Table 11. Post hoc Tukey HSD test results for the cross-subject evaluation using model M2 with 2 inputs.

Group Pair Q Statistic p-Value Q Critical

Direct Estimation vs. 1 Synergy 1.907 0.370
Direct Estimation vs. 2 Synergies 4.602 0.003 3.323

1 Synergy vs. 2 Synergies 2.695 0.138

5. Discussion

We have proposed and evaluated the synergy-space neural network for transhumeral
prosthesis control. By explicitly incorporating kinematic synergies into the model, our
approach addresses the limitations of traditional ANNs and provides a more robust and
superior transferability across different subjects. Our rigorous evaluation of the model has
shown promising results, demonstrating its potential.

We evaluated the performance of the proposed synergy-space approach for person-
alized LSTM models and compared it to the direct estimation method. The results of
Pearson’s correlation method and the ANOVA analysis indicate that the proposed method
performs comparably to the direct estimation method, with no significant difference in
performance. However, the proposed approach still performs well, even with the reduction
in dimensionality, suggesting its efficient and better learning capabilities for personalized
LSTM models.

In the various tested scenarios, we observed that using shoulder internal–external
rotations (SHθx) as the input significantly increases the estimation accuracy of the LSTM
models, which was typical for all the learning methodologies. It can be because the
shoulder rotation is coupled to the forearm rotation; however, we have already extracted
the kinematic synergies from the subjects’ arm motion data corresponding to the five DOFs
of the arm, including the shoulder and forearm rotations (i.e., SHθx and FAθx). It seems
not associated with the joint coordination issue and is more concerned with learning the
LSTM model. An additional input (i.e., SHθx) provides an additional parameter to the
LSTM model during the supervised training/learning, and probably a more unique feature
compared to using the joint angular velocities (i.e., SHθ̇y and SHθ̇z). Therefore, it improves
the model’s accuracy.

The synergy-space approach demonstrated its superiority during the cross-subject
evaluation as a more robust and transferable learning methodology. It showed more
minor variations in the estimation accuracy when using one subject’s motion data and
extracted the synergy matrix for forearm motion estimation using the personalized LSTM
models of the other thirteen subjects. However, one of the limitations of this study for
the actual implementation on amputee users will be obtaining the subject-specific synergy
matrix. This is because, as mentioned earlier, amputee users cannot provide the necessary
motion information.
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Based on the properties of synergies being repeatable and shared across similar tasks
and subjects, one practical solution can be to create a generalized synergy matrix based on
the data of all the able-bodied participants and use it for amputee users’ forearm motion
prediction. Another possibility would be to use motion data from the user’s healthy arm to
generate a synergy matrix for the amputated arm. As the synergy matrix represents the
inter-joint coordination, the LSTM model needs to learn a simplified relation between the
shoulder kinematics and the activation signals. That means effectively extracting synergies
can significantly affect performance.

This first investigation of the proposed synergy-space neural network demonstrates
its potential as a robust and transferable predictive model, which was successfully con-
firmed through the cross-subject evaluation results. This finding can contribute toward
creating a synergistic and generalized control strategy for transhumeral prostheses and
other rehabilitation applications.

6. Conclusions

The primary aim of this study was to improve the control of transhumeral prostheses,
focusing on their transferability across users. A highly accurate transferable predictive
model is necessary for transhumeral amputees because individual calibration or personal-
ized learning methods cannot be used effectively as they cannot provide the required data.

In this research, we proposed the synergy-space neural networks, as a transferable
model, to predict the joint angles of the forearm motion based on the residual shoulder
motion. We presented the implementation and evaluation of the proposed method, dis-
cussing its learnability and robustness for transferability to amputee users. The study was
conducted with able-bodied subjects, focusing on reaching movements of the arm in the
horizontal plane only. We compared the synergy-space neural network approach with
the direct estimation method, using the actual and estimated joint angular values for the
performance evaluation. In the best-case scenario, average RMSEs of 9.75◦ and 4.24◦ were
achieved using the synergy-space method (using 2 synergies) for the flexion–extension
(FAθy) and pronation–supination (FAθx) angles of the forearm motion. Consequently, we
verified that for the case of personalized predictive models, even with a reduced state space,
the proposed synergy-space neural network approach produced results similar to the direct
estimation method.

We investigated the transfer learning ability of the proposed model through cross-
subject analysis. The results indicate that the synergy-space neural network exhibited
superior learning capabilities compared to the traditional direct estimation method during
cross-subject evaluations. This highlights the strength of our approach as a transferable
decoder, demonstrating its ability to handle inter-individual variabilities and providing a
more generalized model for transhumeral prosthesis control.

In the future, we can send the output of predicted joint angles from the proposed model
to a transhumeral prosthesis for real-time control. As a next step, this approach would be
extended to incorporate reaching motions in three-dimensional space. The ultimate goal
in the future is to develop a framework for the real-time estimation of forearm motions to
further test and improve the proposed approach, such that it can be employed on actual
transhumeral prostheses that allow users to control the device intuitively.
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ANN Artificial Neural Network
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DOC Degree of Control
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