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Abstract: This study proposes a visual tracking system that can detect and track multiple fast-moving
appearance-varying targets simultaneously with 500 fps image processing. The system comprises
a high-speed camera and a pan-tilt galvanometer system, which can rapidly generate large-scale
high-definition images of the wide monitored area. We developed a CNN-based hybrid tracking
algorithm that can robustly track multiple high-speed moving objects simultaneously. Experimental
results demonstrate that our system can track up to three moving objects with velocities lower
than 30 m per second simultaneously within an 8-m range. The effectiveness of our system was
demonstrated through several experiments conducted on simultaneous zoom shooting of multiple
moving objects (persons and bottles) in a natural outdoor scene. Moreover, our system demonstrates
high robustness to target loss and crossing situations.

Keywords: high-speed vision; convolutional neural network (CNN); template matching (TM);
multi-object tracking

1. Introduction

Multi-target tracking and high-definition image acquisition are important issues in
the field of computer vision [1]. High-definition images of many different targets can
provide more details, which is helpful for object recognition and improves the accuracy
of image analysis. It has been widely used in traffic management. [2], security monitor-
ing [3], intelligent transportation systems [4], robot navigation [5], auto pilot [6], and video
surveillance [7].

However, there is a contradiction between wide field of view and high-definition
resolution, as shown in Figure 1. The discovery and tracking of multiple targets depends on
a wide field of view. While a panoramic camera with a short focal length can provide a wide
field of view, the definition of the image is low. A telephoto camera is the exact opposite
of a panoramic camera. Using a panoramic camera with a larger resolution is a feasible
solution; however, it requires greater expenditure and larger camera size [8]. With the
rapid development of deep learning in the image field, the super-resolution reconstruction
method based on autoencoding has become the mainstream, and its reconstruction accuracy
is significantly better than that of traditional methods [9]. However, due to the huge
network model and large amount of model training required in the super-resolution
method based on deep learning, there are defects in the reconstruction speed and the
flexibility of the model [10].

Therefore, researchers have tried to use telephoto cameras to obtain a larger field
of view and track multiple targets. A feasible solution is to stitch the images obtained
from a telephoto camera array together into high-resolution images and track multiple
targets [11]. Again, this results in greater expenditure and an increase in device size.
Another research method is to make the telephoto camera an active system by mounting
it on a gimbal. Through the horizontal and vertical movement of the gimbal, the field of
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view of a pan-tilt-zoom (PTZ) camera can be changed to obtain a wide field of view [12].
However, the original design of such a gimbal camera is not intended for multi-target
tracking. Due to the limited movement speed of the gimbal and the size of the telephoto
lens, it is difficult for gimbal-based PTZ cameras to move at high speeds and observe
multiple objects [13]. Compared to traditional camera systems operating at 30 or 60 fps,
high-speed vision systems can work at 1000 fps or more [14]. The high-speed vision system
acquires and processes image information with extremely low latency and interacts with
the environment through visual feedback control [15]. In recent years, a galvanometer-
based reflective camera system has been developed that can switch the perspective of
a telephoto camera at hundreds of frames per second [16]. This reflective PTZ camera
system is able to virtualize multiple virtual cameras in a time-division multiplexing manner
in order to observe multiple objects [17]. Compared with traditional gimbal-based and
panoramic cameras, galvanometer-based reflective PTZ cameras have the advantages of
low cost, high speed, and high stability [18], and are suitable for multi-target tracking and
high-definition capture.

Telephoto camera

Panoramic camera

Wide field of view

Narrow field of view

Figure 1. Contradiction between wide field of view and high-definition images.

However, the current galvanometer-based PTZ cameras rarely perform active visual
control in the process of capturing multiple targets. Instead, they mainly rely on panoramic
cameras, laser radars, and photoelectric sensors to obtain the positions of multiple targets,
and finally use reflective PTZ cameras for multi-angle capture [19]. Due to the impact of
detection delay and accuracy, it is difficult for multiple objects to be tracked smoothly. With
the victory of AlexNet in the visual competition, CNN-based detectors continue to develop,
and can now detect various objects in an image at a dozens of frames per second [20]. For
high-speed vision at a speed of hundreds of frames per second, however, it is difficult to
achieve real-time detection with deep learning.

This study aims to utilize a reflective PTZ camera system to track multiple objects and
to capture high definition images with low latency. A reflective PTZ camera system switches
perspectives to track multiple objects at 500 fps per second by implementing 2-ms-latency
visual feedback control. The high-speed vision feedback control relies on CNN-based
hybrid detection methods [21]. Compared with the previous system, this work achieves
the following: (1) the acquisition of images with large field of view and high resolution,
(2) simultaneous observation of up to 20 objects at a speed of 25 fps; and (3) active tracking
of multiple fast-moving objects with no-latency detection. The subsequent parts of this
study are organized as follows: related works and research are presented in Section 2; a
detailed algorithmic analysis and concept illustration are presented in Section 3; Section 4
presents a full description of the experimental test platform, followed by a discussion of
the test; finally, our conclusions are presented in Section 5.

2. Related Works

This study aims to track multiple tragets by switching the perspectives of PTZ cameras
simultaneously. This is closely related to the research on object detection, multiple object
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tarcking, and high-speed vision. In the next two sections, we provide a brief review of
related works.

2.1. Object Detection

Object detection is a computer vision task that involves detecting instances of semantic
objects of a certain class (such as a person, bicycle, or car) in digital images and videos [22].
The earliest research in the field of object detection can be traced back to the Eigenface
method for face detection proposed by researchers at MIT [23]. Over the past few decades,
object detection has received great attention and achieved significant progress. Object de-
tection algorithms are roughly divided into two stages, namely, traditional object detection
algorithms and the object detection algorithms based on deep learning [24].

Due to the limitations of computing speed, traditional object detection algorithms
focus mainly on pixel information in images. Traditional object detection algorithms can be
divided into two categories, sliding window-based methods [25] and region proposal-based
methods [26]. The sliding window-based approach achieves object detection by sliding
windows of different sizes over an image and classifying the contents within the different
windows. Many such feature extraction methods have been proposed, such as histogram
of oriented gradients (HOG), local binary patterns (LBP), and Haar-based classifiers. These
features, in conjunction with traditional machine learning methods such as SVM and
BOOST, have been widely applied in pedestrian detection [27] and face recognition[28].
Region proposal-based methods achieve object detection by proposing regions in which
objects may exist in generated images, then classifying and regressing these regions [29].

Traditional algorithms have been proven effective; however, with continuous improve-
ments in computing power and dataset availability, object detection technologies based on
deep learning have gradually replaced the traditional manual feature extraction methods
and become the main research direction. Thanks to continuous development, convolu-
tional neural network (CNN)-based object detection methods have evolved into a series
of high-performance structural models such as AlexNet [30], VGG [31], GoogLeNet [32],
ResNet [33], ResNeXt [34], CSPNet [35], and EfficientNet [36]. These network models have
been widely employed as backbone architectures in various CNN-based object detectors.
According to the differences in the detection process, object detection algorithms based on
deep learning can be divided into two research directions, One-Stage and Two-Stage [37].
Two-stage object detection algorithms transform the detection problem into a classification
problem for generated local region images based on region proposals. Such algorithms
generate region proposals in the first stage, then classify and regress the content in the
region of interest in the second stage. There are many efficient object detection algorithms
that use a two-stage detection process, such as R-CNN [38], SPP-Net [39], Fast R-CNN [40],
Faster R-CNN [41], FPN [42], R-FCN [43], and DetectoRS [44]. R-CNN was the earliest
method to apply deep learning technology to object detection, reaching an MAP of 58.5%
on the VOC2007 data. Subsequently, SPP-Net, Fast R-CNN, and Faster R-CNN sped up
the running speed of the algorithm while maintaining the detection accuracy. One-stage
object detection algorithms, on the other hand, are based on regression, which converts
the object detection task into a regression problem for the entire image [45]. Among the
one-stage object detection algorithms, the most famous are single shot multibox detector
(SSD) [46], YOLO [47], RetinaNet [48], CenterNet [49], and Transformer [50]-based detec-
tors [51]. YOLO was the earliest one-stage target detection algorithm applied to actual
scenes, obtaining stable and high-speed detection results [52]. The YOLO algorithm divides
the input image into S× S grids, predicts B bounding boxes for each grid, and then predicts
the objects in each grid separately. The result of each prediction includes the location, size,
confidence of the bounding box, and the probability that the object in the bounding box be-
longs to each category. This method of dividing the grid avoids a large number of repeated
calculations, helping the YOLO algorithm to achieve a faster detection speed. In follow-up
studies, algorithms such as YOLOv2 [53], YOLOv3 [54], YOLOv4 [55], YOLOv5 [56], and
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YOLOv6 [57] have been proposed. Owing to its high stability and detection speed, in this
study we use yolov4 as the AI detector.

2.2. Multiple Object Tracking (Mot)

Multiple object tracking detects and tracks multiple targets in videos, such as pedestri-
ans, vehicles, and animals. It is an important research direction in the field of computer
vision, and has been widely applied in intelligent surveillance and behavior recognition [58].
Early classical tracking methods, such as Meanshift [59], particle filtering [60], KCF [61],
and MOSSE [62], mainly focused on single-object tracking. With the rapid development of
CNNs, detection-based multi-object tracking methods have quickly become the mainstream
research direction.

Currently, there are three popular research directions in multi-object tracking: detection-
based MOT, detection and tracking-based joint MOT, and attention-based MOT. In detection-
based MOT algorithms, object detection is performed on each frame to obtain image patches
of all detected objects. A similarity matrix is then constructed based on the IoU and appear-
ance between all objects across adjacent frames, and the best matching result is obtained
using a Hungarian or greedy algorithm; representative algorithms include SORT [63] and
DeepSORT [64]. In detection and tracking-based joint MOT algorithms, detection and
tracking are integrated into a single process. Based on CNN detection, multiple targets are
fed into the feature extraction network to extract features and directly output the tracking
results for the current frame. Representative algorithms include JDE [65], MOTDT [66],
Tracktor++ [67], and FFT [68]. The attention mechanism-based MOT is inspired by the
powerful processing ability of the Transformer model in natural language processing. Rep-
resentative algorithms include TransTrack [69] and TrackFormer [70]. TransTrack takes the
feature map of the current frame as the key and the target feature query from the previous
frame and a set of learned target feature queries from the current frame as the input query
of the whole network.

2.3. High-Speed Vision

High-speed vision is a computer vision technology that aims to realize real-time image
recognition and analysis through the use of fast and efficient image processing algorithms
at high frame rates of 1000 fps or more. It is an important direction in the field of computer
vision and is used in a variety of applications, such as intelligent transportation [71],
security monitoring [72], and industrial automation [73].

High-speed vision has two properties: (1) the image displacement from frame to
frame is small, and (2) the time interval between frames is extremely short. In order
to realize vision-based high-speed feedback control, it is necessary to process massive
images in a short time. Unfortunately, current image processing algorithms, such as noise
reduction, tracking, and recognition, are all based on traditional image data involving
dozens frames per second. An important idea in high-speed image processing is that it
reduces the amount of work required for small-scale shifts between high-speed frames.
Field programmable gate arrays (FPGAs) and graphics processing units (GPU), which
support massively parallel operations, are ideal for processing two-dimensional data
such as images. In [74], the authors presented a high-speed vision platform called H3

vision. This platform employs dedicated FPGA hardware to implement image processing
algorithms and enables simultaneous processing of a 256× 256 pixel image at 10,000 fps.
The hardware implementation of image processing algorithms on an FPGA board provides
high performance and low latency, making it suitable for real-time applications that require
high-speed image processing. In [75], a super-high-speed vision platform (HSVP) was
introduced that was capable of processing 12-bit 1024× 1024 grayscale images at a speed
of 12,500 frames per second using an FPGA platform. While the fast computing speed of
FPGA is ideal for high-speed image processing, its programming complexity and limited
memory capacity can pose significant challenges. Compared with FPGA, GPU platforms
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can realize high-frame-rate image processing with lower programming difficulty. A GPU-
based real-time full-pixel optical flow analysis method was proposed in [76].

In addition to high-speed image processing, high-speed vision feedback control is
very important. Gimbal-based camera systems are specifically designed for image streams
with dozens of frames per second. Due to the limited size and movement speed of the
camera, it is often difficult to track objects at high speeds while simultaneously observing
multiple objects. Recently, a high-speed galvanometer-based reflective PTZ camera system
was proposed in [77]. The PTZ camera system can acquire images from multiple angles in
an extremely short time and virtualize multiple cameras from a large number of acquired
image streams. In [78], a novel dual-camera system was proposed which is capable of
simultaneously capturing zoomed-in images using an ultrafast pan-tilt camera and wide-
view images using a separate camera. The proposed system provides a unique capability
for capturing both wide-field and detailed views of a scene simultaneously. To enable
the tracking of specific objects in complex backgrounds, a hybrid tracking method that
combines convolutional neural networks (CNN) and traditional object tracking techniques
was proposed in [21]. This hybrid method achieves high-speed tracking performance of
up to 500 fps and has shown promising results in various applications, such as robotics
and surveillance.

3. Active Multi-Object Ultrafast Tracking with CNN-Based Hybrid Object Detection

We propose the concept of wide field of view registration and high-speed multi-object
active tracking by virtual cameras using a galvanometer-based reflective PTZ camera, as
shown in Figure 2. This high-speed reflective PTZ camera can change the view thousands
of times per second to scan the monitoring area. Objects detected during scanning are
registered as tracking targets, then the reflective PTZ camera system switches perspectives
between different objects at an ultrafast speed for tracking. By classifying and combining
frames of different views, multiple virtual cameras with a frame rate of hundreds of frames
can be formed. As mentioned in Section 1, current CNN-based object detectors often
have dozens of milliseconds of latency from input frames to output results. Compared to
ultra-high-speed galvano-mirror control, detection latencies can negatively impact vision-
based feedback control, causing skipped frames without object detection. To address
this issue, we propose a framework called HFR multiple target tracking, which combines
high-speed TM-based trackers with CNN-based object detectors to achieve low-latency
visual feedback at hundreds of Hz. This framework enables the tracking of multiple fast-
moving objects, and can be used in real-time applications such as robotics, surveillance,
and autonomous navigation.

As shown in Figure 3, the whole multi-object tracking process mainly includes two
processes, namely, the new object registration process and the multi-object tracking process.
The object registration process first scans the surveillance area at an ultrafast speed and
stitches together a high-resolution panoramic image. Subsequently, the CNN-based detector
detects the image frame-by-frame, looking for objects of interest to complete the registration.
After object registration process, the multi-target tracking process changes the field of view
to observe different objects at an extremely fast speed. Meanwhile, we use a CNN-based
hybrid detection method in each virtual camera for low-latency visual feedback control. If
the object is lost, the object registration process is restarted to register new objects.
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Pan-tilt mirrors

High-speed images

Multiple targets tracking in virtual cameras

Telephoto camera

Figure 2. Wide field of view registration and multi-object tracking by virtual cameras using a
galvanometer-based reflective PTZ camera.
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Figure 3. Flowchart of object registration process and multi-object tracking process.

3.1. New Object Registration Process

The high-speed reflective PTZ camera system captures frames of different angles
through ultra-fast rotating two-axis galvano-mirrors. During the scanning process of the
monitoring area, all captured high-speed frames, denoted as Ih(t), and control angles, de-
noted as v(t) =

{
upan(t), utilt(t)

}
, are stored in the frame set F and angle set V. Meanwhile,
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the CNN-based detector performs object detection on the frame set F during the scanning
process. The detected objects in an input frame Ih(t) at time t are expressed as follows:

D(Ih(t)) =
{

d1(t), d2(t), . . . , dj(t), . . . , dJ(t)
}

, (1)

where D denotes an operator of the CNN-based object detection. For the j-th detected
object (j = 1, · · · , J), each detection result dj(t) is composed of the following parameters:

dj(t) =
{

oj
x(t), oj

y(t), wj(t), hj(t), pj(t), cj(t)
}

, (2)

where oj(t) =
(

oj
x(t), oj

y(t), wj(t), hj(t)
)

denotes the bounding box of j-th detection object.

In addition, pj(t) and cj(t) denote its detection confidence and object class, respectively. In
this article, the detection algorithm used in AI detection is YOLOv4, which is currently a
very mature detection algorithm with low latency and stable detection time. If an object is
detected, we obtain the control angle vi of the i-th object as follows:

vi =
{

ui
pan(t) + εpandpan, ui

tilt(t) + εtiltdtilt

}
, (3)

where ui
pan(t) and ui

tilt(t) denote the control angle of the pan and tilt when the frame is
captured at time t, εpan and εtilt denote the pixel deviation between the center of the object
and the frame center, and dpan and dtilt denote the gain between the pixel and the angle.
Then, the detected object info ri = {vi, ci} is registered to the target set R = {r1, r2, · · · , rn}
for high-speed multi-object tracking, while ci denotes the label of the i-th object.

3.2. Multi-Target Tracking Process

The multi-object tracking process is initiated when the target set size R is greater than
0. In the image acquisition process of the galvanometer-based reflective PTZ camera (as
depicted in Figure 4a, the galvano-mirror movement and camera exposure represent the
two primary stages. To cope with high-speed image streams of hundreds of frames per
second, we parallelize the image acquisition and processing process and divide the stream
into multiple virtual cameras.

YOLOv4 can process only about 30 frames per second, and struggles to keep up with
the real-time processing demands of the hundreds of frames per second in each virtual
camera. To overcome this challenge, we developed a hybrid algorithm that combines
template matching and CNN-based object detection. Specifically, the object template image
obtained from the CNN detector is matched with the current image through template
matching to update the object position in each virtual camera. Our hybrid algorithm
comprises two modes, as illustrated in Figure 4b: (1) playback mode, which performs real-
time playback tracking in all intermediate images from the detected frame to the current
frame once CNN obtains the object position, and (2) frame-by-frame forward tracking,
which matches the template obtained from CNN frame-by-frame with the new input image.

To reduce the processing delay caused by the CNN, we activate the instant playback
tracking mode to address the deviation caused by the difference between a newly detected
fast-moving object’s position and its position in the current frame. After updating the
template of the TM-based tracker with the detected object area, the TM-based tracker
estimates the target position in the current image and the new object position in all frames
from the detected input frame to the current frame. The estimated target area of the current
frame during playback tracking is used to determine the template of the TM-based tracker
and the initial position of frame-by-frame tracking.
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Figure 4. Time-division threaded gaze control process for multiple target tracking based on HFR ob-
ject detection hybridized with CNN: (a) time-division threaded gaze control process for simultaneous
multi-object observation and (b) HFR target tracking hybridized with CNN in each virtual camera.

Below, we describe the algorithm used in the hybridized object-tracking approach. We
denote the time intervals of the input HFR images and CNN-based object detection as τh
and τd, respectively, with τd being much larger than τh and equal to mτh.

(1) Updating object template using CNN
Due to detection latency, CNN detectors skip frames and continuously detect images

from the nth virtual camera. The objects detected in an input image In(td) from the nth
virtual camera at time td can be described as follows:

D(In(td)) =
{

d1
n(td), d2

n(td), . . . , dJ
n(td)

}
. (4)

The definition of the detection results dj
n(td) is the same as that in Equation (2). Results

that differ from the target labels cn tracked by the nth virtual camera are initially eliminated.
To update the template In of the nth virtual camera for the S detection results for which the
class is the same as cn, we use the following method:

Tn =


argmax

Ts

NCC
(
Ts, T′n

)
(S > 0)

don′t update, (S = 0),
(5)

NCC(Ts, T′n) =
Cov(Ts, T′n)√

Var(Ts)Var(T′n)
. (6)

Here, Tn and T
′
n are the current and last template of the nth virtual camera, respectively.

The NCC [79] (Normalized Cross Correlation) algorithm is used to measure the similarity
of templates.
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(2) TM-Based HFR Tracking
(a) Frame-by-frame forward tracking: when there is no template update the position

p(tn) of the tracked target in the image is obtained directly through the SDS (standard
deviation of squares) equation, as shown below:

p(tn) = p′(tn) + arg min
|x|≤Ran,|y|≤Ran

E(x, y), (7)

E(x, y) =
∑x′ ,y′(Tn(x′, y′)− In(x′n + x + x′, y′n + y + y′))2√

∑x′ ,y′ Tn(x′, y′)2 ·∑x′ ,y′ In(x′n + x + x′, y′n + y + y′)2
. (8)

Here, p′(tn) is the position of the object in the last image. Due to the advantage of
high-speed vision, objects move more slowly between high-speed image sequences and
there is less displacement between frames. Accordingly, we can set the search range Ran for
object detection in the image to a few pixels. Here, (x′n, y′n) represents the top-left coordinate
of the target region in the image from the previous time step in the nth virtual camera,
while In represents the new image from the nth virtual camera. Because the algorithm is
applied to a real-time high-speed system, we prioritize speed over accuracy and robustness.

(b) Playback tracking during template updating: there is a fatal problem with frame-
by-frame template matching, which is that the appearance of a moving object often changes.
As time progresses, the tracking becomes unstable. Therefore, when updating the template
it is necessary to perform a playback operation. The playback operation refers to the process
of performing a sub-forward TM through all image sequences from the time t′n = tn − td at
which the previous input image was passed to the CNN until the current time tn.

p
(
t′n + (k + 1)τn

)
= p

(
t′n + kτn

)
+ arg min
|x|≤Ran,|y|≤Ran

E(x, y), (0 <= kτn <= td). (9)

Here, τn represents the time interval between frames for the nth virtual camera. As
shown in Figure 4b, we perform a replay operation every time we update the template
to avoid the problem of changes in the object’s appearance. To reduce latency in CNN-
based object detection at td intervals, playback tracking functions are utilized as delay
compensators, while frame-by-frame forward tracking functions serve as frame interpo-
lators, converting target positions from td intervals to τn intervals that match the HFR
input images.

4. Experiments
4.1. System Configuration

To enable tracking of multiple fast-moving targets distributed across a wide area, we
developed a high-speed pan-tilt camera system that utilizes an ultrafast galvanometer
mirror. The system is capable of tracking multiple moving objects simultaneously with
a frame rate of 500 fps. The system includes a high-speed CMOS camera head from
Image Source, Bremen, Germany (DFK37BUX287), a two-axis pan-tilt Galvano-mirror from
Cambridge Technology, Kansas City, MO, USA (6210H), and a control computer with an
Intel i9-9900K processor (3.6 GHz), 64-GB DDR4 RAM, and Windows 10 Home (64-bit).
Control signals are sent to the Galvano-mirror via a D/A board (PEX-340416) from Interface
Corporation, Hiroshima, Japan .

In this paragraph, we describe the technical specifications of the galvanometer-based
reflective PTZ camera system. The camera head has a 50 mm telephoto lens and a color
CMOS sensor measuring 720 × 540 pixels. The sensor has a size of 4.96 × 3.72 mm and a
pixel size of 6.9 × 6.9 µm. It can capture 8-bit RGB 720 × 540 images at 539 fps and transfer
them to a PC via USB 3.1. The galvanometer mirror provides two degrees of freedom gaze
control, with a range of −20 to 20 degrees for pan and −10 to 10 degrees for tilt. The mirror
can be controlled within 2 ms in the ten-degree range. The the overview and geometry of
the galvanometer-based reflective PTZ camera system are presented in Figure 5. Real-time
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control signals from the computer to the galvano-mirror via the D/A board enable the
system to zoom in on and track multiple objects.

(a)

tilt mirror

pan mirror

high-speed camera

x
y

z
𝑜

tilt mirror

pan mirror

z
y

x
𝑜

xy-view yz-view
(b)

Figure 5. (a) Overview and (b) geometry of the galvanometer-based reflective PTZ camera.

4.2. Execution Times of Visual Tracking Algorithm

The system captures 640 × 480 images at a rate of 500 fps (τh = 2 ms), with the initial
search areas determined by the position of the moving object obtained by the new object
registration process.

Using YOLOv4 for CNN detection, we can execute object detection with a delay
of about τd = 33 (m = 16) ms using multiple high-speed PTZ virtual cameras. In the
implemented YOLOv4, eighty object categories (car, bicycle, sports ball, apple, mouse, etc.)
were pre-trained using the COCO dataset, with color images resized to 416 × 416 for the
purpose of estimating object regions and labels. We fine-tuned the YOLOv4 pre-trained
model to incorporate facial detection, allowing the network to detect human faces. The
average latency of the processing pipeline for object detection in our system is τl = 30 ms
(L = 15). Considering that the frame rate of a high-speed virtual PTZ camera increases
with the number of objects to be tracked, the frame rate drops by almost 100 frames.
Thus, the displacement of the object between adjacent frames in a virtual PTZ camera is
slightly larger than the continuous image stream of 500 fps. The search range in TM-based
tracking is set to the 5 × 5 neighborhood (R = 4) in both instant playback tracking and
forward tracking modes. The sub-images obtained from the template image are adaptively
down-sampled according to image size before completing the template matching, thereby
speeding up the playback tracking process and keeping the time within 2 ms. Our algorithm
enables pan-tilt tracking with 500-fps visual feedback control to track multiple moving
targets at the image center (cx, cy) = (320, 240). We evaluated the execution times of our
algorithm with template sizes of 64 × 64, 128 × 128, 256 × 256, and 512 × 512 pixels and
compared the results with those of the following single-object tracking algorithms prepared
as tracking APIs in OpenCV 4.5: MIL, BOOSTING, Median Flow, TLD, KCF, GOTURN
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pre-trained on the ALOV300++ dataset, and MOSSE. Table 1 summarizes the execution
times for implementation on 640 × 480 input images using the same PC used for our
proposed system. For our algorithm with R = 4 and L = 6, we show the execution time for
(i) playback tracking with template updating, (ii) frame-by-frame forward tracking, and
(iii) YOLOv4; YOLOv4 is executed in parallel with the template matching track, and the
largest processing delay occurs in playback tracking. Thus, it is necessary to increase the
robustness of object tracking under large processing delays. Our algorithm can deliver
target positions in real-time, achieving a speed of hundreds of fps or higher through parallel
execution with YOLOv4. Compared with other single-object tracking approaches based on
either online adaptive templates or pre-trained deep neural networks, our algorithm offers
an advantage in terms of processing speed.

Table 1. Execution times of tracking algorithms.

Tracker
Size

64 × 64 128 × 128 256 × 256 512 × 512

BOOSTING 17.73 54.85 29.85 8.11

KCF 5.39 5.05 20.6 90.22

MOSSE 0.26 1.12 1.55 17.26

MIL 79.63 76.67 72.68 67.71

TLD 30.15 22.14 26.45 26.99

MEDIANFLOW 2.12 2.21 2.10 2.23

GOTURN 23.22 24.54 24.74 29.60

ours(playback) 0.27 0.41 0.77 1.82
(forward) 0.021 0.056 0.222 0.62
(YOLOv4) 33

(unit: ms).

4.3. Simultaneous Tracking of Twenty Different Objects

We first tested the proposed multi-object tracking system based on reflective mirrors
for tracking a large number of targets. Figure 6a shows the overview of the experimental
scene. We placed twenty different types of targets, such as cars, bicycles, clocks, and sports
balls, on the wall and whiteboard approximately 6 m away from the multi-object tracking
system. Among these, the whiteboard was movable and the objects on the whiteboard
were able to move along with the motion of the whiteboard. During the object registration
process, the galvanomirror-based reflective camera system scanned the monitoring area at a
speed of 500 fps. Figure 6b shows the panoramic image stitched together from the reflective
camera system following completion of the object registration process. The resulting twenty
detected objects were mapped onto the panoramic image in the form of overlays, and their
positions in the panoramic image were updated in real-time. The virtual camera labels
are shown in “v-cam:n”, where different virtual cameras are assigned different numbers.
The virtual camera responsible for scanning is displayed as a green bounding box in the
top right corner of the image. If object tracking failed, the virtual camera responsible for
scanning was reactivated to search for new objects. Figure 7 presents high-definition images
of all tracked objects continuously updated within the image frames at 30 fps. Figure 8
shows the pan and tilt angles of the galvanometer-based reflective PTZ camera when
scanning and tracking twenty different targets. The other objects on the wall remained
stationary while the objects (the bicycle and car) attached to the whiteboard (virtual cameras
8, 13, 18) moved left and right along with the whiteboard. Because high-speed resources
are divided equally, the frame rate of each target is low and certain fast-moving objects
cannot be tracked accurately due to their high motion speed.
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(a) (b)

Figure 6. The 1920 × 1080 input images from the digital camera and the panoramic stitched
9600 × 5280 images from the PTZ camera: (a) overview of the experimental scene and (b) panoramic
stitched image from the PTZ camera (targets are pasted on the panoramic image in the form of a red
frame texture).

Figure 7. HD images of twenty objects tracked simultaneously.

Scan v-cam 1 v-cam 2 v-cam 3 v-cam 4 v-cam 5 v-cam 6

v-cam 7 v-cam 8 v-cam 9 v-cam 10 v-cam 11 v-cam 12 v-cam 13

v-cam 14 v-cam 15 v-cam 16 v-cam 17 v-cam 18 v-cam 19 v-cam 20

time [s]time [s]

Figure 8. Pan and tilt angles of the galvanometer-based reflective PTZ camera when scanning and
tracking twenty different targets.

4.4. Low-Latency Pan-Tilt Tracking of Multiple Moving Bottles

Next, we verified the multi-object visual tracking performance of our proposed system
at 500 fps. In this experiment, we employed a visual search to automatically detect bottles
that were distributed in the surveillance area. By changing the viewpoint, we were able to
track multiple bottles at the image centre of a 640 × 480 input image. The experimental
environment is depicted in Figure 9. Three bottles were strategically positioned at a distance
of about 8 m from the PTZ camera system. Subsequently, two of the bottles were released
from a height of approximately 1.7 m while the camera system finished searching and
needed to track multiple bottles. A digital camera (model DSC-RX10M3, focal length
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30 mm) was positioned adjacent to the camera system to capture 1920 × 1080 images of the
surveillance area at 60 frames per second.

The initial stage of the experiment involved a zigzag scan of the monitoring area using
the PTZ camera system. Specifically, the pan mirror was adjusted by 2.54 degrees and the
tilt mirror by 1.9 degrees for each scan. The final observation range of the pan mirror was
set between −17.78 degrees and 17.78 degrees, while the tilt mirror was set to observe
within a range of−9.5 degrees to 9.5 degrees. Figure 10 shows the 1920× 1080 input images
from digital camera and panoramic stitched 9600 × 5280 images from the PTZ camera.
Our PTZ camera system can obtain 24× higher-definition images of the surveillance area
at 3 fps compared with digital cameras. Subsequently, we utilized YOLOv4 to analyze
and detect objects in the 165 images captured during the zigzag scan process. Following
the completion of object registration, we started a low-latency tracking process to track
the detected bottles in real time. Figure 11 shows the 145 × 108 ROI images around the
targets from the digital wide-view camera and 640× 480 input images from the virtual PTZ
cameras at t = 19.1 s. In the image obtained from PTZ camera, the characters on the bottles
can be clearly read while being robustly tracked. In contrast, only the approximate outline
and color of the bottles can be seen in the digital camera image. During tracking, we first
picked up two bottles from the table, then released the bottles into a free fall at t = 19.1 s.

Figure 9. Experimental environment used for tracking multiple moving objects in an outdoor scene.

(a) (b)

Figure 10. The 1920 × 1080 input images from the digital camera and panoramic stitched
9600 × 5280 images from the PTZ camera: (a) input image of digital camera and (b) panoramic
stitched image from the PTZ camera.
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145×108 ROI images around targets (t = 19.1s)

640×480 input images of PTZ camera (t = 19.1s)

Figure 11. The 145 × 108 ROI images around targets from the digital wide-view camera and
640 × 480 input images from the virtual PTZ cameras (red boxs are the test results).

Figure 12 shows the pan and tilt angles of the galvanometer-based reflective PTZ
camera when scanning and tracking multiple bottles. The system undergoes object reg-
istration from 0 to 9 s, after which it transitions to the multi-target tracking process. We
simultaneously released two water bottles from a height of about 1.7 m at 19.1 s. The two
bottles experienced about 0.6 s of freefall. Figure 13 illustrates the x and y coordinates of the
centroids for the regions of interest (ROIs) that were tracked in the input images during the
period t = 9–23 s. Except in the process of falling, the deviation from the center of the image
gradually increases, and is otherwise very close to the center of the image (320 × 240).

Figure 14 depicts the tracking status during free fall of bottle 1 when tracking three
bottles simultaneously. Figure 14a,b shows the tracking situations based on the CNN hybrid
algorithm and YOLOv4, respectively. When using only YOLO tracking, objects leave the
field of view quickly at t = 0.3 s as their speed increases. Nevertheless, the CNN-based
hybrid tracking algorithm exhibits superior performance in tracking the falling bottle. The
velocity of the free-falling bottle is directly proportional to the time it takes to fall. Figure 15
shows the relationship between the velocity and distance from the detection ROI to the
image center during free-fall bottle tracking. YOLOv4 tracking is limited in its ability to
track objects with a speed greater than 3 m per second. Using our CNN-based hybrid
algorithm for tracking, a moving object with a speed of 5.5 m/s is located approximately
45 pixels away from the image center. In theory, it is possible to track three objects moving
at a speed of 30 m/s and maintaining a distance of 8 m simultaneously. Finally, we
conducted experiments to track three free-falling bottles simultaneously using different
tracking methods. Figure 16 shows pixel deviation values between the object position
calculated by different algorithms and the object’s actual position during the falling process.
The actual position of the object was obtained from offline videos recorded at 30 fps during
online system operation. The deviation values shown in the figure represent the specific
error at each time step. After being dropped from a height of approximately 1.7 m, the
water bottle impacted the ground after approximately 0.6 s. The Boosting, TLD, KCF, and
Medianflow tracking methods lost the target within 0.2 s, 0.3 s, 0.4 s, and 0.5 s, respectively.
The GOTURN and MOSSE tracking methods, along with our proposed method, were able
to maintain tracking until the end of the tracking task. Among these methods, the deviation
of the tracked object’s real position is smaller when using our proposed hybrid tracking
method based on CNN.
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High-speed Scanning AI Registration Free fall

time [s]

Figure 12. Pan and tilt angles of the galvanometer-based reflective PTZ camera when scanning and
tracking multiple bottles.

Free fall

time [s]

Figure 13. The x and y centroids of tracked bottle regions.

(a) (b)

Figure 14. Tracking status of the free-fall of bottle 1 when tracking three bottles simultane-
ously: (a) free-fall of bottle 1 based on CNN hybrid tracking and (b) free-fall of bottle 1 based
on YOLOv4 tracking.
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Out of view
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Figure 15. Relationship between velocity and distance from the detection ROI to the image center
during free-fall bottle tracking.
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Figure 16. Pixel deviation value between the object position calculated by different algorithms and
the object’s real position during free-falling.

4.5. Multi-Person Pan-Tilt Tracking in Wide-Area Surveillance

Subsequently, we designed a scenario more commonly encountered in reality in-
volving multiple individuals in motion. Figure 17a shows the experimental environment
captured by the digital camera (focal length = 40 mm). Five individuals were positioned
approximately 8 m away from the PTZ camera system. Prior to the completion of the scans
and detection, all participants stood still. Figure 17b depicts the scanning and detection
outcome at the start of the experiment. Figure 18 depicts the pan and tilt angles of the
galvanometer during the experiment as it scanned and tracked different individuals. The
upper right corner shows a thread for detecting lost targets and initiating rediscovery. The
tracking of multiple individuals commenced at 8.5 s. Between 10 and 13 s, all individuals
performed vertical jumps, while from 13 to 15 s, they swayed their bodies horizontally. A
loss waiting time of 300 frames was established for each individual. After a waiting time
of 300 frames, person 1 was lost at 16.5 s and the scanning thread was restarted; person 1
was eventually rediscovered at 21 s. Two crossings occurred between person 2 and person
3 during 23 to 27 s and 30.5 to 34 s. Sface [80] was employed to extract facial features
and conduct similarity matching. In this study, we only utilized facial features for facial
discrimination, and did not assign individual IDs for recognition of individuals. During
the cross-tracking process, a virtual camera always followed a single person. As shown
in Figure 19, person 3 was briefly occluded by person 2 during the initial cross-tracking
process and was subsequently re-identified and tracked. In the second crossing process,
person 3 was not identified during the short occlusion; thus, the scanning thread had to
be restarted, leading to the rediscovery of person 3 at 33 s, as shown in Figure 20. Due
to lighting conditions, person 5 was not detected at 26 s, prompting the scanning thread
to remain active from that point forward in an attempt to locate person 5. The x and y
coordinate values of the image centroids of the tracked ROIs are depicted in Figure 21.
These results demonstrate that our PTZ camera system can track multiple fast-moving
objects simultaneously at a high speed. Moreover, the system exhibits high robustness to
object loss and occlusion.
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(a) (b)

Figure 17. The 1920 × 1080 input images from the digital camera and panoramic stitched
9600 × 5280 images from the PTZ camera: (a) input image of the digital camera and (b) panoramic
stitched image from the PTZ camera.

time [s]

Jumping Shaking Crossing

Figure 18. Pan and tilt angles of the galvanometer-based reflective PTZ camera when scanning and
tracking multiple persons.

Figure 19. Cross-tracking of person 2 and person 3 between 24.9 and 26.1 s.

Figure 20. Cross-tracking of person 2 and person 3 between 31.4 and 32.6 s.
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time [s]

Jumping Shaking Crossing

Figure 21. The x and y centroids of the regions with tracked people.

5. Conclusions

In this study, we developed a multi-object visual surveillance system with 500-fps
image processing capabilities able to robustly track multiple objects within a wide area.
The effectiveness of our system was demonstrated through two experiments: (1) tracking
of multiple free-falling water bottles, and (2) tracking of multiple freely moving individuals.
Our system offers three key advantages: (1) rapid generation of high-definition wide-view
images; (2) the ability to track up to twenty low-speed moving targets at a maximum rate
of 25 fps; and (3) simultaneous tracking of multiple high-speed moving targets with high
robustness against object occlusion and loss.

However, there are several limitations faced by the current system; for example, the
object registration process in the early stage requires several seconds, during which time
the object may continue to move, resulting in target loss during the tracking process. In
future work, we plan to incorporate a panoramic camera for pre-detection of interesting
targets within the monitoring area.
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