
Citation: Yuan, Z.; Wang, Z.; Li, X.;

Li, L.; Zhang, L. Hierarchical

Trajectory Planning for

Narrow-Space Automated Parking

with Deep Reinforcement Learning:

A Federated Learning Scheme.

Sensors 2023, 23, 4087. https://

doi.org/10.3390/s23084087

Academic Editors: Mustafa Ilhan

Akbas and Jun Chen

Received: 9 March 2023

Revised: 10 April 2023

Accepted: 14 April 2023

Published: 18 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Hierarchical Trajectory Planning for Narrow-Space Automated
Parking with Deep Reinforcement Learning: A Federated
Learning Scheme
Zheng Yuan 1 , Zhe Wang 2, Xinhang Li 1, Lei Li 1 and Lin Zhang 1,*

1 School of Artificial Intelligence, Beijing University of Posts and Telecommunications, 10 Xitucheng Road,
Haidian Distinct, Beijing 100876, China; yuanzheng@bupt.edu.cn (Z.Y.); lixinhang@bupt.edu.cn (X.L.);
leili@bupt.edu.cn (L.L.)

2 Centre for Telecommunications Research, King’s College London, London WC2R 2LS, UK;
tylor.wang@kcl.ac.uk

* Correspondence: zhanglin@bupt.edu.cn

Abstract: Collision-free trajectory planning in narrow spaces has become one of the most challenging
tasks in automated parking scenarios. Previous optimization-based approaches can generate accurate
parking trajectories, but these methods cannot compute feasible solutions with extremely complex
constraints in a limited time. Recent research uses neural-network-based approaches that can generate
time-optimized parking trajectories in linear time. However, the generalization of these neural
network models in different parking scenarios has not been considered thoroughly and the risk of
privacy compromise exists in the case of centralized training. To address the above issues, this paper
proposes a hierarchical trajectory planning method with deep reinforcement learning in the federated
learning scheme (HALOES) to rapidly and accurately generate collision-free automated parking
trajectories in multiple narrow spaces. HALOES is a federated learning based hierarchical trajectory
planning method to fully exert high-level deep reinforcement learning and the low-level optimization-
based approach. HALOES further fuse the deep reinforcement learning model parameters to improve
the generalization capabilities with a decentralized training scheme. The federated learning scheme
in HALOES aims to protect the privacy of the vehicle’s data during model parameter aggregation.
Simulation results show that the proposed method can achieve efficient automatic parking in multiple
narrow spaces, improve planning time from 12.15% to 66.02% compared to other state-of-the-art
methods (e.g., hybrid A*, OBCA) and maintain the same level of trajectory accuracy while having
great model generalization.

Keywords: automated parking; trajectory planning; federated deep reinforcement learning; nonlinear
optimization

1. Introduction

Automated parking is a hot issue of interest in academia and industry. Autonomous
vehicles (AVs) can improve driving safety, efficiency and convenience through Advanced
Driving Assistance Systems (ADAS) [1]. Automated parking is an essential application of
ADAS for autonomous vehicles, which has been used by many car manufacturers such
as Audi, BMW, Mercedes-Benz and BYD [2]. In recent years, parking space has become
scarce in many cities with the increase in vehicles and the relative lag in infrastructure.
The narrow and crowded parking environment increases the risk of collision and makes
parking more difficult for drivers while also bringing new challenges to automated parking
technology [3]. This paper aims to achieve a more efficient collision-free trajectory planning
scheme for automated parking in narrow parking spaces (Figure 1).
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Figure 1. The scheme of HALOES contains the top and bottom parts of the figure, which are
part (a) and part (b), respectively. Part (a) is the hierarchical trajectory planning, including the
structure of deep reinforcement learning and the process of optimization-based trajectory planning.
Part (b) is federated reinforcement learning, where different participating vehicles are involved in
distributed reinforcement learning and trained deep reinforcement learning models in their respective
environments. After that, the models from different vehicles will be aggregated at the central server.

Trajectory planning is a critical component of autonomous vehicles, enabling the
generation of a collision-free, smooth and kinematically feasible curve for the vehicle’s
motion. Compared to the trajectory planning of on-road autonomous driving, the trajectory
planning of automated parking has more challenges. To be specific: (1) Polynomial-based
path planning approaches are not suitable for automated parking because parked path
curves can have non-guidable points, whereas polynomial-based methods can only gen-
erate smooth, reachable path curves. (2) Obstacle avoidance constraints in automated
parking are more complex than those encountered in on-road autonomous driving due to
the intricate parking environment. (3) Automated parking requires full use of the vehicle’s
steering capability compared to the relatively smooth curve of on-road autonomous driv-
ing [4]. Currently, research mainly has three types of trajectory planning for automated
parking: the sample-and-search-based method, the optimization-based method and the
neural-network-based method.

Sample-and-search-based path planning discretizes the continuous state space into a
graph with nodes and searches the graph structure for the optimal path linking the start
and goal points. The typical methods of node-based search with sampling methods are RRT
and RRT*, which can relatively quickly generate a curve to the goal point. However, these
methods have no guarantee of kinetic feasibility, resulting in no reliable trajectories [5]. D.
Dolgov et al. proposed the Hybrid A* algorithm, which discretizes and samples the control
space to obtain a smooth and kinetic feasible trajectory curve [6]. He et al. proposed a fast
A* anchor point-based path planning algorithm based on Hybrid A* for solving reverse
parking path planning in narrow spaces [7]. The sample-and-search-based method can be
applied to a wide range of scenarios. However, balancing computational accuracy and time
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is a challenge because low sampling resolution can lead to inaccurate path planning, while
high sampling resolution can consume too many computational resources.

The optimization-based trajectory planning algorithms such as Model Predictive Con-
trol (MPC) have been applied to unmanned aircraft and autonomous vehicles. In general,
the trajectory planning obstacle avoidance problem is NP-hard and the optimization-based
methods consider the obstacle avoidance problem as an Optimal Control Problem (OCP),
which is solved using the technique of Nonlinear Programming (NP) [8]. This category
has two branches, that is, soft constraint-based and hard constraint-based optimizations.
On soft constraint-based methods, K Shibata et al. designed an Artificial Potential Field
(APF) in the cost function as the soft constraint by considering the obstacle as a mass but
cannot guarantee collision avoidance [4]. On hard constraint-based methods, Zhang et al.
proposed an Optimization-Based Collision Avoidance (OBCA) algorithm by reformulating
a smooth obstacle avoidance constraint containing the vehicle geometry [8]. Li et al. pro-
posed a unified OCP model aimed at unstructured parking spaces using a triangle-area
criterion to construct the collision-avoidance constraints [9]. However, when parking space
is narrow, the feasible domain will be greatly limited due to collision avoidance constraints,
resulting in non-linear programming solvers that cannot compute a feasible solution in a
finite time.

The neural-network-based method is proposed to generate parking trajectories in
narrow scenarios while keeping the time-optimality of the trajectory and low computa-
tional overhead. Few studies use neural-network-based methods in automated parking
trajectory planning [10–14]. Zhang et al. [15] used Deep Deterministic Policy Gradient
(DDPG), a deep reinforcement learning method, to solve the perpendicular parking prob-
lem. However, this work focuses only on perpendicular parking and does not consider
speed planning. Song et al. [16] proposed a method to solve the parallel parking problem
by fusing Nonlinear Programming (NP) and Monte Carlo Tree Search (MCTS), using NP
to generate data and train the policy neural network offline, followed by using the policy
network to guide MCTS to complete the trajectory planning. The above neural-network-
based method can trade off computational accuracy and computational time. However,
these methods need to be more generalized and applied to other scenarios because it is
only trained in a single scene.

In the field of Intelligent Transportation Systems (ITSs), Federated Learning (FL) has
emerged as a promising approach for collaborative model training without the need for
lengthy data transfers or sacrificing user privacy. By leveraging the distributed computing
power of participating devices, federated learning enables the collaborative training of
a globally shared vehicle AI model, which can be utilized by all participating devices
for improved performance and efficiency. In recent years, federated learning has gained
significant attention from the research community due to its potential to enhance the
effectiveness and privacy of ITS [17,18]. For privacy protection in connected vehicles,
federated learning has been applied to several intelligent transportation systems to achieve
traffic flow prediction, parking reservation and traffic edge computing without privacy
leakage [19–22]. Moreover, the application of Federated Reinforcement Learning (FRL)
has extended beyond ITSs to encompass a variety of industrial Internet of Things (IoT)
applications, including robot task scheduling [23] and robot navigation tasks [24]. FRL has
demonstrated improved generalization and faster convergence of neural network models,
enabling the efficient and effective training of complex reinforcement learning models
across distributed devices.

In this paper, we propose a hierarchical trajectory planning method with deep rein-
forcement learning in the federated learning scheme, which is named HALOES, to rapidly
and accurately generate collision-free automated parking trajectories in multiple narrow
spaces. The FL method considers the computation time and the vehicle kinematic con-
straints for automated parking trajectory planning in extremely narrow spaces. The contri-
butions of this paper are as follows:



Sensors 2023, 23, 4087 4 of 19

• A novel hierarchical trajectory planning method with deep reinforcement learning
and optimization-based approach integration is proposed to achieve computational
accuracy and computational time trade-off. The method has a high-level neural
network model for rapid reference trajectory generation and a low-level optimization
model to refine the trajectory.

• A decentralized training scheme is introduced in the model training module to im-
prove the generalization of model performance by fusing the model parameters trained
in different parking scenarios and the federated learning scheme is used in decentral-
ized deep reinforcement learning to protect the privacy of the vehicle’s data during
model parameter fusion.

• Simulation results demonstrate that the proposed HALOES method can enable effi-
cient automated parking in narrow spaces and outperforms other state-of-art methods,
such as Hybrid A* and OBCA, in terms of planning time, trajectory accuracy and model
generalization.

The rest of the paper is as follows. Section 2 presents the kinematics of vehicles, the for-
mulation of model predictive trajectory planning and the background of deep reinforcement
learning. The details of HALOES are shown in Section 3. In Section 4, the federated learning
scheme is presented. Simulations on several narrow-space parking and detailed analyses of
the simulation results are presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Materials and Methods

This section will introduce the backgrounds of deep reinforcement learning and
federated learning.

2.1. Deep Reinforcement Learning

Instead of sampling-based and optimization-based approaches, Deep Reinforcement
Learning (DRL) seeks to find the optimal policy function π∗ with neural network parameter
θ [25]. The DRL approach starkly contrasts the model predictive trajectory planning method,
as it can achieve model-free operation. In DRL, the agent operates without relying on a
predefined environment model. Instead, the agent of DRL interacts directly with the
environment by making decisions based on the observation of the current state and the
policy function. The basic DRL problem is modeled as a Markov Decision Process (MDP),
which can be defined by a tuple of elements < S ,A,P , r, H, γ >, in which S is the set
of states, A is the set of actions, P : S ×A → S maps an action and the current state to
the next state, r : S × A → R is the reward function that maps an action and a state to
a scalar, H is the horizon and γ ∈ (0, 1] is a discount factor of reward. At the timestep
t, the agent of DRL uses the policy function to determine which action at ∈ A to take.
The policy function maps the current state to a probability distribution over the action
space. Then the environment updates to the next state based on the transition function
st+1 = P(st, at) ∈ S and returns a scalar reward rt = r(st, at) to the agent for its action.
The discounted reward from the state st is Rt(st, at) = ∑H

i=0 γir(st+i, at+i). The ultimate
goal of DRL is to find the optimal policy function that maximizes the expected discounted
return argmax

θ

E[R1(st, at)|St ∼ ρπθ , at ∼ πθ ], in which ρπθ is the state visitation distribution

under the policy function πθ .

2.2. Federated Learning

FL is a promising and innovative approach to distributed collaborative Artificial
Intelligence (AI) that differs significantly from traditional methods [26]. Unlike centralized
approaches, which often require vast amounts of sensitive data to be centralized and
shared among multiple participants, FL allows for collaborative training across multiple
participants through a centralized server while preserving the privacy and security of the
individual actual data. In doing so, FL provides a promising solution for distributed Deep
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Reinforcement Learning (DRL) that can protect the security and privacy of the distributed
DRL participants.

The general FL is divided into two distinct stages, each of which plays a critical role
in the training process. The first stage is the distributed local training and update; be-
fore starting the training, the server initializes a new neural network model, such as W0

g ,
and transmits it to the other participants to start the distributed training; each participant
wm trains a local neural network model using its own dataset and update wm by mini-
mizing the loss function argminF(wm), m ∈ M, in which M is the set of distributed DRL
participants and F(wm) is different in different FL algorithms.

The second stage is model aggregation and downloading. The server aggregates all
models into a new version of the global model after updated model collection from all the
FL participants; the aggregate process could be defined as Wg = (1/|M|)∑ wm, after all the
updated models collected from the participants; note that the model aggregation method
differs for different FL algorithms. The participants download the new global model for
optimizing the local model in the next learning round.

3. Hierarchical Trajectory Planning with Deep Reinforcement Learning

This section will introduce the kinematic vehicle models used by HALOES and the
overall scheme of HALOES.

3.1. Kinematic Vehicle Model

This paper employs the Kinematic Single-track (KS) model as the kinematic vehicle
model. As shown in Figure 2, in the x − y coordinate system, the reference point of
the vehicle is the rear-wheel axle mid-point [Sx, Sy]T , and the orientation in the global
coordinate system is Ψ. v represents the current velocity, δ represents the steering angle,
lWB is the wheelbase of vehicle, lR is the vehicle rear hang length, lF is the vehicle front
hang length and lW is the vehicle width. According to the KS model, the state transfer
equation of the vehicle is as follows,

Sx(t + ∆t)
Sy(t + ∆t)
v(t + ∆t)
Ψ(t + ∆t)
δ(t + ∆t)

 =


Sx(t)
Sy(t)
v(t)
Ψ(t)
δ(t)

+


v(t) cos Ψ(t)
v(t) sin Ψ(t)

a(t)
v(t)
lWB

tan δ(t)
vδ(t)

∆t, (1)

in which t and ∆t represent the current time and the control interval, respectively. a(t) and
vδ(t) are the control profiles, representing the acceleration and angular velocity of steering
angles at the current time, respectively.

Figure 2. Kinematic Vehicle Model.
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Traditional optimization-based approaches typically use model predictive trajectory
planning. Model predictive trajectory planning can be considered as an OCP, which can be
solved via an NP solver. Let x ∈ Rnx be the vehicle state profile and u ∈ Rnu the control
profile; the details of x and u at time t are as follows:

x(t) = [Sx(t), Sy(t), v(t), Ψ(t), δ(t)]. (2)

u(t) = [a(t), vδ(t)]. (3)

Let k ∈ {1, . . . , N} represent the discrete time index with time interval ∆t; the state
transfer Equation (1) can be written as x(k + 1) = x(k) + f (x(k), u(k)) · ∆t, in which
f (x(k), u(k)) denotes the differential equation of vehicle state x specified which could be
written as follows,

f (x(k), u(k)) =
d
dt


Sx(k)
Sy(k)
v(k)
Ψ(k)
δ(k)

 =


v(k) cos Ψ(k)
v(k) sin Ψ(k)

a(k)
v(k)
lWB

tan δ(k)
vδ(k)

 (4)

The finite-horizon OCP with collision avoidance constraint can be written as:

min
x,u

N

∑
k=1

J(x(k), u(k)), (5a)

s.t. kinematic principles (Equation (1)) (5b)

collision-free conditions (5c)

for all k ∈ {1, . . . , N}. (5d)

in which N represents the prediction horizon, and J is the cost function to penalize devia-
tions from the target point. Equation (5d) is the obstacle avoidance constraint to achieve
the obstacle avoidance trajectory.

3.2. DRL-Based Trajectory Planning for Automated Parking

Automated parking trajectory planning can be modeled as a Markov process. This
section describes the formulation of the DRL for automated parking trajectory planning
and the training process of the DRL model.

3.2.1. Setup of the DRL-Based Trajectory Planning

In this section, we define the setup of the DRL framework, such as the set of state S ,
the set of action A and the reward function r.

Automated parking trajectory planning in a narrow space requires constant con-
sideration of vehicle coordinates, target point coordinates, obstacle location information
and vehicle kinematic states such as speed and steering wheel angle. In this paper, we
define the observed state at the moment of time step t as:

St = {Pt
e , Ṗt

g, vt
e, δt

e,Vt
obs}, (6)

in which Pt
e = {Sx,e(t), Sy,e(t), Ψe(t)} presents the heading coordinates of the ego vehicle at

the time step t, Ṗt
g = Pt

g − Pt
e = {Sx,g(t)− Sx,e(t), Sy,g(t)− Sy,e(t), Ψg(t)−Ψe(t)} denotes

the position of the target point relative to the ego vehicle, Sx,g(t), Sy,g(t) and Ψg(t) represent
the coordinates of the two-dimensional vehicle target point (x, y) and the heading angle,
respectively. vt

e and δt
e denote the speed and steering wheel angle of the ego vehicle at time

step t, respectively. Vt
obs = Vt

obs1, Vt
obs2, . . . , Vt

obsN is the set of relative positions of the ob-
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stacles and the ego vehicle, in which Vt
obsN = {v1

obs,x − Sx,e(t), v1
obs,y − Sy,e(t), . . . , v|VobsN |

obs,x −

Sx,e(t), v|VobsN |
obs,y − Sy,e(t)} and |VobsN | is the number of vertices of the Nth obstacle.

Since the vehicle kinetic characteristics, such as maximum steering wheel angle and
maximum turning radius, need to be fully utilized in parking, the action output of the
neural network needs to conform to the vehicle kinetic constraints. In this paper, in order
to conform to the vehicle kinetic characteristics, instead of using the relative change of
distance as the vehicle action set, e.g., A = {∆x, ∆y, ∆Ψ}, the acceleration, as well as the
steering wheel cornering rate, are used as the action and the action space is defined as:

A = {ȧ, v̇δ}, ȧ ∈ [−1, 1], v̇δ ∈ [−1, 1]. (7)

Normalization of the action space improves the learning efficiency of the neural network.
The control inputs to the vehicle are Ainput = {ȧ ∗ amax, v̇δ ∗ vδ,max} where amax and vδ,max
are the maximum values of acceleration and steering wheel rate, respectively.

The reward function in deep reinforcement learning mixes multiple reward values to
guide the convergence direction of the model. In automatic parking trajectory planning,
three aspects of reward need to be considered; one aspect is the duration of parking, one is
the distance to the target point and the last one is the collision with the obstacle. In addition,
we use negative rewards to penalize the agent in order to make it able to converge faster.
The whole reward function is:

r = −ct ∗ Rt − cd ∗ Rd − cΨ ∗ RΨ − co ∗ Ro, (8)

where c∗ is the penalty factor for each item. Rt is the time-term penalty as a fixed value. Rd
is the penalty term for distance to the target point, which represents the change in distance
of the vehicle from the target point:

Rd = dt − dt−1, dt ← (Sx(t)− Sx,g(t))2 + (Sy(t)− Sy,g(t))2. (9)

RΨ is the penalty term for the orientation angle to the target point, which represents the
change in orientation of the vehicle from the target point:

RΦ = ∆Ψt − ∆Ψt−1, ∆Ψt ← |Ψg −Ψt|. (10)

Ro represents the obstacle collision penalty, which applies a fixed penalty when the
vehicle collides with an obstacle. There are two prominent cases where a vehicle collides
with an obstacle; one is that at least one vehicle with one vertex of the polygon is located
inside the obstacle and the other is that at least one obstacle with a vertex of the polygon
is located inside the vehicle. At time t, if neither of the two cases exists, the automatic
parking trajectory can be considered collision-free with the obstacle. Note that each obstacle
polygon should be convex. If the polygonal obstacle is non-convex, it must first be divided
into several convex polygons. As shown in Figure 3, the set of vertices of the obstacle
is Vobs = {O1, O2, O3, O4} and the set of vertices of the vehicle is Vveh = {V1, V2, V3, V4}.
Let any point Qobs = (xobs, yobs) ∈ Vobs denote the coordinates of a vertex of the obstacle
and any point Qveh = (xveh, yveh) ∈ Vveh denote the coordinates of a vertex of the vehicle.
The collision-free condition can be obtained from the triangular area criterion:

S∆QvehO4O1 +
3

∑
i=1

S∆QvehOiOi+1 > Sobs, (11a)

S∆QobsV4V1 +
3

∑
i=1

S∆QobsViVi+1 > Sveh, (11b)

where S∆ denotes the triangle area, and Sobs and Sveh denote the area of the polygonal
obstacle and the area of the polygonal vehicle. Here, the area of a triangle and the area of
a polygonal obstacle can be calculated using the shoelace theorem; let the set of vertices
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of a convex polygon be Vconvex = {Q1, Q2, . . . , QNcon} where Qi = (xi, yi) denotes the
coordinate, then:

SQ1,Q2,...,QNcon
=

1
2
|(

N−1

∑
n=1

xnyn+1 + xNcon y1)

−(
N−1

∑
n=1

xn+1yn + x1yNcon)|.
(12)

Thus Ro is defined as follows:

Ro =

{
0 Equation (11a) is true and Equation (11b) is true
1 others

. (13)

Figure 3. Diagram to determine whether a vehicle collides with an obstacle.

3.2.2. Training Process of DRL Model

The training goal of reinforcement learning is to find the optimal policy function π∗,
parameterized by θ, which maximizes the expected discount reward of Equation (14).

argmax
θ

E
[

H

∑
i=0

r(St, at)|St ∼ ρπθ , at ∼ πθ

]
, (14)

where r is calculated via Equation (8). The Deep reinforcement learning is mainly divided
into the off-policy method and the on-policy method. The off-policy methods, such as
Deep Deterministic Policy Gradient (DDPG) and Soft Actor-Critic (SAC), improve sam-
pling efficiency by maintaining the experience pool, so the model can reuse old data for
training. The on-policy methods, such as Proximal Policy Optimization (PPO), optimize
the same policy as its own decision network, making the model update more stable by
directly optimizing the objective function. The trajectory planning process in complex
environments often involves many exploration processes, making it a computationally
challenging task. Reinforcement learning (RL) methods utilizing off-policy have shown the
potential to enhance the model’s performance and stability. By exploiting these existing
data, RL methods using off-policy can make more efficient use of available resources and
accelerate the training process. As a result, using off-policy in RL methods can improve
the overall performance and robustness of the learned policies, making them well suited
for real-world applications. DDPG is an Actor-Critic, model-free algorithm based on the
deterministic policy gradient used for learning policies in environments with continuous
action spaces. DDPG uses two neural networks, an actor and a critic network, to update the
policy and value function, respectively. The actor network is updated using the sampled
policy gradient:

∇θµ J =
1
N

N

∑
i
∇aQ

(
s, a | θQ

)
|s=si ,a=µ(si)

∇θµ µ(s | θµ)|si , (15)
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where N is the mini-batch size, Q
(
s, a | θQ), and µ(s | θµ) is the critic network and actor

network with parameters θQ and θµ. The critic network is updated by minimizing the loss:

L =
1
N

N

∑
i

(
r(st, at) + γQ′

(
st+1, µ′

(
st+1|θµ′

)
| θQ′

)
−Q

(
st, at | θQ

))2
, (16)

where r(st, at) is the reward function, Q′
(

s, a | θQ′
)

, and µ′
(

s | θµ′
)

is the target critic

network and target actor network with parameters θQ′ and θµ′ . The overall minimization
objective of DDPG is as follows:

In Algorithm 1, we use the prioritized experience to replay a statistical technique
that enables the efficient utilization of experience to accelerate the convergence speed of
the model. Furthermore, the algorithm leverages the addition of Gaussian noise to the
decision-making process, enhancing the model’s exploratory power.

Algorithm 1 DDPG-based trajectory planning.

Input: batch size: B, discount factor γ, target smoothing coefficient τ, number of training
episode: M, timesteps of each episode: T, exponents α and β of prioritization sampling,
noise variance σ.
Initialize actor network µ(s | θµ) and critic network Q

(
s, a | θQ) with parameters θµ

and θQ.
Initialize target actor network µ′

(
s | θµ′

)
and target critic network Q′

(
s, a | θQ′

)
with

parameters θµ′ and θQ′ .
Initialize prioritized replay memory B = ∅, ∆ = 0, p1 = 1.
for episode = 1 : M do

Reset the environment and receive the initial observation state s1.
for t = 1 : T do

Select action at = µ(st|θµ) +N (0, σI) according to the actor network and explo-
ration noise

Execute action at and obtain the reward Rt = r(st, at) and the next observation
state st+1

Store transition (st, at, Rt, st+1) in B with maximal priority pt = maxi<t pα
i

Sample transition j ∼ P(j) = pj/ ∑i pi

Compute importance-sampling weight ωj = (BṖ(j))−β/maxiωi

Compute TD-error δj = Rj + γjQ′(sj, µ′(sj|θµ′)|θQ′) −Q(sj−1, aj−1 | θQ)
Update critic by minimizing the loss (16)
Update actor using the sample policy gradient (15)
Update transition priority pj = |δj|
Accumulate weight-change ∆ = ∆ + ωj δ̇j∇θQ(sj−1, aj−1|θQ)
Update the target network:
θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′

end for
end for

3.3. Optimization-Based Trajectory Planning

A trajectory from the starting point to the target point will be obtained quickly after
trajectory planning via the DRL-based trajectory. Still, some trajectories penetrate obstacles
due to the DRL-based trajectory, so it needs to be corrected via the optimization-based
method. Because the reference point of the hot start is obtained via DRL-Based trajec-
tory planning, optimization-based trajectory planning based on obstacle constraint can
be solved quickly. Suppose T = {x(0), x(1), x(2), . . . , x(N)} is the trajectory point ob-
tained via soft constraint path planning. It is sampled before passing hard-constrained
trajectory planning, which can be upsampling or downsampling, depending on the tar-
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get accuracy of trajectory planning. Finally, the sampled trajectory point is obtained
as Tre f

sampled = {xre f (0), xre f (1), xre f (2), . . . , xre f (M)} where M is the number of trajectory
points after sampling.

In optimization-based trajectory planning, this paper uses sampled trajectory points to
constrain the reference curve of OBCA, which uses the exact vehicle geometry to develop
collision avoidance constraints for tight maneuvers in a narrow space and the nonlinear
optimization is formulated as follows:

min
x′,u′

L(X′,Tre f
sample,U

′), (17a)

s.t. x′(0) = xstart, u′(0) = ustart, (17b)

x′(M) = xtarget, (17c)

x′(k + 1) = x′(k) + f (x′(k), u′(k)) · ∆t, (17d)

xmin ≤ x′(k) ≤ xmax, (17e)

umin ≤ u′(k) ≤ umax, (17f)

− g>µ
(l)
k +

(
A(l)t

(
x′(k)

)
− b(l)

)>
λ
(l)
k > 0, (17g)

G>µ
(l)
k + r

(
x′(k)

)>A(l)>λ
(l)
k = 0, (17h)∥∥∥A(l)>λ

(l)
k

∥∥∥ ≤ 1, λ
(l)
k > 0, µ

(l)
k > 0, (17i)

for all k ∈ {1, . . . , M}for all l ∈ {1, . . . , L}, (17j)

where X′ = {x′(0), x′(1), . . . , x′(M)} and U′ = {u′(0), u′(1), . . . , u′(M)} are the trajec-
tory and control sequence generated via hard constraint trajectory planning, respectively.
L(X′,Tre f

sample,U
′) = Q ∑M

k=0 ‖x′(k)− xre f (k)‖2 + R ∑M−1
k=0 ‖u

′(k)‖2 is the penalty term for
the deviation distance from the reference trajectory and the size of the control magnitude.
Equations (17g)–(17i) are the smooth and exact reformulations using Theorem 2 in [8].

3.4. Overall Scheme of Hierarchical Trajectory Planning with Deep Reinforcement Learning

The framework of Hierarchical Trajectory Planning with Deep Reinforcement Learning
(HTP-DRL) is shown in Figure 4, which is mainly divided into two parts DRL-based
trajectory planning and optimization-based trajectory planning. After obtaining the parking
space information and the vehicle’s parameters, a reinforcement learning model is used to
make decisions based on the observed state and a coarse trajectory from the start to the
goal point is output. A vehicle dynamics model is used to update the state. Compared
to traditional optimization-based online trajectory planning methods or sampling-based
trajectory planning methods that require constant collision detection and the computational
time overhead caused by non-linear solving, a rough trajectory from start to finish can be
obtained quickly with the reinforcement learning model.

After obtaining the rough trajectory via DRL-based trajectory planning, it is necessary
to use optimization-based trajectory planning to constrain it at some points to achieve
collision-free automatic parking trajectory planning. Here, we refer to the method of OBCA,
which can achieve more accurate collision avoidance by using exact vehicle geometry
and since DRL-based trajectory planning has obtained the reference trajectory points,
the computational speed of the method of OBCA can converge faster so that the results of
automatic parking trajectory planning can be solved in a limited time.
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Figure 4. Overall structure of hierarchical trajectory planning with deep reinforcement learning.

4. Federated Learning-Based Model Training

The integration of communication technology and intelligent terminals has formed an
intelligent transportation system aimed at improving the safety and efficiency of transporta-
tion. In order to realize an intelligent transportation system, the widespread application
of artificial intelligence technology benefits from its ability to access the large amount of
real-time activity data generated by traffic participants. Therefore, most AI-based intel-
ligent transportation system solutions rely on centralized learning frameworks on data
centers. Model training methods based on federated learning can have high privacy and
low communication latency. Thus, federated learning plays an important role in handling
privacy-protected distributed trajectory planning training based on reinforcement learning.

The proposed method for training a reinforcement learning model based on federated
learning is designed to achieve a privacy-preserving centralized reinforcement learning
framework, as shown in Figure 1b. Algorithm 2 presents the centralized reinforcement
learning method under the federated learning framework in pseudo code form. At the
start of the training process, N federated learning participant vehicles download global
model parameters, including actor and critic network parameters, from the central server
node via base stations. Subsequently, each participant trained their own model based on
the data collected from their respective environments. Afterward, each intelligent agent
uploads their own model parameters to the central server. The central server node then
performs the model aggregate update for all models and distributes the updated models to
all participants.
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Algorithm 2 The federated learning-based reinforcement learning model training.

Input: number of federated learning participants N, parameter aggregate intervals L,
number of training episodes M.
Initial global actor network and global critic network parameters W(0).
Initial participant actor network and participant critic network parameters Wn(0), (n =
1, 2, . . . , N).
for episodei = 1 : M do

Each DRL participant downloads W(i− 1) from the central server node.
for interval = 1 : L do

Each DRL participant updates locally with Wn(i) on the owner current observa-
tion

end for
Each DRL participant uploads the trained model parameters Wn(i) to the central

server
Central server receives all weights Wn(i) and performs the federated averaging for

W(i)
Broadcast the averaged model parameters W(i)

end for

5. Experiment and Result
5.1. Environment Setup

In our experiments, we use some cases from the dataset https://tpcap.github.io/
benchmarks/ (accessed on 14 April 2023) [27] for algorithm validation, as shown in Figure 5,
where cases 1–3 are normal cases representing parallel, vertical and oblique parking cases,
respectively, where no regular parking position is set and irregularly prevented obstacles
are set to constrain. Cases 4 and 5 represent cases with extremely narrow parking spaces.
In case 4, if using the sampling-based trajectory planning method, the accuracy required for
sampling is particularly largely affected by the curse of dimensionality, which makes the
sampling-based path planning method unable to search for a trajectory from the starting
point to the target point in a limited time. If the optimization-based method is used directly,
a high collocation point density needs to be set, which renders a large-scale mathematical
programming problem. The kinematic parameters of the vehicle are listed in Table 1.

Figure 5. Experimental cases. The green box is the initial position of the vehicle and the red box is
the target position of the vehicle.

https://tpcap.github.io/benchmarks/
https://tpcap.github.io/benchmarks/


Sensors 2023, 23, 4087 13 of 19

Table 1. Parameters of Vehicle.

Parameter Parameter Description Value

lwb The wheelbase of vehicle 2.8 m
lR The rear hang length of vehicle 0.929 m
l f The front hang length of vehicle 0.96 m
lw The width of vehicle 1.942

amax The upper bound of acceleration 1 m/s2

amin The downer bound of acceleration −1 m/s2

vmax The upper bound of velocity 2.5 m/s
vmin The downer bound of velocity −2.5 m/s
φmax The maximum steering angle 0.75 rad

vφmax
The maximum angular velocity

of steering angle 0.5 rad/s

∆t The control time interval of RL-based method 0.1 s

This paper mainly uses three deep reinforcement learning methods for validation,
namely DDPG, SAC and PPO, and implements HALOES based on DDPG. The model
parameters of the neural network are mainly shown in Table 2. In addition, ReLU and
Adam are used as the activation function and the optimizer of the neural network. The
experiments are trained and tested on a platform with RTX A4000 and Intel(R) Xeon(R)
Gold 5320 CPU at 2.20 GHz, respectively. All experiments are conducted in Python on a
Linux system.

Table 2. Parameters of DDPG

Parameter Parameter Description Value

M The total episodes of training 2500
T The total timesteps of each episode 800
B The batch size of training 256
γ The reward discounted factor 0.99
σ The noise variance 0.01
τ The target smoothing coefficient 0.05

lactor The learning rate of actor-network 1× 10−4

vlcritic The learning rate of critic-network 1× 10−3

α The parameter of prioritization sampling 0.6
β The parameter of prioritization sampling 0.9

5.2. Result and Discussion

The first part is used to verify the convergence performance of the reinforcement
learning part of HALOES. The performances of DDPG, SAC and PPO in trajectory planning
are compared. The test environment used is case 4, where 2500 episodes are trained in
case 4 to compare the convergence of the final reward values, where the reward value
is calculated by summing the reward values of all steps in each episode. As shown
in Figure 6, better performance is achieved using DDPG than SAC and PPO because
the use of the Actor-Critic network can effectively learn the optimal decision from the
historical trajectory. To verify the effect of using relative position relations on reinforcement
learning, we modified the relative positions in the observed states to absolute positions
named DDPG-withoutRel and SAC-withoutRel. To be more specific, the input state of
DDPG-withoutRel and SAC-withoutRel is changed as St = {Pt

e , Pt
g, vt

e, δt
e,Vt

obs}, where Pt
g

represents the absolute position of the goal point. Compared with DDPG-withoutRel and
SAC-withoutRel, the use of the relative position relation, as implemented in the DDPG, has
been shown to yield superior results compared to other approaches. By utilizing relative
position information, the DDPG effectively reduces the dimensionality of the state space,
independent of the agent’s absolute position. This reduction in state space dimensionality
has been shown to enhance the generalization capabilities of the model, leading to improved
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performance across a range of scenarios. Compared to the offline training method of Actor-
Critic networks such as DDPG and SAC, the performance of PPO using online training is
poor and there is no significant improvement in training because the training method using
online reinforcement learning does not record the historical optimal information, resulting
in the model being explored locally, which makes the model unable to find the optimal
gradient. This is due to the fact that online training does not allow the model to find the
optimal gradient because the model keeps exploring locally. Because DDPG outperformed
both SAC and PPO in terms of trajectory planning, subsequent experiments were carried
out on the basis of DDPG.

Figure 6. HALOES part I reinforcement learning training convergence, comparing DDPG, SAC
and PPO under case 4.

Figure 7. HALOES part I training convergence using federated reinforcement learning. Comparison
of DDPG and Federated Learning-based DDPG under cases 1–5.

The second part validates the convergence of federated reinforcement learning in
HALOES compared to original reinforcement learning. The results presented in Figure 7
highlight the comparative performance of Federated Learning-based Deep Deterministic
Policy Gradient (FedDDPG) with respect to the original DDPG algorithm in multiple
training scenarios. Specifically, the DDPG algorithm was utilized for training a common
model on randomly selected cases 1–5, while FedDDPG involved the collaborative training
of a model across four participants in multiple environments, followed by the fusion
of the trained models. The horizontal axis of the figure indicates the number of testing
rounds, with the model being evaluated after every 20 rounds of training. The vertical axis
represents the total reward achieved during each evaluation. The results demonstrate that
FedDDPG achieves comparable or better performance than the original DDPG algorithm
across all scenarios, with the former exhibiting a more stable and consistent learning curve
over time. Due to the high level of privacy protection currently being pursued in intelligent
transport systems, federated learning allows only model parameters to be shared without
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causing privacy issues for individual vehicles. It can be seen that the use of federated
learning can achieve the same performance as the original DDPG while achieving data
privacy protection. In (d,e) in Figure 7, we can see that the fluctuation of the DDPG
trajectory planning based on federated learning is more stable after convergence compared
with the original DDPG. The experimental results presented in Figure 7b–d demonstrate the
susceptibility of federated learning models to perturbations in the early stages of training,
particularly in the context of model fusion. Specifically, the observed instability in model
performance during testing can be attributed to the sensitivity of the federated learning
process to early fluctuations in model weights and updates, which can significantly impact
the final model. However, as the number of training sessions increases, the federated
learning model gradually becomes more stable, as evidenced by the improved performance
observed over time. The above situation is more obvious in Figure 7d, where the model is
updated by multiple participants making it too far from the original model, resulting in
large performance fluctuations during the training phase, but after the model converges,
stable performance can be maintained with less fluctuations compared to DDPG. This can
be attributed to the ability of the federated learning process to aggregate increasingly larger
and more diverse datasets over time, resulting in a more robust and accurate model that is
better able to generalize to new scenarios. Figure 7a shows that FedDDPG has a more stable
performance than the original DDPG, which has performance fluctuations after training.

Figure 8. DRL method, HALOES, Opt+OBCA and Hybrid A* trajectory of the planning in cases 1–5.

The third part is used to verify whether the proposed HALOES can accomplish the
trajectory planning task under narrow space. This paper mainly verifies five scenarios,
cases 1–5. The scenarios of cases 1 and 4 are parallel parking spaces and case 4 is narrower
compared to case 1. Cases 2 and 5 are vertical parking spaces and case 5 is narrower
compared to case 2. Case 3 is an oblique parking scene. The first row of Figure 8 shows the
output reference trajectory of the DRL method of the first layer in HALOES. The second
row of Figure 8 shows the final planned trajectory of HALOES in cases 1–5. Figure 9 shows
the vehicle kinetic parameters of HALOES and Opt+OBCA at any moment under cases
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2–5; we mainly consider the following parameters: speed, acceleration, steering wheel
angle and steering wheel angle rate. Based on the comparison of the results of the DRL
method and HALOES, it can be seen that using the method of DRL can provide a reference
trajectory to the target point for automated parking trajectory planning. Since there is
no obstacle collision as a constraint in DRL, the trajectory will overlap with the obstacle,
but it can be quickly corrected by the optimization-based method in the second layer of
HALOES to generate a collision-free trajectory to the target point. In addition, based on
the comparison of the kinetic curves of HALOES and Opt+OBCA, it can be seen that the
trajectory planning with reference by reinforcement learning and the trajectory planning
with an optimization-based reference can be kept within a reasonable kinetic constraint.
Cases 2, 3 and 5 can all reach the target position through continuous control and the kinetic
curve at the planning is smooth. The trajectory in case 4 needs to include multiple vehicle
braking because it is necessary to make multiple round-trip operations when parking in a
narrow space. According to case 4 in Figure 8 and the kinetic curves in Figure 9, we can see
that the vehicle makes multiple round-trip operations. This is due to the fact that lateral
parking in a narrow space requires continuous gear switching, which requires making full
use of the vehicle’s steering angle to maintain a wide range. However, finally, the vehicle
can eventually stop at the target position in compliance with the kinetic constraints.

Figure 9. HALOES kinetic curve of the planned trajectory in cases 2–5.

To verify the advantages of HALOES in terms of planning time, we compared the
average planning times of Hybrid A* as well as Opt+OBCA in cases 1–5. Where Hybrid
A* planning results contain only trajectory points and without vehicle control parameters,
additional speed planning is necessary to complete the task. As OBCA requires a warm
start term to calculate the reference trajectory points, in this paper, we do not use the Hybrid
A* approach to calculate the reference trajectory. Instead, we use an optimization-based
approach to calculate the reference trajectory, where an artificial potential field is used to
define the optimized loss function and the calculated reference trajectory is then processed
via OBCA to obtain the trajectory points needed for vehicle execution. The trajectories
planned via Hybrid A* and Opt+OBCA in cases 1–5 are shown in the second and third row
of Figure 8, respectively, and the trajectory of case 4 could not be solved in a limited time
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due to the tendency of Hybrid A* to have dimensional collapse. As can be seen from Table 3,
HALOES achieves significant speedups in cases 1–4. In case 5, the parking space is too
narrow, resulting in the computation time of both HALOES and Opt+OBCA exceeding that
of Hybrid A*, but HALOES uses a reinforcement learning model as a guide, thus making
the computation faster than the Opt+OBCA approach. Since Hybrid A* only completes the
trajectory point planning and then needs to perform velocity quadratic planning afterward,
Hybrid A* still needs to complete the velocity quadratic planning in case 5, regardless
of the short computation time. Therefore it can be considered that HALOES has a clear
advantage in terms of planning time.

Table 3. Comparison of Hybrid A*, Opt+OBCA and HALOES in terms of planning time.

Case 1 Case 2 Case 3 Case 4 Case 5

HybridA* 325.811 s 49.994 s 87.733 s NULL 26.067 s

Opt+OBCA 42.805 s 42.805 s 40.932 s 75.723 s 35.546 s

HALOES(ours) 27.955 s 14.546 s 17.159 s 36.359 s 31.228 s

Improved over OBCA 34.69% 66.02% 58.08% 51.98% 12.15%

6. Conclusions

In this paper, to improve automated parking in narrow spaces, HALOES, a novel
hierarchical trajectory planning method with deep reinforcement learning and optimization-
based approach integration, is proposed to achieve computational accuracy and computa-
tional time trade-off. HALOES uses DDPG as a baseline and uses federated learning to train
reinforcement learning models for privacy-preserving training of intelligent agent systems
in intelligent transportation systems. HALOES proposes a novel hierarchical approach
to trajectory planning, where the output of the reinforcement learning model is used for
secondary optimization of the trajectory to achieve a trade-off between computational
time and accuracy in trajectory planning. Extensive experiments have demonstrated that
HALOES generalizes well to a wide range of scenarios and achieves the same accuracy as
the reinforcement learning algorithm, and by verifying the planning time in a wide range
of cases, it can be seen that HALOES is significantly better than Hybrid A* and OBCA.

The scenarios verified in this paper are all static obstacles, so the proposed method is
limited when moving obstacles are present. Automatic parking trajectory planning under
the influence of moving obstacles is a more realistic and complex problem. Therefore,
in future research work, we will focus on the optimization method of automatic parking
trajectory planning in the case of moving obstacles such as other vehicles and pedestrians,
existing in narrow parking environments.

Author Contributions: Conceptualization, Z.Y. and L.Z.; methodology, Z.Y., L.L. and X.L.; software,
Z.Y.; validation, Z.Y. and Z.W.; investigation, Z.Y. and X.L.; resources, L.Z.; data curation, Z.Y.
and Z.W.; writing—original draft preparation, Z.Y.; writing—review and editing, Z.Y., Z.W. and L.Z.;
visualization, Z.Y.; supervision, L.Z. and L.L.; project administration, Z.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
No. 62176024), the National Key R&D Program of China (2022ZD01161, 2022YFB2503202), Beijing
Municipal Science & Technology Commission (Grant No. Z181100001018035) and Engineering
Research Center of Information Networks, Ministry of Education.

Data Availability Statement: The code is open-sourced at https://github.com/its-ant-bupt/HALOES
(accessed on 13 March 2023).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/its-ant-bupt/HALOES


Sensors 2023, 23, 4087 18 of 19

Abbreviations
The following abbreviations are used in this manuscript:

HALOES Hierarchical Trajectory Planning Method with Deep Reinforcement Learning in the
Federated Learning Scheme

AVs Autonomous vehicles
ADAS Advanced Driving Assistance System
OBCA Optimization-Based Collision Avoidance
DDPG Deep Deterministic Policy Gradient
ITS Intelligent Transportation Systems
IoT Internet of Things
FRL Federated Reinforcement Learning
FL Federated Learning
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