
Citation: Fernández-Alcalá, R.M.;

Jiménez-López, J.D.; Le Bihan, N.;

Cheong Took, C. An Optimal Linear

Fusion Estimation Algorithm of

Reduced Dimension for T-Proper

Systems with Multiple Packet

Dropouts. Sensors 2023, 23, 4047.

https://doi.org/10.3390/s23084047

Academic Editor: Antonio

Fernández-Caballero

Received: 14 March 2023

Revised: 13 April 2023

Accepted: 14 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Optimal Linear Fusion Estimation Algorithm of Reduced
Dimension for T-Proper Systems with Multiple
Packet Dropouts
Rosa M. Fernández-Alcalá 1,* , José D. Jiménez-López 1 , Nicolas Le Bihan 2 and Clive Cheong Took 3

1 Department of Statistics and Operations Research, University of Jaén, Paraje Las Lagunillas, 23071 Jaén, Spain
2 Department of Images and Signals, CNRS/GIPSA-Lab, CEDEX, 38402 Saint Martin d’Hères, France
3 Department of Electronic Engineering, Royal Holloway, London TW20 OEX, UK
* Correspondence: rmfernan@ujaen.es; Tel.: +34-953-212-449

Abstract: This paper analyses the centralized fusion linear estimation problem in multi-sensor
systems with multiple packet dropouts and correlated noises. Packet dropouts are modeled by
independent Bernoulli distributed random variables. This problem is addressed in the tessarine
domain under conditions of T1 and T2-properness, which entails a reduction in the dimension of
the problem and, consequently, computational savings. The methodology proposed enables us to
provide an optimal (in the least-mean-squares sense) linear fusion filtering algorithm for estimating
the tessarine state with a lower computational cost than the conventional one devised in the real
field. Simulation results illustrate the performance and advantages of the solution proposed in
different settings.

Keywords: centralized fusion estimation; multi-sensor systems; packet dropouts; tessarine signal
processing; Tk-properness

1. Introduction

In sensor networks, the problem of estimating the state observed by multiple sensors
has been analyzed extensively in recent decades due to the variety of applications they
have in signal processing (see, e.g., [1–9]).

In networked systems, sensor failures, network congestion, communications interfer-
ence or noise can cause random packet dropouts in data transmissions, and consequently,
it is possible that the measurements available for state estimation are not always updated.
These packet dropouts can be described by stochastic parameter systems that define the
strategy followed to compensate for packet loss [10–22].

For multi-sensor systems, the potential of fusion estimation techniques to produce
consistent and accurate estimators has been demonstrated. Thus, these techniques have
also been applied to multi-sensor systems with multiple packet dropouts, giving rise to
centralized as well as distributed fusion estimation algorithms (see, e.g., [4,10,23–27]). In
general, centralized fusion methodology yields optimal estimators, but the computational
load involved can be a handicap in practical applications.

Alternatively, 4D hypercomplex-based signal processing has been satisfactorily ap-
plied as a dimension reduction approach in multi-sensor fusion estimation problems with
uncertainties [28–35]. Effectively, the benefit of using hypercomplex algebras is twofold:
first, they may provide a compact representation of multidimensional signals and a better
insight into the structure of the problem than that provided by a traditional or real for-
malism, and second, the characterization of certain properness properties related to the
vanishing of some correlation or pseudo correlation functions means the dimension of
the processes involved may be reduced. Then, even though the optimal processing in the
4D hypercomplex field is the widely linear (WL) processing, which implies working on
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a four-dimensional vector, under properness conditions, WL processing is equivalent to
using a signal processing based on a vector of reduced dimension. Notice that there is not
an algebra that always leads to the better solution, but the choice of the best algebra in each
situation depends on the proper characteristics of the processes involved.

From among the different 4D hypercomplex structures, quaternions and, more re-
cently, tessarines have been the most popular algebras used in signal processing. They are
characterized by different multiplication rules that endorse different algebraic properties
of interest: on the one hand, quaternions are a noncommutative division algebra, and on
the other hand, tessarines are a commutative non-division algebra. Nevertheless, the fact
that they have zero divisors does not have a major effect on their practical applications.
Recently, due to the advantage of working with commutative algebras, the multi-sensor
fusion estimation problem for systems with uncertain measurements has been addressed
for tessarine signals with properness properties. Specifically, under T1 and T2 properness
conditions, Kalman filter-like centralized and distributed fusion estimation algorithms
have been proposed in [34,35] by considering different uncertainty situations (missing
measurements and/or random delays), as well as correlated noises. The main interest
of these algorithms lies in the reduction of the computational burden they entail under
properness conditions, as achieving this computational saving from a real formalism is not
possible. Nevertheless, the benefits of this methodology still have not been exploited in
multiple sensor stochastic systems with packet dropouts.

This paper deals with the linear least-mean-squares (LLMS) fusion filtering problem
for multi-sensor Tk-proper, (k = 1, 2) tessarine systems with multiple packet dropouts.
At each sensor, the multiple packet dropouts are described by independent Bernoulli
distributed tessarine random vectors that at any instant of time t indicate whether the
measurement output is received or lost, and in this second situation, the latest measurement
available is used. Moreover, our formulation of the problem includes a possible correlation
between the state and measurement noises. In this setting, using centralized fusion Kalman
filter techniques and based on a Tk-proper signal processing, an optimal linear fusion
filtering algorithm of reduced dimension is provided for estimating the state as well as
its mean squared error. Additionally, the performance of the solution proposed and its
superiority over its counterpart in the quaternion domain is experimentally analyzed for
the cases of T1-properness as well as T2-properness, by using a numerical example. In
summary, the challenges of this paper are described in brief by the following items: (1) to
address the LLMS fusion filtering problem for multisensor systems with multiple packet
dropouts and correlated noises in the tessarine domain, (2) to establish conditions on
the state-space system that guarantee the Tk-properness of the processes involved, (3) to
analyze the implications of Tk-properness in the reduction of the dimension of the problem,
(4) to derive a recursive algorithm to obtain the optimal fusion filters, and (5) to numerically
illustrate the benefits of the proposed solution over their counterparts in the quaternion
setting under Tk-properness conditions.

This paper is organized as follows: In Section 2, the main concepts and properties in
the tessarine domain are reviewed. Specifically, a tessarine random signal vector, its conju-
gations, the real and augmented vectors, the pseudo auto and cross-correlation functions,
the Tk-properness, and the ? product between tessarines are defined. Section 3 describes
the centralized fusion filtering problem for multi-sensor systems with multiple packet
dropouts and its formulation in the tessarine domain under conditions of Tk-properness.
On the basis of the state-space model of the tessarine signal and the observations, the WL
stacked state-space system is built from the augmented vectors of the processes involved,
and afterwards, under Tk-properness conditions, an equivalent form of reduced dimension
for the available observation equation is presented. Next, the Tk-proper centralized linear
fusion filtering algorithm based on Kalman filter techniques is presented in Section 4. Note
that to preserve the continuity of exposition, the derivation of the formulas of this algorithm
has been deferred to Appendix A. In Section 5, two numerical examples, one of them over
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simulated values and the other one on realistic phenomena, illustrate the theoretical results
obtained. The paper finishes with the concluding remarks in Section 6.

Notations

The following standard notation is used throughout this paper: scalars are denoted
by lightface letters, while boldface lowercase and boldface uppercase letters represent the
vectors and matrices, respectively. The symbol 0n×m (respectively, 0n) stands for the n×m
matrix (respectively, n column vector) whose elements are all zeros, In is the n× n identity
matrix, and 1n denotes the n column vector of ones.

Z, R, and T denote, respectively, the set of integer, real, and tessarine numbers. Rn

(respectively, Tn) is the set of all n-dimensional real (respectively, tessarine) vectors, and
Rn×m (respectively, Tn×m) refers to the set of all n × m-dimensional real (respectively,
tessarine) matrices. Moreover, the superscripts “*”, “T”, and “H” symbolize the tessarine
conjugate, transpose, and Hermitian transpose, respectively.

The notation E[·] represents the mathematical expectation, Cov(·) is the covariance oper-
ator, and diag(·) denotes the diagonal (or block diagonal) matrix with the input arguments
on the main diagonal. Finally, δt,s represents the Kronecker delta function, and the Hadamard
and Kronecker product operators are symbolized by “◦” and “⊗”, respectively.

2. Definitions and Preliminaries

This section is devoted to stating the core concepts and results in the tessarine domain
that will be used throughout the paper.

Unless otherwise indicated, we shall assume that all random variables have zero mean.

Definition 1. A tessarine random signal vector x(t) ∈ Tn is a four-dimensional hypercomplex
stochastic process defined as [36]

x(t) = xr(t) + ηxη(t) + η′xη′(t) + η′′xη′′(t), t ∈ Z,

with xν(t) ∈ Rn, for ν = r, η, η′, η′′, and where {η, η′, η′′} are hyper-imaginary units such that:

ηη′ = η′′, η′η′′ = η, η′′η = −η′, η2 = η′′ 2 = −1, η′ 2 = 1.

Consider x(t), y(t) ∈ Tn, tessarine random signal vectors given in Definition 1. The
following concepts and properties can be established. Let Γx(t, s) = E[x(t)xH(s)] be the
pseudo autocorrelation function of x(t) ∈ Tn and Γxy(t, s) = E[x(t)yH(s)] the pseudo cross-
correlation function of x(t), y(t) ∈ Tn, ∀t, s ∈ Z.

In the tessarine domain, the second-order statistical properties of x(t) ∈ Tn are
completely described from the augmented tessarine signal vector

x̄(t) = [x
T
(t), x∗

T
(t), xηT(t), xη′′T(t)]T, (1)

where x∗(t) is the conjugate of x(t) defined as

x∗(t) = xr(t)− ηxη(t) + η′xη′(t)− η′′xη′′(t),

and
xη(t) = xr(t) + ηxη(t)− η′xη′(t)− η′′xη′′(t),

xη′′(t) = xr(t)− ηxη(t)− η′xη′(t) + η′′xη′′(t).

Let xr(t) = [xTr (t), xTη(t), xTη′(t), xTη′′(t)]
T be the real vector formed by the components

xν(t) ∈ Rn, ν = r, η, η′, η′′, of x(t) ∈ Tn. The following relationship can be established:

x̄(t) = 2T xr(t),
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where T = 1
2A⊗ In, with

A =


1 η η′ η′′

1 −η η′ −η′′

1 η −η′ −η′′

1 −η −η′ η′′

.

Notice that T HT = I4n.
It should be highlighted that the properness profile of a tessarine random signal plays

a key role in the choice of the suitable type of linear processing that leads to a reduction in
the dimension of the problem. This properness profile is characterized by the degree of
correlation between the imaginary components and the real component. In particular, two
interesting types of properness can be defined in the tessarine domain [36,37].

Definition 2. Let x(t) ∈ Tn be a tessarine random signal vector. It is said that:

• x(t) is T1-proper if and only if Γxxν(t, s) = 0, for ν = ∗, η, η′′, and ∀t, s ∈ Z,
• x(t) is T2-proper if and only if Γxxν(t, s) = 0, for ν = η, η′′, and ∀t, s ∈ Z.

Likewise, let x(t) ∈ Tn1 and y(t) ∈ Tn2 be two tessarine random signal vectors. It is said that:

• x(t) and y(t) are cross T1-proper, if and only if Γxyν(t, s) = 0, for ν = ∗, η, η′′ , and ∀t, s ∈ Z,
• x(t) and y(t) are cross T2-proper, if and only if Γxyν(t, s) = 0, for ν = η, η′′ , and ∀t, s ∈ Z,
• x(t) and y(t) are jointly Tk-proper, for k = 1, 2, if and only if they are Tk-proper and cross

Tk-proper.

Remark 1. In the tessarine domain, the optimal linear processing, the widely linear (WL) processing,
is based on an augmented tessarine vector of dimension 4n of the form given in (1). Nevertheless,
when Tk-properness conditions are satisfied, the WL estimators coincide with the one obtained from
a Tk-proper linear processing, which uses only the information provided by the processes involved
(case k = 1) or the 2n-dimensional augmented vector formed by the signal and its conjugate (case
k = 2). Consequently, Tk-properness means there is a significant reduction in the dimension of the
processes involved [37].

Finally, a new product between two tessarine signal vectors is defined.

Definition 3. Consider x(t), y(s) ∈ Tn. The product ? is defined by the expression

x(t) ? y(s) = xr(t) ◦ yr(s) + ηxη(t) ◦ yη(s) + η′xη′(t) ◦ yη′(s) + η′′xη′′(t) ◦ yη′′(s).

Note that given two random tessarine signal vectors x(t), y(s) ∈ Tn, the augmented
vector of x(t) ? y(s) is x(t) ? y(s) = Dx(t)ȳ(s), with Dx(t) = T diag(xr(t))T H.

3. Problem Formulation

Let x(t) ∈ Tn be an n-dimensional tessarine state vector which is assumed to be
observed from R sensors perturbed by different additive noises according to the state-
space model:

x(t + 1) =F1(t)x(t) + F2(t)x∗(t) + F3(t)xη(t) + F4(t)xη′′(t) + u(t), t ≥ 0,

z(i)(t) =x(t) + v(i)(t), t ≥ 1, i = 1, . . . , R,

with

• Fj(t) ∈ Tn×n, j = 1, . . . , 4: deterministic tessarine matrices.
• u(t) ∈ Tn: tessarine white noises with pseudo variances Q(t).
• v(i)(t) ∈ Tn: tessarine white noises with pseudo variances R(i)(t).
• u(t),v(i)(t) correlated with Γuv(i)(t, s) = S(i)(t)δt,s.
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• v(i)(t), v(j)(t) independent for any two sensors i 6= j.
• x(0) uncorrelated with u(t) and v(i)(t), for t ≥ 0, i = 1, . . . , R.
• Γx(0, 0) = P0.

The packets or measured outputs z(i)(t) are assumed to be affected by random packet
dropouts characterized by Bernoulli distributed random variables that can be described by
the following model:

y(i)(t) = γ(i)(t) ? z(i)(t) + (1n − γ(i)(t)) ? y(i)(t− 1), t ≥ 2; (2)

for i = 1, . . . , R, with y(i)(1) = z(i)(1), and the ? product given in Definition 3. Moreover,
at each sensor i = 1, . . . , R, the tessarine random vector γ(i)(t) = [γ

(i)
1 (t), . . . , γ

(i)
n (t)]T ∈ Tn

is of the form γ
(i)
j (t) = γ

(i)
j,r (t) + ηγ

(i)
j,η(t) + η′γ

(i)
j,η′(t) + η′′γ

(i)
j,η′′(t), for j = 1, . . . , n, where

γ
(i)
j,ν (t) are independent Bernoulli random variables with known probabilities p(i)j,ν(t), for

j = 1, . . . , n and ν = r, η, η′, η′′, that indicate whether the corresponding component of
the packet or measured output z(i)(t) of sensor i is received at time t (γ(i)

j,ν (t) = 1) or it is
lost and the latest received previously component, corresponding to the measured output
z(i)(t− 1), is used at time t (γ(i)

j,ν (t) = 0). Additionally, γ(i)(t) and γ(i)(s) are assumed to

be independent for t 6= s, and γ(i)(t) is independent of x(t), u(t), v(l)(t), and γ(l)(t), for
i 6= l, with i, l = 1, . . . , R.

Remark 2. Observe that model (2) always considers the latest measurement output received when
the current measurement output is lost during transmission. Hence, this model can be used to
describe multiple packet dropouts.

Remark 3. Under the hypothesis established for the Bernoulli random variables γ
(i)
j,ν (t), it is not

difficult to check that

E
[
γ
(i1)
j1,ν1

(t)γ(i2)
j2,ν2

(t)
]
=

 p(i1)j1,ν1
(t), i f i1 = i2, j1 = j2, ν1 = ν2

p(i1)j1,ν1
(t)p(i2)j2,ν2

(t), otherwise,

E
[(

1− γ
(i1)
j1,η1

(t)
)(

1− γ
(i2)
j2,η2

(t)
)]

=

 1− p(i1)j1,ν1
(t), i f i1 = i2, j1 = j2, ν1 = ν2(

1− p(i1)j1,ν1
(t)
)(

1− p(i2)j2,ν2
(t)
)

, otherwise,

E
[
γ
(i1)
j1,η1

(t)
(

1− γ
(i2)
j2,η2

(t)
)]

=

{
0, i f i1 = i2, j1 = j2, ν1 = ν2

p(i1)j1,ν1
(t)
(

1− p(i2)j2,ν2
(t)
)

, otherwise,

for any j1, j2 = 1, . . . , n, ν1, ν2 = r, η, η′, η′′ and i1, i2 = 1, . . . , R.

In this setting, and based on the information supplied by the received measurements,
our aim is to devise efficient algorithms for computing the WL centralized fusion estimators
of the signal x(t), under the conditions of Tk-properness, for k = 1, 2.

With the purpose of a WL processing, the 4n-dimensional augmented vectors are
considered. Then, the centralized fusion estimation problem is addressed by applying the
traditional estimation methods on the following WL stacked state-space system:

x̄(t + 1) = Φ̄(t)x̄(t) + ū(t), t ≥ 0, (3)

~z(t) = Cx̄(t) +~v(t), t ≥ 1, (4)

~y(t) = D̄~γ
(t)~z(t) + D̄(1−~γ)

(t)~y(t− 1), t ≥ 2, (5)
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with~y(1) =~z(1), and where~z(t) =
[
z̄(1)

T
(t), . . . , z̄(R)T(t)

]T
,~v(t) =

[
v̄(1)T(t), . . . , v̄(R)T(t)

]T
,

and~y(t) =
[
ȳ(1)T(t), . . . , ȳ(R)T(t)

]T
. Moreover,

Φ̄(t) =


F1(t) F2(t) F3(t) F4(t)
F∗2(t) F∗1(t) F∗4(t) F∗3(t)
Fη

3(t) Fη
4(t) Fη

1(t) Fη
2(t)

Fη′′

4 (t) Fη′′

3 (t) Fη′′

2 (t) Fη′′

1 (t)

,

D̄~γ
(t) = Υ diag(~γr(t))ΥH, D̄(1−~γ)

(t) = Υ diag(14nR −~γr(t))ΥH, with Υ = IR ⊗ T and

~γr(t) =
[
γ(1)rT

(t), . . . , γ(R)rT
(t)
]T

, and C = 1R ⊗ I4n.

Furthermore, Γū(t, s) = Q̄(t)δt,s, Γ~v(t, s) = ~R(t)δt,s, and Γū~v(t, s) = ~S(t)δt,s, where
~R(t) = diag

(
R̄(1)(t), . . . , R̄(R)(t)

)
, with R̄(i)(t) = Γv̄(i)(t, t), and~S(t) =

[
S̄(1)(t), . . . , S̄(R)(t)

]
,

with S̄(i)(t) = Γūv̄(i)(t, t), for i = 1, . . . , R.
Now, the centralized fusion estimation problem is analyzed in a Tk-properness setting.

The following proposition establishes conditions on system (3)–(5) that guarantee the
Tk-properness of the processes involved.

Proposition 1. Given the WL stacked state-space model (3)–(5), and taking into account the
Tk-properness concepts given in Definition 2, the following properties can be established:

1. x(t) is T1-proper if and only if the initial state x(0) and the state noise u(t) are T1-proper,
and the matrix Φ̄(t) is block diagonal as described below

Φ̄(t) = diag
(

F1(t), F∗1(t), Fη
1(t), Fη′′

1 (t)
)

,

If additionally v(i)(t) is T1-proper, u(t) and v(i)(t) are cross T1-proper, and p(i)j,r (t) =

p(i)j,η(t) = p(i)j,η′(t) = p(i)j,η′′(t) , p(i)j (t), ∀t, j = 1, . . . , n, i = 1, . . . , R, then x(t) and y(i)(t)
are jointly T1-proper.

2. x(t) is T2-proper if and only if the initial state x(0) and the state noise u(t) are T2-proper,
and the matrix Φ̄(t) is block diagonal as described below

Φ̄(t) = diag
(

Φ2(t), Φ
η
2(t)

)
, with Φ2(t) =

[
F1(t) F2(t)
F∗2(t) F∗1(t)

]
,

If additionally v(i)(t) is T2-proper, u(t) and v(i)(t) are cross T2-proper, and p(i)j,r (t) = p(i)j,η(t),

p(i)j,η′(t) = p(i)j,η′′(t), ∀t, j = 1, . . . , n, i = 1, . . . , R, then x(t) and y(i)(t) are jointly T2-proper.

Remark 4. It should be observed that the conditions established in Proposition 1 for ensuring the
different type of properness on the processes involved in (3)–(5), are similar to the one stated in [34].

Then, under conditions of Tk-properness, for k = 1, 2, the measurement Equation (5)
in the above WL stacked state-space model can be expressed in the following equivalent
form of reduced dimension:

yk(t) = D̄~γ
k (t)~z(t) + D̄1−~γ

k ~y(t− 1), t ≥ 2, (6)
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with yk(1) = ∆k~z(1), and ∆k = IR⊗
[
Ikn, 0kn×(4−k)n

]
. Furthermore, D̄~γ

k (t) = Υk diag(~γr(t))ΥH

and D̄1−~γ
k (t) = Υk diag(14nR −~γr(t))ΥH, where Υk = IR ⊗ T k, with T k =

1
2Bk ⊗ In, and

Bk =


[1 η η′ η′′], for k = 1[

1 η η′ η′′

1 −η η′ −η′′

]
, for k = 2.

In addition,

Π̄
~γ
k (t) = E

[
D̄~γ

k (t)
]
= diag

(
Π̄

γ(1)

k (t), . . . , Π̄
γ(R)

k (t)
)

,

Π̄
(1−~γ)
k (t) = E

[
D̄(1−~γ)

k (t)
]
= diag

(
Π̄
(1−γ(1))
k (t), . . . , Π̄

(1−γ(R))
k (t)

)
,

with Π̄
γ(i)

k (t) =
[
Π

(i)
k (t), 0kn×(4−k)n

]
and Π̄

(1−γ(i))
k (t) =

[
Ikn −Π

(i)
k (t), 0kn×(4−k)n

]
,

Π
(i)
1 (t) = diag

(
p(i)1,r(t), . . . , p(i)n,r(t)

)
, i = 1, . . . , R,

Π
(i)
2 (t) =

1
2

[
Π

(i)
a (t) Π

(i)
b (t)

Π
(i)
b (t) Π

(i)
a (t)

]
, i = 1, . . . , R,

(7)

and
Π

(i)
a (t) = diag

(
p(i)1,r(t) + p(i)1,η′(t), . . . , p(i)n,r(t) + p(i)n,η′(t)

)
, i = 1, . . . , R,

Π
(i)
b (t) = diag

(
p(i)1,r(t)− p(i)1,η′(t), . . . , p(i)n,r(t)− p(i)n,η′(t)

)
, i = 1, . . . , R.

Remark 5. It is worth noting that Tk-properness also allows us to reduce the dimension of
Equations (3) and (4) by replacing the 4n-dimensional augmented processes x̄(t), ū(t) z̄(i)(t),
v̄(i)(t), and the matrix Φ̄(t) by the corresponding kn-dimensional vectors xk(t), uk(t), z(i)k (t),

v(i)
k (t), and Φk(t), defined as

• T1-proper case: x1(t) , x(t), u1(t) , u(t), z(i)1 (t) , z(i)(t), v(i)
1 (t) , v(i)(t), and

Φ1(t) , F1(t).

• T2-propercase: x2(t) ,
[
x(t), xH(t)

]T, u2(t) ,
[
u(t), uH(t)

]T, z(i)2 (t) ,
[
z(i)(t), z(i)

H
(t)
]T

,

v(i)
2 (t) ,

[
v(i)(t), v(i)H(t)

]T
, and Φ2(t) given in Proposition 1, in a T2-proper scenario.

Furthermore, Γuk (t, s) = Qk(t)δt,s, Γ
v(i)

k
(t, s) = R(i)

k (t)δt,s, Γ
ukv(i)

k
(t, s) = S(i)

k (t)δt,s, and

Γxk (0, 0) = P0k .

Thus, whereas the optimal linear processing in the tessarine domain suggests com-
puting the LLMS filter of the state x(t) ∈ Tn from its projection onto the augmented
measurements {~y(1), . . .~y(t)}, under conditions of Tk-properness, for k = 1, 2, this esti-
mator can be obtained from the measurements {yk(1), . . . , yk(t)} defined in (6), which
gives rise to the so-called Tk-proper estimators. This approach supposes a reduction in the
dimension of the problem that leads to computational savings that cannot be attained from
a real formalism.

This methodology has been recently applied to design recursive fusion estimation
algorithms for multi-sensor systems affected by random delays and missing measure-
ments [35]. In this paper, we are interested in extending this methodology to systems
affected by random multiple-packet dropouts.

Remark 6. Note that although tessarine system is not a Hilbert space, a suitable metric has been
defined in [36] to ensure the existence and uniqueness of projections.
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4. Tk-Proper Centralized Fusion Filtering Estimation

In this section, based on Kalman filter techniques, an efficient algorithm is pro-
vided for the computation of the Tk-proper LLMS centralized fusion filter x̂Tk (t|t), for
k = 1, 2, of the state x(t) described by the state-space system with packet dropouts given by
Equations (3), (4), and (6), as well as its associated error pseudo covariance matrix PTk (t|t).
For this purpose, a recursive algorithm is devised under Tk-properness conditions for the
projection of x̄(t) onto the set of measurements {yk(1), . . . , yk(t)}, denoted by x̂k(t|t), and
its error pseudo covariance matrix Pk(t|t). Then, x̂Tk (t|t) and PTk (t|t) are determined by the
first n components of x̂k(t|t) and Pk(t|t), respectively.

Theorem 1 summarizes the formulas of this Tk-proper LLMS centralized fusion filter-
ing algorithm.

Theorem 1. The Tk-proper LLMS centralized fusion filter, x̂Tk (t|t), for k = 1, 2, is obtained
as follows

x̂T1(t|t) = x̂1(t|t),
x̂T2(t|t) = [1n, 0n]x̂2(t|t),

where for k = 1, 2, x̂k(t|t) is calculated from the recursive equation

x̂k(t|t) = x̂k(t|t− 1) + Lk(t)εk(t), t ≥ 1, (8)

and x̂k(t + 1|t) satisfies the recursive expression

x̂k(t + 1|t) = Φk(t)x̂k(t|t) + Hk(t)εk(t), t ≥ 1, (9)

with initial values x̂k(1|0) = x̂k(0|0) = 0kn.
The innovations εk(t) are recursively calculated from the formula

εk(t) = yk(t)−Πk(t)Ck x̂k(t|t− 1)− (IknR −Πk(t))yk(t− 1), t ≥ 2, (10)

with initial value εk(1) = yk(1), and Ck = 1R ⊗ Ikn.
Moreover, Hk(t) = Sk(t)Πk(t)Ω−1

k (t), where Sk(t) = [S(1)
k (t), . . . , S(R)

k (t)], and Πk(t) =

diag
(

Π
(1)
k (t), . . . , Π

(R)
k (t)

)
, with Π

(i)
k (t) given in (7). Lk(t) = Θk(t)Ω−1

k (t), where the matri-
ces Θk(t) are obtained from the equation

Θk(t) = Pk(t|t− 1)CT
k Πk(t), t ≥ 2;

Θk(1) = 1TR ⊗Dk(1),
(11)

with
Dk(1) =

[
Ikn, 0kn×(4−k)n

]
Γx̄(1, 1)

[
Ikn, 0kn×(4−k)n

]T
, (12)

and where Γx̄(t, t) is given by the recursive expression

Γx̄(t, t) = Φ̄(t− 1)Γx̄(t− 1, t− 1)Φ̄H(t− 1) + Q̄(t− 1), t ≥ 1; Γx̄(0, 0) = P̄0. (13)

In addition,

Ωk(t) = Υk
{

Cov(~γr(t)) ◦
(
Ψ1(t)−Ψ2(t)−ΨH

2(t) + Ψ3(t)
)}

ΥH
k

+ Υk

{
Γ~γr (t, t) ◦

(
ΥH~R(t)Υ

)}
ΥH

k + Πk(t)CkPk(t|t− 1)CT
k Πk(t),

(14)
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where
Ψ1(t) = ΥHCΓx̄(t, t)CTΥ,

Ψ2(t) = ΥHC
(

Φ̄(t− 1)Γx̄~y(t− 1, t− 1) +~S(t− 1)Π̄~γ(t− 1)
)

Υ,

Ψ3(t) = ΥHΓ~y(t− 1, t− 1)Υ,

with Γx̄(t, t) computed in (13),

Γx̄~y(t, t) = Γx̄(t, t)CTΠ̄
~γ(t) +

(
Φ̄(t− 1)Γx̄~y(t− 1, t− 1) +~S(t− 1)Π̄~γ(t− 1)

)
Π̄

1−~γ(t), t ≥ 2;

Γx̄~y(1, 1) = Γx̄(t, t)CT,

and

Γ~y(t, t) = Υ
{

Γ~γr (t, t) ◦
(

Ψ1(t) + ΥH~R(t)Υ
)
+ Γ~γr(1−~γr)(t, t) ◦Ψ2(t) + ΓT~γr(1−~γr)(t, t) ◦ΨH

2(t)

+Γ(1−~γr)(t, t) ◦Ψ3(t)
}

ΥH, t ≥ 2;

Γ~y(1, 1) = CΓx̄(t, t)CT + ~R(1).

Finally, the Tk-proper centralized fusion filtering error pseudo covariance matrix, PTk (t|t),
for k = 1, 2, is obtained as follows:

PT1(t|t) = P1(t|t),
PT2(t|t) = [1n, 0n]P2(t|t)[1n, 0n]

T,

where for k = 1, 2, Pk(t|t) satisfies the following recursive equation:

Pk(t|t) = Pk(t|t− 1)−Θk(t)Ω−1
k (t)ΘH

k (t), (15)

with initial condition Pk(0|0) = P0k , and

Pk(t + 1|t) = Φk(t)Pk(t|t)ΦH
k (t)−Φk(t)Θk(t)HH

k (t)−Hk(t)ΘH
k (t)Φ

H
k (t)

−Hk(t)Ωk(t)HH
k (t) + Qk(t),

(16)

with initial condition Pk(1|0) = Dk(1) .

Remark 7. Notice that the computational load of the Tk-proper LLMS centralized fusion filtering
algorithms, for k = 1, 2, given in Theorem 1 is the same as that of their quaternion domain
counterparts, i.e., those derived by using quaternion strictly linear (QSL) and quaternion semi-
widely linear (QSWL) processing, respectively.

As a consequence, it is noteworthy to see that the proposed Tk-proper LLMS centralized fusion
filtering algorithm provides estimations of the state that is equivalent to the one obtained from a WL
processing or a real vectorial processing, whereas the computational load implied is reduced from
O(64R3n3) to O(kR3n3) for k = 1, 2 [38].

5. Numerical Example

Our aim in this section is to numerically analyze the performance and benefits of
the Tk-proper LLMS centralized fusion filtering algorithm proposed in Theorem 1. Two
examples are proposed: the first one from simulated values in which a scalar signal is
estimated from the observations provided by several sensors; and the second one, a realistic
model of a bidimensional tessarine state-space model which described a great amount of
experimental phenomena. In both examples, by varying the Bernoulli parameters, different
situations are compared in order to illustrate the effectiveness of the proposed algorithm in
both Tk-proper scenarios, for k = 1, 2.
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5.1. Example 1

Consider the following multi-sensor tessarine state-space system:

x(t + 1) = F1(t)x(t) + u(t), t ≥ 0,

z(i)(t) = x(t) + v(i)(t), t ≥ 1,

y(i)(t) = γ(i)(t) ? z(i)(t) + (1− γ(i)(t)) ? y(i)(t− 1), t ≥ 2,

(17)

for i = 1, . . . , R, with y(i)(1) = z(i)(1), and where F1(t) = 0.3 + 0.3η + 0.1η′ + 0.2η′′ ∈ T.
Moreover, u(t) is a tessarine noise such that the covariance matrix of the associated real
vector ur(t) is of the form

Γur (t, s) =


a 0 c 0
0 b 0 c
c 0 a 0
0 c 0 b

δt,s, (18)

where the parameters a, b, and c take different values depending on the Tk-proper scenario
considered. Furthermore, to guarantee the correlation hypothesis between the state and
observation noises, u(t) and v(i)(t), they are assumed to satisfy the following expression:

v(i)(t) = αiu(t) + w(i)(t), t ≥ 1,

with αi ∈ R, and where, at each i, w(i)(t) is a tessarine white Gaussian noise independent
of u(t), whose real covariance matrix is given by

Γw(i)r (t, s) = diag(βi, βi, βi, βi), t ≥ 1,

Specifically, the following values of αi and βi, for i = 1, 2, 3, 4, 5, will be considered in our
simulations:

α1 = 0.5, α2 = 0.3, α3 = 0.9, α4 = 0.6, α5 = 0.2

β1 = 95, β2 = 125, β3 = 87, β4 = 83, β5 = 73

Additionally, the variance matrix of the real initial state xr(0) is assumed to be of
the form

Γxr (0, 0) =


d 0 f 0
0 e 0 f
f 0 d 0
0 f 0 e

, (19)

whose values d, e, and f will be specified in Sections 5.1.1 and 5.1.2, according to the
different Tk-proper scenario analyzed.

5.1.1. T1-Proper Scenario

To guarantee that x(t) and y(i)(t) are joint T1-proper, it has been taken a = b = 1,
c = −0.5 in (18) and d = e = 4, c = 1.5 in (19). Moreover, it has also been assumed
that the components of the multiplicative noise in (17), γ

(i)
ν (t) have constant probabilities

p(i)ν = p(i), for all ν = r, η, η′η′′, and i = 1, . . . , R.
Firstly, the behavior of the estimators proposed is analyzed by considering a different

number of sensors. Specifically, Figure 1 shows the T1-proper centralized fusion filtering
error variances computed from the observations provided by 2, 3, 4, and 5 sensors. As
expected, the estimators perform better as the number of sensors increases, which makes
sense because the number of observations used to estimate the signal increases.
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Figure 1. T1-proper centralized fusion filtering error variances with 2, 3, 4, and 5 sensors.

Next, in order to show the computational savings attained with the solution proposed
under T1-properness conditions, Table 1 presents the computation time required to apply
the T1-proper centralized fusion filtering algorithms given in Theorem 1, and the con-
ventional one devised from a real-valued linear processing in the cases of 2, 3, 4, and 5
sensors. Then, a reduction in the computation time can be observed when the methodology
proposed is used, and this computational saving becomes more significant as the number
of sensors increases.

Table 1. Computation time (in seconds) for the T1- proper processing and the conventional one.

Type of Processing
Number of Sensors

2 3 4 5

T1-proper 4.552597 9.328620 16.299967 25.112891
Real-valued 5.367786 10.935009 18.187468 27.570617

Our second objective is to compare tessarine and quaternion signal processing for
different probabilities of updated/missing observations under T1-properness conditions.
For this purpose, the error variances of both T1 and QSL centralized fusion filters have
been calculated for the following cases:

- Case 1: p(i) = 0.1, ∀i = 1, . . . , 5;
- Case 2: p(i) = 0.3, ∀i = 1, . . . , 5;
- Case 3: p(i) = 0.5, ∀i = 1, . . . , 5;
- Case 4: p(i) = 0.7, ∀i = 1, . . . , 5;
- Case 5: p(i) = 0.9, ∀i = 1, . . . , 5.

Then, the difference between both tessarine and quaternion LLMS centralized fusion
filtering error variances, that is, D1(t|t) = PQSL(t|t)− P1(t|t), have been computed and
displayed in Figure 2. In this figure, positive differences can be observed in all the cases,
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meaning that it can be noted that T1-proper fusion estimators perform better than their
quaternion counterparts. As expected, the fact that the T1-properness conditions are
satisfied determines that it is more appropriate to use the T1-proper signal processing than
the quaternion one, since it yields better estimations. Moreover, these differences become
smaller as the probability of updated observations increases.

Figure 2. Difference D1(t|t) between QSL and T1-proper centralized fusion filtering error variances
for cases 1, 2, 3, 4, and 5.

Finally, with the aim of comparing both QSL and T1-proper signal processing, they
are applied by taking a fixed value for the probabilities of the Bernoulli parameters in
all the sensors, but different values of c in (18), that is, c = −0.8,−0.5,−0.2, 0. Note that
for c = 0, the state additive noise, u(t), is T1 besides Q-proper, and as c is further away
from 0, the Q-properness conditions are further away. In this setting, the error variances
of both T1-proper and QSL LLMS centralized fusion filters have been computed, and the
mean of the differences between them, MD1(t|t) = mean(D1(t|t)), have been displayed in
Figure 3 for the different values of c. In this figure, tessarine estimators are shown to be
more accurate the further the noise u(t) is from the Q-properness conditions. Moreover, as
in Figure 2, these differences decrease as the probability of updated observations increases.
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Figure 3. Mean of the differences MD1(t|t) between QSL and T1-proper centralized fusion filtering
error variances.

5.1.2. T2-Proper Scenario

In order to guarantee T2-properness conditions, a = 1, b = 2, c = −0.5 in (18) is
assumed, and d = 4, e = 3, and c = 1.5 in (19), and also p(i)r = p(i)η and p(i)η′ = p(i)η′′ for
i = 1, . . . , 5.

As in the previous subsection, in order to compare the performance of tessarine and
quaternion processing under T2-properness conditions, the differences between the LLMS
centralized fusion filtering error variances of the QSWL and T2-proper estimators, denoted
by D2(t|t), have been computed and displayed in Figure 4, for the following cases:

- Case 6: p(i)r = 0.1 and p(i)η′ = 0.2, ∀i = 1, . . . , 5;

- Case 7: p(i)r = 0.3 and p(i)η′ = 0.4, ∀i = 1, . . . , 5;

- Case 8: p(i)r = 0.5 and p(i)η′ = 0.6, ∀i = 1, . . . , 5;

- Case 9: p(i)r = 0.7 and p(i)η′ = 0.8, ∀i = 1, . . . , 5;

- Case 10: p(i)r = 0.9 and p(i)η′ = 1, ∀i = 1, . . . , 5.

Because these differences are positive in all the cases, the superiority of the T2-proper
tessarine processing over the QSWL processing under T2-properness conditions is clear,
and these differences become smaller as the probability that the components of the available
observation are updated increases.
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Figure 4. Difference D2(t|t) between QSWL and T2-proper centralized fusion filtering error variances
for cases 6, 7, 8, 9, and 10.

5.2. Example 2

Let us consider the following general equation of motion [33]:

∂ϕ

∂t
= φ, and

∂φ

∂t
= υ, (20)

where ϕ is the variable of interest, φ its range of change, and υ the input of the system.
Notice that Equation (20) models a great amount of physical phenomena, and it

has been used, for example, in bearing-only tracking applications and rotation tracking
problems, where υ represents, respectively, the force or acceleration and the torque or
angular acceleration.

In discrete-time, by taking x(t) = [ϕ(t), φ(t)]T, it is possible to build a model equiva-
lent to that given in (20), as follows:

x(t + 1) =
(

1 0.04
0 1

)
x(t) +

[
0.0008
0.04

]
v(t), t = 1, . . . , 100;

x(0) = 02×1,

where v(t) is a tessarine white noise with real covariance matrix:

E
[
vr(t)vrT(s)

]
=


3 0 2 0
0 3 0 2
2 0 3 0
0 2 0 3

δts, t, s = 1, . . . , 100.

Moreover, the additive noise of single-sensor real observation equation, v(t) =
[v1(t), v2(t)]

T, is assumed to be a tessarine white noise with independent components
and associated real covariance matrices given by
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E
[
vr

j (t)v
rT
j (s)

]
=


6.5 0 0.1 0
0 6.5 0 0.1

0.1 0 6.5 0
0 0.1 0 6.5

δts, t, s = 1, . . . , 100, j = 1, 2.

In order to guarantee the Tk-properness conditions, the following assumptions and
cases about the parameters of the Bernoulli random variables have been considered:

• In the T1-proper scenario: pj,ν(t) = pj, for all j = 1, 2, ν = r, η, η′η′′:

- Case 11: p1 = 0.1, p2 = 0.2;
- Case 12: p1 = 0.3, p2 = 0.4;
- Case 13: p1 = 0.5, p2 = 0.6;
- Case 14: p1 = 0.7, p2 = 0.8;
- Case 15: p1 = 0.9, p2 = 1.

• In the T2-proper scenario: pj,r(t) = pj,ν(t) = pj,r, pj,η′(t) = pj,ν′′(t) = pj,η′ , for all
j = 1, 2:

- Case 16: p1,r = 0.1, p1,η′ = p2,r = 0.2, p2,η′ = 0.3;
- Case 17: p1,r = 0.3, p1,η′ = p2,r = 0.4, p2,η′ = 0.5;
- Case 18: p1,r = 0.5, p1,η′ = p2,r = 0.6, p2,η′ = 0.7;
- Case 19: p1,r = 0.7, p1,η′ = p2,r = 0.8, p2,η′ = 0.9;
- Case 20: p1,r = 0.9, p1,η′ = p2,r = 0.95, p2,η′ = 1.

For all the above cases, the differences between the quaternion and tessarine filtering
error variances have been calculated and displayed in Figures 5 and 6, for the T1 and
T2-proper scenarios and for the first and second component of the signal, respectively.
The same conclusions can be derived for both figures: (1) better estimations by using the
tessarine processing than from the quaternion processing and, (2) there exists a lower
difference between the estimations obtained from both types of processing when the
probability that the components of the available observations are updated increases.

Figure 5. Difference D1(t|t) between QSL and T1-proper fusion filtering error variances for the first
component of the signal for cases 11, 12, 13, 14, and 15.
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Figure 6. Difference D2(t|t) between QSWL and T2-proper fusion filtering error variances for the
second component of the signal for cases 16, 17, 18, 19, and 20.

6. Discussion

The LLMS centralized fusion filtering problem is analyzed in linear systems with
multiple sensors and multiple packet dropouts. However, unlike most of the solutions
proposed in the literature, a proper hypercomplex-valued signal processing has been
employed with the purpose of reducing the dimension of the problem. Specifically, the
state-space system is defined in the tessarine domain, and it is assumed that each component
of the measurement output at each sensor may present a different packet dropout rate,
modeled by using a Bernoulli random variable. Moreover, the state and the measurement
noises can be correlated. Under hypotheses of Tk-properness, our approach allows us to
provide an optimal LLMS fusion filtering algorithm that reduces the computational cost
of its counterpart in the real field. The good behavior and benefits of this algorithm have
been analyzed in situations of T1 and T2- properness by considering different numbers of
sensors. Moreover, a comparative study of the quaternion and tessarine approaches was
carried out, showing how the algorithm proposed behaves better than its counterpart in
the quaternion domain when Tk-properness, k = 1, 2, conditions are satisfied.

As a consequence, our approach based on Tk-proper processing presents two main
advantages: on the one hand, the tessarine systems offer a suitable framework to model
3D and 4D physical and experimental phenomena, and on the other hand, a considerable
reduction of problem dimension is possible when the processes involved are Tk-proper,
which implies significant computational savings in the implementation of our LLMS fusion-
filtering algorithm that cannot be attained from a real formalism of the problem.

In future research, we will approach the estimation problem in other hypercomplex
algebras and under different properness conditions by using alternative fusion architectures
for the multi-sensor observations with varied uncertainty situations.
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Appendix A

Proof of Theorem 1. Consider the state-space system given by Equations (3), (4), and (6).
On the basis of the innovations εk(t) = yk(t) − ŷk(t|t − 1), with ŷk(t|t − 1) the LLMS
estimator of yk(t) based on the measurements {yk(1), . . . , yk(t− 1)}, for k = 1, 2, the LLMS
filter ˆ̄x(t|t) of x̄(t) can be expressed as [36]:

ˆ̄x(t|t) =
t

∑
s=1

Θ̄k(s)Ω−1
k (s)εk(s),

where Θ̄k(s) = E
[
x̄(s)εHk (s)

]
, and Ωk(s) = E

[
εk(s)εHk (s)

]
, which yields the recursive equation

ˆ̄x(t|t) = ˆ̄x(t|t− 1) + L̄k(t)εk(t), (A1)

with L̄k(t) = Θ̄k(t)Ω−1
k (t). Thus, from the Tk-properness conditions, Equation (8) is obtained.

Moreover, taking projections on both sides of Equations (3) and (5), we obtain that

ˆ̄x(t + 1|t) = Φ̄(t) ˆ̄x(t|t) + H̄k(t)εk(t), (A2)

with H̄k(t) = ~S(t)Π̄~γH

k (t)Ω−1
k (t), and

ŷk(t|t− 1) = Π̄
~γ
k (t)C ˆ̄x(t|t− 1) + Π̄

(1−~γ)
k (t)~yk(t− 1), (A3)

Then, by applying Tk-properness conditions on (A2) and (A3) and considering that

E[ū(t)εHk (s)] = ~S(t)Π̄~γH

k (t)δt,s, Equations (9) and (10) are directly devised.
Let ε̄(t|t− 1) = x̄(t)− ˆ̄x(t|t− 1) be the prediction error, then

Θ̄k(t) = E
[
x̄(t)ε̄H(t|t− 1)

]
CTΠ̃

~γH

k (t) = P̄(t|t− 1)CTΠ̃
~γH

k (t), t ≥ 2,
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where P̄(t|t− 1) = E[ε̄(t|t− 1)ε̄H(t|t− 1)]. As a consequence, under Tk-properness con-
ditions, (11) is derived, where Pk(t|t − 1) is given by the first knR × knR submatrix of
P̄(t|t− 1) and also Equation (13) for Γx̄(t) = E[x̄(t)x̄H(t)] is easily obtained from (3).

In order to devise Equation (14), we will rewrite Equation (10) as follows:

εk(t) = ∆D̄~γ
k (t)Cx̄(t) + Π̄

~γ
k (t)Cε̄(t|t− 1) + D̄~γ

k (t)~v(t) + ∆D̄(1−~γ)
k (t)~y(t− 1).

Then, considering that~v(t) is orthogonal to x̄(t),~y(t− 1), and ε̄(t|t− 1), and E[∆D̄~γ
k (t)] = 0,

we have that

Ωk(t) = E
[
∆D̄~γ

k (t)Cx̄(t)x̄H(t)CT∆D̄~γH

k (t)
]
+ E

[
∆D̄~γ

k (t)Cx̄(t)~yH(t− 1)∆D̄(1−~γ)H
k (t)

]
+E
[
∆D̄(1−~γ)

k (t)~y(t− 1)x̄H(t)CT∆D̄~γH

k (t)
]
+ E

[
D̄~γ

k (t)~v(t)~v
H(t)D̄~γH

k (t)
]

+E
[
∆D̄(1−~γ)

k (t)~y(t− 1)~yH(t− 1)∆D̄(1−~γ)H
k (t)

]
+ Π̄

~γ
k (t)CP̄(t|t− 1)CTΠ̄

~γH

k (t).

(A4)

Equation (14) follows from (A4) by using Hadamard product properties and taking
into account that

Γx̄~y(t, t− 1) = Φ̄(t− 1)Γx̄~y(t− 1) +~S(t− 1)Π̄~γ(t− 1).

Finally, from (A1), it is clear that the pseudo covariance matrix P̄(t|t) = E[ε̄(t|t)ε̄H(t|t)],
of the filtering errors ε̄(t|t) = x̄(t)− ˆ̄x(t|t) can be computed in the form

P̄(t|t) = P̄(t|t− 1)− Θ̃k(t)Ω−1
k (t)Θ̃H

k (t),

and consequently, using the Tk properness conditions, (15) holds. Furthermore, since

ε̄(t + 1|t) = x̄(t + 1)− ˆ̄x(t + 1|t) = Φ̄(t)ε̄(t|t) + ū(t)− H̃k(t)εk(t), (A5)

E[ε(t|t)εk(t)] = 0, and E[ū(t)ε̄H(t|t)] = −~S(t)Π̄~γ
k (t)L̄

H
k (t), we obtain that

P̄(t + 1|t) = Φ̄(t)P̄(t|t)Φ̄H(t)− H̄k(t)Θ̄
H
k (t)Φ̄

H(t)

− Φ̄(t)Θ̄k(t)H̄H
k (t)− H̄k(t)Ωk(t)H̄H

k (t) + Q̄(t),

and hence, from Tk properness conditions, (16) follows.
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