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Abstract: In this article, a novel heterogeneous fusion of convolutional neural networks that combined
an RGB camera and an active mmWave radar sensor for the smart parking meter is proposed. In
general, the parking fee collector on the street outdoor surroundings by traffic flows, shadows, and
reflections makes it an exceedingly tough task to identify street parking regions. The proposed
heterogeneous fusion convolutional neural networks combine an active radar sensor and image
input with specific geometric area, allowing them to detect the parking region against different
tough conditions such as rain, fog, dust, snow, glare, and traffic flow. They use convolutional neural
networks to acquire output results along with the individual training and fusion of RGB camera
and mmWave radar data. To achieve real-time performance, the proposed algorithm has been
implemented on a GPU-accelerated embedded platform Jetson Nano with a heterogeneous hardware
acceleration methodology. The experimental results exhibit that the accuracy of the heterogeneous
fusion method can reach up to 99.33% on average.
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1. Introduction

In an era of science and technology, flourishing methodology has become an emerging
field of research in the 21st century. Many hot topics such as artificial intelligence, robotics,
cloud computing, and big data have already produced a revolution in the field of flourishing
methodology. Furthermore, it will continue to change our lives. For example, machine
learning (ML) provides a computer algorithm that can be enhanced based on experience
and is a subgroup of artificial intelligence. In order to improve automatically through
experience, ML algorithms construct a mathematical model based on training data that
would make predictions or decisions without being supervised [1,2]. Lately, in the past
few years, machine learning and artificial intelligence have manifested their great utility
and effectiveness in fathoming many real-time computationally-concerted problems. For
instance, in image processing, to understand the position and type of image, the detection
and classification topology frequently uses CIFAR10, CIFAR100, and ImageNet et al. [3,4].
An example of region segmentation is the significant interest in designing the indoor robot-
like unmanned ground vehicle [5]. In the robotic control system, the design of inflated
performance ground range detection calculation plays a very important role. The advanced
driver assistance system (ADAS) [6] is another major application of region segmentation in
real-time inference. The ADAS is the methodology of image segmentation that assists a
driver or human-less driving system, which ensures the following of the driving rules and
provides a warning about any kind of obstacle to avoid the probability of vehicle accidents.
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Nowadays, the machine learning algorithm has an ample range of applications, where that
is tough or impractical to evolve conventional algorithms to perform required jobs such as
email filtering and computer vision.

In recent years, unmanned roadside parking toll systems and other related payment
technology applications have begun to combine these technologies with different types of
field applications [7,8]. However, the biggest problem encountered is the poor efficiency
of image recognition and radar detection. For example, the current trial operation of
unmanned roadside parking toll systems is often caused by radar detection errors. If
the charging information is wrong or the camera is blurry, it is difficult to overcome the
problem of different scenarios without using machine-learning-recognition technology.

Side by side with customary machine learning algorithms, deep learning has been
widely and successfully applied in different fields, such as image recognition [9-11], speech
recognition [12], and face recognition [13-15]. Convolutional neural network (CNN) ar-
chitecture is very often used for deep learning. CNN architecture has has excellent image
recognition. In 1989, the first convolutional neural network architecture was proposed by
LeCun et al. [16], which is known as LeNet-5. The LeNet-5 is mainly used for handwriting
recognition in text-edited data. However, due to issues such as parameters size, gradients,
and the insufficiency of hardware equipment, the costs and benefits are not consistent.
Deep learning was not popular with users at the time. Important developments occurred
prior to 2012. Krizhevsky et al. proposed a new convolutional neural network architecture
called AlexNet [17] and introduced dropout [18] to overcome the issue of overfitting in
the convolutional neural network. Numerous researchers have also suggested some new
deep convolutional neural network architectures. Over time, the neural network model
has grown, and the number of network layers continues to increase, such as from AlexNet
with 8 layers to VGG with 16 layers, from VGG with 16 layers [19] to GoogLeNet [20] with
22 layers, from 22 layers to 152 layers of ResNet [21], and more. There are thousands of
layers of ResNet and DenseNet [22]. Although the overall neural network model improves
performance, it also increases the efficiency of the network model. In 2017, the Google team
proposed MobileNet [23]. The MobileNet network architecture mainly uses Depthwise
Separable Convolution instead of the traditional convolution method. This method can
effectively reduce the size of the model without causing a misjudgment rate.

The mmWave millimeter-wave radar is a sensing technology that provides information
about features such as range, reflection angle, and speed with the direction of detecting ob-
jects. It is a non-contact technology that works in the 30-300 GHz spectrum range since the
wavelength of this technology is small. Therefore, it can easily penetrate a certain medium
or substance such as clothing, plastics, and drywalls. Furthermore, it has a millimeter-rage
of accuracy regardless of the environmental conditions such as snow, fog, rain, and dust.
The frequency-modulated continuous waveform (FMCW) radar is a technology that obtains
distance information from the radar by frequency modulation of continuous signals [24],
but in the past, its use was limited to certain specialized applications, such as radar altime-
ters. However, due to the development of embedded system technology in recent years,
the industry now has new applications for FMCW technology. First, the most common
advantage of FMCW is that it is easy to integrate with various solid-state transmitters. Sec-
ondly, it can use the embedded system that supports real-time FFT processing to digitally
calculate the distance measurement from solid-state transmitters.

On the other hand, intelligence sensors have recently combined cameras and the
mmWave radar within the DNN-LSTM network for tracking moving objects [25]. LSTM is
a special RNN that improves the problem of gradient disappearance and gradient explosion
during the long-term training of RNN. It adds forgetting, updating, and output steps in
neurons, greatly improving the performance of long-term memory. In [26] mmWave, the
radar combined camera is mentioned. Furthermore, to study the position and velocity all
together, the LSTM network is applied to the fall-detection method, which is based on the
mmWave radar signal.
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In this paper, in order to overcome a single-input image or radar heatmap input
suffering from various weather conditions such as fog, rain, or twilight, we proposed a
heterogeneous fusion algorithm to combine the mmWave radar heatmap image and camera
image for artificial intelligence unmanned parking meter system using convolutional neural
networks. The overall concept is shown in Figure 1. We choose AlexNet and MobileNet
convolutional neural networks as the main architectures, mainly because the AlexNet
convolutional neural network is a classic small and representative convolutional neural
network model. The AlexNet network model is widely used in different fields such as
medicine, agricultural disasters, and machine tool processing [27,28]. The MobileNet
network uses Depthwise Separable Convolution instead of traditional convolution, which
effectively reduces the number of convolution kernels without affecting the accuracy that
should be achieved. In the end, each roadside unmanned parking toll node will be equipped
with a set of Edge Al processing platforms, NVIDIA Jetson Nano. It is an Edge Al processor,
and through embedded systems built-in acceleration technology it is used to calculate
programs such as deep learning, real-time image information, system management, etc.,
and then the analysis results are uploaded to the management system via WiFi or 4G/5G
IoT technology.

Figure 1. The overall concept of artificial intelligence unmanned parking meter system.

Furthermore, this research paper is organized as follows. Section 2 begins with a
briefing of the Active Radar mmWave sensor module. Section 3 described the structure
of convolutional neural network. The proposed heterogeneous fusion algorithm used to
combine mmWave radar heatmap image and camera image will be described in Section 4.
The experimental results are shown in Section 5. Section 6 concludes this paper.

2. mmWave Radar Technology

Table 1 lists the specifications of various millimeter-wave radar modules. From the
specification Table, it can be established that in terms of range, Texas Instrument INR6843
provides the largest detection range, which is four times that of other FMCW-based modules.
Moreover, it operates at a 60 GHz high-frequency bandwidth, which is much higher than
other modules. The most important feature is INR6843, which uses the latest single-
chip AOP packaging technology to integrate the radar and DSP processor, which can
greatly reduce costs and reduce the module size. The proposed dual-input heterogeneous
architecture can be integrated into the parking meter embedded system. Importantly, the
single mmwave radar sensor can cover left and right parking lots with a single mmwave
radar function to generate a heatmap for fusion. In addition, in the comparison of the field
of view, the technology of IWR6843 also provides the widest field of view (azimuth and
elevation), up to 130 degrees, that is, a single intelligent roadside unmanned parking toll
system can cover detect two parking spaces, which can also reduce the system cost.
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Table 1. Specifications of radar modules.

Module SENSE2GOL [29] OPS241-B [30] IWR6843 [31]
Manufacture Infineon OmniPreSense Texas Instrument
Method Doppler FMCW FMCW
Range 25m 30m 120 m
Horizontal 29° 78° 130°
Elevation 809° N/A 130°
Frequency 24 GHz 24 GHz 60 GHz
Muddle Size 45 x 36 mm 53 x 59 mm 39 x 16 mm
Price 160 usd 170 usd 120 usd

Therefore, the IWR6843AOP for FMCW continuous wave technology is selected for
the smart roadside unmanned parking toll system in this paper. The mmWave antenna
module and DSP processor are packaged directly together with AOP technology to provide
60 GHz detection bandwidth.

In the parking meter system, once the single-point LiDAR receives the parking of the
vehicle, firstly, the system will activate the left and right cameras to take pictures and then
active the mmWave radar module followed by transforming reflection signals into heatmap
information. As shown in Figure 2, from Figure 2a,b, there are two vehicles parking at
the left side and right side of the parking meter system. The phase radar heat map is at a
distance of 1.5 m, where Figure 2c shows the heatmap results of both left and right parking
lots; there is an obvious reflection of objects, indicating that if there is a car parked on the
heat map. In the end, after the fusion algorithm, Figure 2d shows the heterogeneous fusion
results for neural network training.

Distance along lateral axis (meters)

() (d)

Figure 2. The fusion results of camera image and mmWave millimeter wave radar for parking meter
system. (a) Left camera. (b) Right camera. (c) mmWaveR HeatMap. (d) mmWave Fusion.

3. CNN Network Comparisons

In this section, we will discuss the selection of the training network for the proposed
heterogeneous fusion algorithm to combine the mmWave radar heatmap image and camera
image for the artificial intelligence unmanned parking meter system. CNN is an extremely
important topic in deep learning. However, a major feature of this type of neural network
is convolution. Convolution is a mathematical operation. Perform feature extraction, and
the extracted features will be sent to the next convolutional layer for feature extraction.
This method strengthens the learning efficiency of the neural network. Among them, the
network architecture includes convolution operations, pool operations, and fully connected
operations. A standard convolutional neural network architecture where red rectangle
frame present as the matrix convolutional is shown in Figure 3.



Sensors 2023, 23, 4159 50f 13

\ Flatten
.i . iji B
Image

Convolution Pooling Convolution  Pooling Fully
connection

Figure 3. Structure of a standard convolutional neural network.

For the proposed heterogeneous fusion algorithm on the artificial intelligence un-
manned parking meter system, we have compared AlexNet, VGG, GoogLeNet, ResNet,
and MobileNet in terms of structure and complexity, as shown in Table 2, which illustrates
the comparison results of different models. The reason the AlexNet is selected is because it
is the foundation of all CNN networks, it is medium-sized, and it is predictable; thus, it can
provide a fair point of view for the following training/inference results. Second, we choose
the MobileNet because of its lightweight design is a particular need for the embedded
platform of Jetson Nano. Since the experiments of unmanned parking meter systems in
the project are powered by battery, low power and lightweight computing are required
for MobileNet.

Table 2. The comparsion of different CNN models.

Model Layer Parameters Feature

AlexNet [17] 8 Layers 74,294,020 Dropout, ReLU.

VGGNet [19] 16/19 Layers 138,357,544 VGG16 and VGG19, Deep Network.

GoogLeNet [20] 22 Layers 6,258,500 Inception Module, Improve network
resources.

ResNet50 [21] 50 Layers 25,636,712 Bottleneck Block, Identity mapping.

MobileNet [23] 28 Layers 14253 864 Depthwise Separable Convolution,

Reduction of Parameters.

4. The Proposed Heterogeneous Fusion Algorithm

The flow chart of the proposed heterogeneous image fusion is shown in Figure 4. First,
input the radar heatmap, and afterward apply Otsu binarization [32] to the radar heatmap
to find the best threshold and output the black and white feature map. After that, the
feature map area is transparentized, overlapped with the original radar heat map, and
removed to obtain the feature area of the radar heat map. Then, adjust the image size, and
finally merge with the camera image to obtain the final heterogeneous image.

The Otsu binarization method is used because it can automatically calculate the
best threshold value without manually finding the matching threshold value. During
the experiment, it was found that some masked radar heatmaps would be misjudged by
applying the Otsu binarization method. For example, when the radar signal was very
weak, the masked areas would be mistaken for characteristic areas; thus, the original
radar heatmap was used instead. Carry out the Otsu binarization method to find out the
characteristic area. Figure 5 shows the binarization process of the radar heatmap. From
left to right, the original image, the output image using the Otsu binarization method,
the feature transparency, the overlap, and the output of a complete heterogeneous image
are output.



Sensors 2023, 23, 4159

6 of 13

Subsequently, the radar hotspot feature map and the camera image are subjected to
heterogeneous image fusion. Use the cv2.addWeighted function in OpenCV to perform
heterogeneous image fusion. This function can assign different weights to two images,
including 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, and 8:2 (the camera image ratio radar hotspot feature
map), a total of seven ratios. The overall heterogeneous image fusion must be completed in
four categories: left and right cars and left and right without cars. As shown in Figure 6,
heterogeneous image fusions. There is a car on the left and no car on the left.

Input
Heatmap

Otsu's Threshold

Feature
Image

Transparent
Feature Area

'

Overlay with

Image Matting

l

Resize
Image

'

Fusion

original image

Figure 4. Heterogeneous fusion algorithm flowchart.

Original THRESH OTSU  Transparent

Figure 5. Binarization process of the mmWave radar heatmap.

Overlap
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Figure 6. Heterogeneous image fusion with seven ratios.

5. Experimental Results
5.1. Parking Meter System

In the aspect of data collection, in order to realize the intelligent sensing machine
for unmanned roadside parking timing, the data aspect must simulate the real way. This
experiment uses the NVIDIA Jetson Nano embedded platform. Due to the small size of
the Jetson Nano, it can be placed in an unmanned roadside parking timer smart sensing
machine in a limited space. The energy consumption of the Jetson Nano is low, and there
is a need to connect to the camera and mmWave radar, LiDAR, so it must use 5 volts
and 3 amps of electricity to run whole system. Figure 7 shows the overall power supply
terminal and the sensor setup. In terms of power supply, Jetson Nano need a power supply
to convert AC 220/110 volts into 5 volts and 3 amps.

USB
Input:100~240 ‘ s
I Nvidi:
220/110 VAC — VAC — Jetsn‘;ll szu _
Output: 5VDC 3A 1 - USB
USB

Figure 7. Parking meter data collector on NVIDIA Jetson Nano.

As shown in Figure 8, the setup of platform is to build for a radar data collection. The
overall data chain can be constructed more easily and closer. The operation involves actual
unmanned roadside parking timing intelligent sensing.
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Figure 8. Parking meter data collector.

Figure 9 shows the parking meter system flow chart. It has a task-scheduling system
in the Linux embedded system that can automatically collect data and quickly expand the
database. The mmWave radar will first heat up after a few seconds operation, through the
Uhubctl protocol, to control each USB power IO to turned on/off camera and mmWave
radar. This can effectively solve the problem of the heating of the mmWave radar. Once the
Lidar module detects the activities of the parking compartment, the system will turn on the
camera and the mmWave radar to capture the inputs, through the proposed fusion method
to detect the parking events; after few seconds, if there are no activities, the system will
turn off the the camera and the mmWave radar will then return back to sleep mode.

|

|

\ Lidar detect
System check J > Sleepmode |—| &

| Walk up

A,

|

I

I

I

I

|

I

|

es! Start up Xes Turn on

Collect data @ Radar ~ Camera S USB power }
g % \

I

|

I

I

I

I

|

Fusion method [—#{ CNN Network |—w{ Upload result [—w L0 OFF Yes
USB power
No

Figure 9. Parking meter system flow chart.

5.2. Data Augmentation

In this experiment, the overall training database is 850 sets, and verification is 150 sets;
later, these datasets are increased five-fold using the data-augmentation method; these
include the original image, increasing the brightness and darkness of the image, and
rotating the image 10 degrees to the right and 10 degrees to the left. Figure 10 shows that
the camera image augmentation results, from left to right, are original image, increased
brightness, decreased brightness, right rotation 10 degrees, and left rotation 10 degrees.
Hence, the data augmentation training database is 4250 sets, and verification is 750 sets.

The mmWave radar heatmap must be modified before classification and increment.
Since some noise will be generated during the output of the heatmap, the noise must be
masked, such as the gutter cover, etc., without affecting the judgment of the convolutional
neural network model, and then the image increment will be performed. Figure 11 shows
that the data augmentations of the radar heatmap, from left to right, are original image,
increased brightness, decreased brightness, right rotation 10 degrees, and left rotation
10 degrees.
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Figure 10. Data augmentations with original image, increasing of the brightness and darkness,
rotating left 10 degrees, and rotating right 10 degrees.

e

Figure 11. Data augmentations with original mmWave heatmap, increasing the brightness and

darkness, rotating left 10 degrees, and rotating right 10 degrees.

For comparison, initially, all the image scenes were manually annotated with non-
car parking and car-parking regions with ground truth. The analysis of the results of the
proposed algorithm is evaluating the number of features such as TruePositive, FalsePositive,
TrueNegative, and FalseNegative values. Besides evaluating the well-known accuracy in
Equation (1), the simulation environments were

e  Windows 10 64-bit

e Intel Core i5-7500 3.6 GHz and DDR IV 32 GB
e Nvidia GTX 1080ti 11 GB

e (CUDA Version 11

e  TensorFlow Version 2.4.1

e OpenCV45.1

TruePositive+TrueNegative (1)

Accuracy = Total Population

5.3. Comparison Results

The AlexNet neural network and MobileNet neural network are trained with batch
sizes set to 6, 10, 16, 20, 24, 28, 32, 36, and 40 to find find the best accuracy. The optimizer is
set to stochastic gradient descent, loss is set to categorical crossentropy, and training will
stop when the accuracy reaches 100% or a loss ratio less then 0.03. The single image results
in an accuracy without the proposed fusion method that is about 96% in MobileNet and
97% in AlexNet, with both the architecture AlexNet and the MobileNet at a batch size of
16. Under the same circumstances, after applying the fusion method the single mmWave
radar heatmap accuracy is about 95.83% and 86.67% with the AlexNet and the MobileNet,
respectively, at a batch size of 16, representing the best results. Table 3 shows the accuracy
of the proposed fusion method in two different neural network architectures. The best
results of fusion ratio and training results in AlexNet are 7:3 within 99.33%, a loss ration
is 0.0148 as shown in Figure 12. The best results of the fusion ratio and training results
in MobileNet are 3:7 within 99.33%, and the loss ratio is 0.0297 as shown in Figure 13.
In addition to normal parking conditions, we used the AlexNet fusion network to test
different rations in rain, fog, dark, and twilight bad weather conditions, as shown in Table 4;
once we detect whether the camera channel is too dark or light, the proposed system can
switch the ratio in order to retain the best accuracy in parking lot detection, where Figure 14
shows some bad conditions. Figure 15 shows six different scenarios with left parking, right
parking, non-parking, etc. It should be noticed that the sensor’s angle and position are
focused on the best results of a car license plat instead of the whole parking lot because
after uploading to the cloud we need this system to analyze the car license number.
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Table 3. The weigh of fusion ratio and training results in AlexNet and MobileNet.

AlexNet MobileNet

Weight Accuracy Loss Accuracy Loss

2:8 98.67% 0.0434 97.33% 0.0592
3.7 98.67% 0.0200 99.33% 0.0297
4:6 96.00% 0.0774 98.00% 0.0580
5:5 99.33% 0.0277 98.67% 0.0326
6:4 98.00% 0.0448 99.33% 0.0348
7:3 99.33% 0.0148 97.33% 0.0854
8:2 96.67% 0.1332 97.33% 0.0799

Table 4. The rain, fog, dark, and twilight bad weather conditions in Alexnet fusion ratio.

AlexNet

Weight Normal Twilight Dark Rain

2:8 98.67% 93.75% 96.25% 99.00%
37 98.67% 90.00% 93.75% 100.0%
4:6 96.00% 92.50% 92.50% 98.00%
5:5 99.33% 96.25% 91.25% 94.00%
6:4 98.00% 96.25% 88.75% 94.00%
7:3 99.33% 93.75% 95.00% 95.00%
8:2 96.67% 87.50% 95.00% 87.00%

Image Fusion AlexNet 7:3

m Accuracy —e—loss

Figure 12. Accuracy and loss ratio when the fusion ration is 7:3 in AlexNet.

100%

98%

96%

4%

2%

20%

88%

Figure 13. Accuracy and loss ratio when the fusion ration is 3:7 in MobileNet.
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Twilight Rain/Fog

Figure 14. Bad condition tests on rain/fog, twilight, and dark.

(e) Left Parking Camera 2 (f) mmWave (g) Fusion 3-7

(1) Fusion 7-3

(i) Right Parking Camera 1 (j) mmWave

C

(o) Fusion 3-7 (p) Fusion 7-3

(q) Left Non-Parking (r) mmWave (s) Fusion 3-7
Camera

l

(u) Right Non-Parking (v) mmWave (w) Fusion 3-7 (x) Fusion 7-3
Camera

Figure 15. The results of the proposed algorithm to collected dataset on the street.
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6. Conclusions

To overcome single-input image and optimized network architecture, a heterogeneous
fusion algorithm to combine the mmWave radar heatmap image and camera image for the
artificial intelligence unmanned parking meter system is proposed. To avoid using the trial
and error method to determine the architecture parameters of the convolutional neural
network, we applied the AlexNet and MobileNet convolutional neural networks as the main
architecture. In the end, each roadside unmanned parking toll node will be equipped with
a set of Edge Al processing platforms, NVIDIA Jetson Nano. Judging by the experimental
results, it is clear that the accuracy of the heterogeneous fusion method can reach up to
99.33% on average. It is noteworthy that the proposed fast algorithm is ideal for those
low-power embedded devices that need to solve the complex road environment problem.
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