
Citation: Giang, T.T.H.; Ryoo, Y.-J.

Pruning Points Detection of Sweet

Pepper Plants Using 3D Point Clouds

and Semantic Segmentation Neural

Network. Sensors 2023, 23, 4040.

https://doi.org/10.3390/s23084040

Academic Editor: Saeed Anwar

Received: 9 March 2023

Revised: 10 April 2023

Accepted: 11 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Pruning Points Detection of Sweet Pepper Plants Using 3D
Point Clouds and Semantic Segmentation Neural Network
Truong Thi Huong Giang 1 and Young-Jae Ryoo 2,*

1 Department of Electrical Engineering, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
tthgiang@ttn.edu.vn

2 Department of Electrical and Control Engineering, Mokpo National University,
Muan 58554, Jeonnam, Republic of Korea

* Correspondence: yjryoo@mnu.ac.kr

Abstract: Automation in agriculture can save labor and raise productivity. Our research aims to have
robots prune sweet pepper plants automatically in smart farms. In previous research, we studied
detecting plant parts by a semantic segmentation neural network. Additionally, in this research, we
detect the pruning points of leaves in 3D space by using 3D point clouds. Robot arms can move to
these positions and cut the leaves. We proposed a method to create 3D point clouds of sweet peppers
by applying semantic segmentation neural networks, the ICP algorithm, and ORB-SLAM3, a visual
SLAM application with a LiDAR camera. This 3D point cloud consists of plant parts that have been
recognized by the neural network. We also present a method to detect the leaf pruning points in 2D
images and 3D space by using 3D point clouds. Furthermore, the PCL library was used to visualize
the 3D point clouds and the pruning points. Many experiments are conducted to show the method’s
stability and correctness.

Keywords: 3D point cloud; pruning point; sweet pepper; semantic segmentation neural network

1. Introduction

Sweet pepper is one of the most popular fruits for people today because of its nutrition,
such as vitamins A, B, and C, and the minerals Ca, P, K, and Fe [1]. The amounts of these
nutrients change at different maturity stages. For example, there is an increase in vitamin C
during ripening [2]. They are also affected by growing conditions such as light, irrigation,
and fertilizers [1,3]. In addition, the pruning technique plays an important role. Different
strategies in pruning cause different fruit sizes, quality traits, and yield [4]. None-pruned
plants could have more diseases than pruned plants [5]. Sweet pepper pruning includes
shoot pruning and leaf pruning. Leaf pruning helps control aphids in sweet pepper
crops [6]. Therefore, the pruning action is performed daily as a necessary farm activity.

Plant pruning is an easy task for humans, but it takes time. In contrast, it is a difficult
task for machines. It must perform tasks such as recognizing the plant parts through
camera sensors, detecting removable objects and the position of pruning points, and then
controlling the robot arm to remove them. However, machines can work day and night
continuously. It could save lots of time. Furthermore, it can reduce the risk of disease
infection from laborers who usually get on the farm from outside. Automation plays an
essential part in intelligent agriculture. This prompted us to study this subject and apply it
to sweet pepper, one of the popular plants in smart farms. Leaf pruning was selected as
this research object.

As with the jobs listed above, our research includes many phases. The first phase
is recognizing the plant parts, which was solved by our previous study of the semantic
segmentation neural network [7]. This neural network can run in real time and is suitable
for thin, long plant parts with various shapes. The next phase is pruning point detection,
which is also the main content of this paper. In this phase, our research plant is the

Sensors 2023, 23, 4040. https://doi.org/10.3390/s23084040 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23084040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8799-5183
https://orcid.org/0000-0002-5657-9766
https://doi.org/10.3390/s23084040
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23084040?type=check_update&version=1

Sensors 2023, 23, 4040 2 of 14

sweet pepper. We will detect the lowest leaf and its pruning point in 3D space in our
research context.

A sweet pepper dataset was created with more than 4000 images. We labeled plant
parts such as stems, leaves, and petioles. Figure 1 shows an example of labeling images of
sweet peppers. The left image is the RGB image of a sweet pepper. The right image is the
labeled image. It consists of four objects: leaves, petioles, stems, and others that we do not
concern ourselves with. Each object is encoded in a different color. This type of image is
called a semantic image. We took images of sweet pepper on green farms and in the lab.
The camera was handheld and moved around the plants. One image should have a stem
and other parts of the plant.

Sensors 2023, 23, x FOR PEER REVIEW 2 of 15

thin, long plant parts with various shapes. The next phase is pruning point detection,
which is also the main content of this paper. In this phase, our research plant is the sweet
pepper. We will detect the lowest leaf and its pruning point in 3D space in our research
context.

A sweet pepper dataset was created with more than 4000 images. We labeled plant
parts such as stems, leaves, and petioles. Figure 1 shows an example of labeling images of
sweet peppers. The left image is the RGB image of a sweet pepper. The right image is the
labeled image. It consists of four objects: leaves, petioles, stems, and others that we do not
concern ourselves with. Each object is encoded in a different color. This type of image is
called a semantic image. We took images of sweet pepper on green farms and in the lab.
The camera was handheld and moved around the plants. One image should have a stem
and other parts of the plant.

Figure 1. An example of sweet pepper labeling.

An automated pruning system is complex because it includes a mechanical compo-
nent for robot design and control and a software component for the robot’s visual inter-
face. It decides where to cut. Our research focuses on this part. He et al. [8] reviewed au-
tomation in apple tree pruning. The most technical challenges are tree structure identifi-
cation, cutting location detection, branch diameter measurement, and length measure-
ment. A 3D reconstruction must be done to get this information. In our research, farmers
cut the petioles and these pruning points close to the stem to remove sweet pepper leaves.
Hence, our system should detect these pruning points through images. The most im-
portant point is the lowest leaf of the plant because it is the starting point for pruning. We
will focus on recognizing the sweet pepper’s lowest petiole. Figure 2 shows a potential
pruning point in a 2D semantic image. However, the lowest petiole of an image does not
mean the lowest petiole of the plant. One image describes a piece of the plant from the
camera’s viewpoint. The complete plant information could be found if the camera is
moved around the plant and takes images. The solution to combining these images is to
reconstruct 3D objects from these images. These 3D objects can represent natural plants in
a 3D coordinate system. Therefore, 3D reconstruction is an important part of pruning
point detection.

Figure 1. An example of sweet pepper labeling.

An automated pruning system is complex because it includes a mechanical component
for robot design and control and a software component for the robot’s visual interface. It
decides where to cut. Our research focuses on this part. He et al. [8] reviewed automation
in apple tree pruning. The most technical challenges are tree structure identification,
cutting location detection, branch diameter measurement, and length measurement. A
3D reconstruction must be done to get this information. In our research, farmers cut the
petioles and these pruning points close to the stem to remove sweet pepper leaves. Hence,
our system should detect these pruning points through images. The most important point
is the lowest leaf of the plant because it is the starting point for pruning. We will focus on
recognizing the sweet pepper’s lowest petiole. Figure 2 shows a potential pruning point in
a 2D semantic image. However, the lowest petiole of an image does not mean the lowest
petiole of the plant. One image describes a piece of the plant from the camera’s viewpoint.
The complete plant information could be found if the camera is moved around the plant
and takes images. The solution to combining these images is to reconstruct 3D objects from
these images. These 3D objects can represent natural plants in a 3D coordinate system.
Therefore, 3D reconstruction is an important part of pruning point detection.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 15

Figure 2. A potential pruning point in a 2D semantic image.

During the development of computer vision, there were many improvements in 3D
reconstruction. Many algorithms are proposed to archive this information, such as SIFT
[9], SURF [10], FAST [11], and ORB [12], which are feature point extract algorithms. This
helps us match objects with feature points in a pair of images, create a space map, and
estimate the camera position. Other common algorithms are bundle adjustment [13],
which is used to optimize frame poses, and ICP [14], an algorithm that could be used to
register adjacent frames (combine the adjacent point clouds).

Early on, it often used 2D images as input. Many proposed systems frequently men-
tion the structure from motion (SFM) technique [15]. It includes three main functions: fea-
ture extraction, camera motion estimation, and 3D structure recovery. Applying this tech-
nique, Yu et al. [16] presented a method by which a depth map can be generated from a
sequence of 2D images. However, there is high uncertainty in the 3D reconstruction. It
needs many images to decrease this uncertainty. It could slow down the whole system
and make it impractical. Nowadays, the cheap depth sensor is quite popular, and 3D im-
age construction for a 3D image is easy. Our application needs an immense view of the
plant. Many RGB-D images should be combined. Henry et al. [17] introduced the RGB-D
Mapping system, which can create a 3D dense map from an RGB-D camera based on the
ICP algorithm. Although it had encouraging results, it cannot run in real-time. Another
system presented by Wang et al. [18] used visual and geometry features combined with
SFM (Structure from Motion). Its accuracy is high, but it cannot be used in real-time.

At the same time, many visual SLAM systems that perform simultaneous localization
and mapping by the camera-based sensor were introduced [19]. These systems also use
the above techniques but focus on the camera’s location and run in real-time. At first, mo-
nocular cameras were used with MonoSLAM [20,21]. In recent years, low-cost and high-
quality RGB-D cameras have been popular, and many RGB-D visual SLAM systems were
born and got much attention. Their structures are simple and take up fewer system re-
sources. KinectFusion was proposed in 2011, which used the GPU and created a 3D map
in real-time [22]. Later, RTAB-MAP was introduced in 2014. It had a loop detection func-
tion based on the bag of words (Bow) [23]. Its latest version supports many camera types.
Then the first ORB-SLAM was introduced in 2015 [24]. The ORB-SLAM family [24–26] is
one of the visual SLAM systems that is quite popular because it is open-source and sup-
ports many types of cameras. It improved the ORB algorithm to extract features so that it
can run in real-time on low-resource computers and does not use GPU. Although they
have the shortcoming that they do not create a dense map, they are suitable for our system.
We need an application that can run in real-time with low resources (memory and energy)
and detect the camera position. A dense map of complete meaning is not necessary in this

Figure 2. A potential pruning point in a 2D semantic image.

Sensors 2023, 23, 4040 3 of 14

During the development of computer vision, there were many improvements in 3D
reconstruction. Many algorithms are proposed to archive this information, such as SIFT [9],
SURF [10], FAST [11], and ORB [12], which are feature point extract algorithms. This helps
us match objects with feature points in a pair of images, create a space map, and estimate
the camera position. Other common algorithms are bundle adjustment [13], which is used
to optimize frame poses, and ICP [14], an algorithm that could be used to register adjacent
frames (combine the adjacent point clouds).

Early on, it often used 2D images as input. Many proposed systems frequently mention
the structure from motion (SFM) technique [15]. It includes three main functions: feature
extraction, camera motion estimation, and 3D structure recovery. Applying this technique,
Yu et al. [16] presented a method by which a depth map can be generated from a sequence
of 2D images. However, there is high uncertainty in the 3D reconstruction. It needs many
images to decrease this uncertainty. It could slow down the whole system and make it
impractical. Nowadays, the cheap depth sensor is quite popular, and 3D image construction
for a 3D image is easy. Our application needs an immense view of the plant. Many RGB-D
images should be combined. Henry et al. [17] introduced the RGB-D Mapping system,
which can create a 3D dense map from an RGB-D camera based on the ICP algorithm.
Although it had encouraging results, it cannot run in real-time. Another system presented
by Wang et al. [18] used visual and geometry features combined with SFM (Structure from
Motion). Its accuracy is high, but it cannot be used in real-time.

At the same time, many visual SLAM systems that perform simultaneous localization
and mapping by the camera-based sensor were introduced [19]. These systems also use
the above techniques but focus on the camera’s location and run in real-time. At first,
monocular cameras were used with MonoSLAM [20,21]. In recent years, low-cost and
high-quality RGB-D cameras have been popular, and many RGB-D visual SLAM systems
were born and got much attention. Their structures are simple and take up fewer system
resources. KinectFusion was proposed in 2011, which used the GPU and created a 3D map
in real-time [22]. Later, RTAB-MAP was introduced in 2014. It had a loop detection function
based on the bag of words (Bow) [23]. Its latest version supports many camera types. Then
the first ORB-SLAM was introduced in 2015 [24]. The ORB-SLAM family [24–26] is one
of the visual SLAM systems that is quite popular because it is open-source and supports
many types of cameras. It improved the ORB algorithm to extract features so that it can
run in real-time on low-resource computers and does not use GPU. Although they have
the shortcoming that they do not create a dense map, they are suitable for our system. We
need an application that can run in real-time with low resources (memory and energy) and
detect the camera position. A dense map of complete meaning is not necessary in this case.
We only need to make a dense map or 3D point cloud that includes the sweet pepper plants.
On the other hand, the 3D surface or 3D pattern reconstruction is not useful. The positions
of plant parts in 3D space are the most important. Therefore, we proposed a method to
create a 3D point cloud of sweet pepper plants from the output of ORB-SLAM3 [26].

Our research aims to detect the pruning point of the lowest petioles of the sweet
pepper plants. It means that after creating a 3D point cloud of a sweet pepper plant, the
lowest petiole and the stem of that plant should be detected in the 3D point cloud. Then
the pruning point should be identified on that petiole. However, recognizing objects and
calculating their positions in a 3D point cloud take much more time than that in a 2D image.
Hence, we proposed a method to create a point cloud that includes all known parts, such
as stems, leaves, petioles, and potential pruning points detected in 2D images. These parts
are encoded with different colors. This point cloud is called a semantic point cloud.

Petioles are soft and small; it is not necessary to identify the diameters, but it requires
accurate pruning positions. In many studies relating to plant pruning, lidar cameras or
laser scanners were used to detect branches [27,28]. Therefore, the Intel RealSense LiDAR
camera L-515, which can produce high-quality RGB-D images, is chosen to capture images.
These images are passed to ORB-SLAM3 to get image poses. They are also passed through
a semantic segmentation neural network to recognize plant parts and then detect the

Sensors 2023, 23, 4040 4 of 14

potential pruning points. After that, 3D semantic point clouds are created. Here, we
propose a module to detect the pruning points in a 3D semantic point cloud. The PCL
library [29] stores and visualizes the point clouds.

In summary, our contribution is to propose a system that detects the pruning point of
the lowest sweet pepper leaf in 3D space.

2. Related Works
2.1. Semantic Segmentation Neural Network

As mentioned in the introduction, sweet pepper petioles and other parts were detected
in 2D images before building the plant’s 3D semantic point cloud. This task cannot be
performed by the neural network for image classification or object detection in a bounding
box. We need to know which pixels belong to which objects. Therefore, the semantic
segmentation neural network was chosen.

Our previous research focused on recognizing tomato plant parts by a proposed neural
network [7]. This neural network can explore the depth information from RGB-D images to
improve the result. Furthermore, it has a small number of parameters and runs in real-time,
which is essential in our system. Its performance has been proven in previous research.

There are similarities between sweet pepper and tomato plants. We used the same
neural network structure and made a new dataset to train the model. RGB-D images are
taken at many green farms, from seedlings to mature trees, to make our dataset more
general and the model more accurate. This neural network structure is different from the
other neural networks. It has two stages, so it leads to two-phase training. The model was
trained with more than 4000 images and 50 epochs for each phase. The neural network
was written in Python 3.9 and used PyTorch 1.8. It was trained and tested on a computer
with a GPU from Nvidia, the GeForce RTX 3090, and CUDA version 11.2. The best IOU
model reached was 74.86 percent. Figure 3 presents a result of the model in predicting
sweet pepper plant parts.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 15

Figure 3. The prediction result of the model on the sweet pepper plant.

2.2. ORB-SLAM3
Three-dimensional reconstruction is an essential step in finding the relative cutting

position for the robot, which is represented by the camera. Many systems can perform this
task, but they take a lot of time. It requires an application that can run in real-time and
take little computer resources because other modules, such as the neural network, must
use many resources. Therefore, the ORB-SLAM series is suitable for our system. The ORB-
SLAM family is easy to install, only uses a CPU, and can work well with ROS (Robot
Operating System) [30]. Additionally, it is open-source software. Its source code can be
modified and updated with much support from the community.

There are many updates from the first version of ORB-SLAM [24] to the newest ver-
sion, ORB-SLAM3 [26], but they have the same structure summarized in Figure 4. They
all use ORB to extract features. While ORB-SLAM accepts monocular cameras, ORB-
SLAM3 can work with monocular, stereo, and RGB-D cameras using pin-hole or fisheye
lens models. In addition, ORB-SLAM3 can perform visual, visual-inertial, and multi-map
SLAM. According to their publication, the performance of ORB-SLAM3 is better than
many other visual SLAM systems. Finally, it can run on Ubuntu 20.4 and use the new
version of related libraries, which is so convenient for us to continue developing an appli-
cation based on it.

Figure 4. ORB-SLAM series structure.

The output of ORB-SLAM3 is the camera’s position at the moment it gets image in-
put. This position can be updated after detecting a loop. ORB-SLAM3 does not create a
dense map. Therefore, if sweet pepper exists in the input images, a 3D point cloud should
be created by another module based on the frame poses. This process happens when the
robot moves along the field of sweet pepper plants.

Figure 3. The prediction result of the model on the sweet pepper plant.

2.2. ORB-SLAM3

Three-dimensional reconstruction is an essential step in finding the relative cutting
position for the robot, which is represented by the camera. Many systems can perform
this task, but they take a lot of time. It requires an application that can run in real-time
and take little computer resources because other modules, such as the neural network,
must use many resources. Therefore, the ORB-SLAM series is suitable for our system. The
ORB-SLAM family is easy to install, only uses a CPU, and can work well with ROS (Robot
Operating System) [30]. Additionally, it is open-source software. Its source code can be
modified and updated with much support from the community.

Sensors 2023, 23, 4040 5 of 14

There are many updates from the first version of ORB-SLAM [24] to the newest version,
ORB-SLAM3 [26], but they have the same structure summarized in Figure 4. They all use
ORB to extract features. While ORB-SLAM accepts monocular cameras, ORB-SLAM3
can work with monocular, stereo, and RGB-D cameras using pin-hole or fisheye lens
models. In addition, ORB-SLAM3 can perform visual, visual-inertial, and multi-map
SLAM. According to their publication, the performance of ORB-SLAM3 is better than many
other visual SLAM systems. Finally, it can run on Ubuntu 20.4 and use the new version
of related libraries, which is so convenient for us to continue developing an application
based on it.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 15

Figure 3. The prediction result of the model on the sweet pepper plant.

2.2. ORB-SLAM3
Three-dimensional reconstruction is an essential step in finding the relative cutting

position for the robot, which is represented by the camera. Many systems can perform this
task, but they take a lot of time. It requires an application that can run in real-time and
take little computer resources because other modules, such as the neural network, must
use many resources. Therefore, the ORB-SLAM series is suitable for our system. The ORB-
SLAM family is easy to install, only uses a CPU, and can work well with ROS (Robot
Operating System) [30]. Additionally, it is open-source software. Its source code can be
modified and updated with much support from the community.

There are many updates from the first version of ORB-SLAM [24] to the newest ver-
sion, ORB-SLAM3 [26], but they have the same structure summarized in Figure 4. They
all use ORB to extract features. While ORB-SLAM accepts monocular cameras, ORB-
SLAM3 can work with monocular, stereo, and RGB-D cameras using pin-hole or fisheye
lens models. In addition, ORB-SLAM3 can perform visual, visual-inertial, and multi-map
SLAM. According to their publication, the performance of ORB-SLAM3 is better than
many other visual SLAM systems. Finally, it can run on Ubuntu 20.4 and use the new
version of related libraries, which is so convenient for us to continue developing an appli-
cation based on it.

Figure 4. ORB-SLAM series structure.

The output of ORB-SLAM3 is the camera’s position at the moment it gets image in-
put. This position can be updated after detecting a loop. ORB-SLAM3 does not create a
dense map. Therefore, if sweet pepper exists in the input images, a 3D point cloud should
be created by another module based on the frame poses. This process happens when the
robot moves along the field of sweet pepper plants.

Figure 4. ORB-SLAM series structure.

The output of ORB-SLAM3 is the camera’s position at the moment it gets image input.
This position can be updated after detecting a loop. ORB-SLAM3 does not create a dense
map. Therefore, if sweet pepper exists in the input images, a 3D point cloud should be
created by another module based on the frame poses. This process happens when the robot
moves along the field of sweet pepper plants.

2.3. ICP Algorithm

Most visual SLAM faces cumulative drift problems, which can be solved by loop
detection. However, the camera will only go one way in our system. It cannot make a loop.
The cutting position must be found online during its movement. The frame pose should be
refined when creating a sweet pepper 3D point cloud. Therefore, the ICP algorithm is used
to stick the point cloud built from each frame together and eliminate the drift problem.

The algorithm’s main idea is to minimize the mean-square distance metric over six
degrees of freedom by testing a set of rotations and translations. This algorithm is often
used to align a pair of point clouds. Especially when these point clouds come from two
close frames, they share many of the same objects. In this case, the ICP algorithm becomes
very efficient and performs its task quickly. However, the speed also depends on the
number of points. Our frame size is 640 × 480, so the number of points could be numerous.
Therefore, the ICP algorithm is applied to semantic point clouds consisting of plant part
points. This saves much time.

3. Proposed System
3.1. Detect Pruning Points and Pruning Regions in 2D Semantic Images

Sweet pepper petioles are soft, and they have small diameters. They should be cut
at a position near the stem, such as in Figure 2. The lowest petiole should be detected
and removed in the context of this study. However, this method is designed to identify all
potential pruning points on all petioles because the strategies for pruning can change in the
future. Our context is one proposed case for evaluating the method.

We proposed a method to detect the pruning points in 2D images in four steps after
they have resulted from the semantic segmentation neural network. This result is a semantic

Sensors 2023, 23, 4040 6 of 14

image including sweet pepper plant parts. The images are captured with a resolution of
640 × 480, so a semantic image is a matrix (640 × 480), and each pixel is a matrix item
having value aij is as below:

aij =

1, aij belongs to stems
2, aij belongs to petioles
3, aij belongs to leaves
4, aij belongs to f ruit
0, aij belongs to others

(1)

Figure 5 describes these steps and their results. Firstly, stems and petioles are separated
into two separate layers, the S layer and the P layer. Each layer is a matrix (640 × 480), and
its items represent pixels in a layer. S layer and P layer have values sij and pij as below:

sij =

{
1, aij = 1
0, aij 6= 1

, pij =

{
1, aij = 2
0, aij 6= 2

(2)
Sensors 2023, 23, x FOR PEER REVIEW 7 of 15

Figure 5. Four steps to detect pruning regions and pruning points in 2D semantic images.

The predicted results always have many uncertainties. The OpenCV-connected com-
ponent function is used to remove noise. Next, the petioles and stems are enlarged by a
2D convolution operation with a kernel matrix (7 × 7) with all item values of 1. Therefore,
each item of the enlarged layer 𝑙[𝑖, 𝑗] are calculated as in Equation (3):

𝑙[𝑖, 𝑗] =
⎩⎪⎨
⎪⎧1, 𝑥[𝑖 − 𝑚, 𝑗 − 𝑛] > 0

0, 𝑥[𝑖 − 𝑚, 𝑗 − 𝑛] = 0 (3)

where x is the stem layer or the petiole layer. The intersection of the two layers is found
by adding these two enlarged layers and selecting items having values of 2, as in Equation
(4): 𝑖𝑡[𝑖, 𝑗] = 0, 𝑠[𝑖, 𝑗] + 𝑝[𝑖, 𝑗] ≠ 21, 𝑠[𝑖, 𝑗] + 𝑝[𝑖, 𝑗] = 2 (4)

These intersection regions prove that the petioles connect with the stems and are the
petioles’ root points. The pruning points should be near the intersection regions and be-
long to the petioles. Therefore, in the next step, the intersection layer is enlarged, and its
overlapping regions with the original petiole layer are detected. Here, the second inter-
section layer is created. The points of these intersection regions meet the requirement of
pruning points and are called pruning regions. The center points of these regions are cho-
sen as the pruning points. The way to enlarge the layer and find the intersection layer is
similar to Equations (3) and (4). Then, these pruning regions are integrated into the origi-
nal semantic images to create a 3D semantic point cloud.

3.2. Create a 3D Semantic Point Cloud
Creating a 3D point cloud is the same as putting each pixel or group of pixels in RGB

images as a point in a 3D coordinate system. With the intrinsic parameters of a depth
camera, such as the scaling factor, focal length, and center x and center y, the coordinate
(x, y, z) value can be calculated in 3D space as follows: 𝑧 = 𝑑𝑒𝑝𝑡ℎ 𝑢, 𝑣𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟 (5)

Figure 5. Four steps to detect pruning regions and pruning points in 2D semantic images.

The predicted results always have many uncertainties. The OpenCV-connected com-
ponent function is used to remove noise. Next, the petioles and stems are enlarged by a
2D convolution operation with a kernel matrix (7 × 7) with all item values of 1. Therefore,
each item of the enlarged layer l[i, j] are calculated as in Equation (3):

l[i, j] =

1,

7
∑

m=1

7
∑

n=1
x[i−m, j− n] > 0

0,
7
∑

m=1

7
∑

n=1
x[i−m, j− n] = 0

(3)

where x is the stem layer or the petiole layer. The intersection of the two layers is found by
adding these two enlarged layers and selecting items having values of 2, as in Equation (4):

it[i, j] =
{

0, s[i, j] + p[i, j] 6= 2
1, s[i, j] + p[i, j] = 2

(4)

These intersection regions prove that the petioles connect with the stems and are
the petioles’ root points. The pruning points should be near the intersection regions and

Sensors 2023, 23, 4040 7 of 14

belong to the petioles. Therefore, in the next step, the intersection layer is enlarged, and
its overlapping regions with the original petiole layer are detected. Here, the second
intersection layer is created. The points of these intersection regions meet the requirement
of pruning points and are called pruning regions. The center points of these regions are
chosen as the pruning points. The way to enlarge the layer and find the intersection layer is
similar to Equations (3) and (4). Then, these pruning regions are integrated into the original
semantic images to create a 3D semantic point cloud.

3.2. Create a 3D Semantic Point Cloud

Creating a 3D point cloud is the same as putting each pixel or group of pixels in RGB
images as a point in a 3D coordinate system. With the intrinsic parameters of a depth
camera, such as the scaling factor, focal length, and center x and center y, the coordinate
(x, y, z) value can be calculated in 3D space as follows:

z = depth(u,v)
scaling_ f actor

x = (u− centerX) ∗ z
f ocal_length

y = (v− centerY) ∗ z
f ocal_length

(5)

where u and v are the column and row values of a pixel in 2D images, and depth (u, v)
returns the distance value from the camera to the pixel saved in the depth image.

In RGB-D images, each RGB image has a corresponding depth image. When the RGB
image is converted to a semantic image, this semantic image shares the same depth image.
Therefore, a 3D semantic point cloud can be created from this semantic image and its
corresponding depth image.

Figure 6 shows two examples of creating point clouds from a sweet pepper plant
displayed by the PCL library at a resolution of 0.001 m. The left image of row (a) is a 3D
normal point cloud created by the RGB-D image, while the left image of row (b) is a 3D
semantic point cloud created by the semantic image and its depth image. The camera was
set up to be about 1.0 m from the plants, so only points with a depth value of fewer than
1.5 m are selected. The black pixels are not plant parts. They are removed when creating
the point cloud. The blue regions are pruning regions detected by our proposed method.
The semantic point cloud has 38,138 points. This number is much smaller than the number
of points in the normal point cloud, which is 107,316. This saves time when applying the
ICP algorithm to create these point clouds.

3.3. Detect Pruning Points in the 3D Semantic Point Cloud

Each point in a 3D semantic point cloud has a color. This color has its own meaning.
In our context, blue points represent pruning regions, and the pruning points in 3D space
must be in these areas as well. However, there are many blue regions in the semantic
point cloud. The lowest pruning region and its position should be detected. Therefore, a
four-step method to find the lowest pruning points in 3D space is proposed as in Figure 7.

Firstly, the pruning point cloud is extracted by selecting only blue points from the
3D semantic point cloud. A 3D point cloud is created by many RGB-D images taken from
different viewpoints. So that a pruning region in a 3D point cloud can be created from
diverse groups of points from different viewpoints, and these groups can be unconnected
to each other. Therefore, in step 2, the closet points are inserted into each group to connect
them. Then, each group of points is a pruning region of a petiole. Next, each group is
separated, and small groups seen as noises are removed. The y values in the 3D coordinate
system between the remaining groups are compared. The group with the smallest y value
is the lowest pruning region, belonging to the lowest petiole. Finally, the center point of
this group is the final pruning point. The red point in the white circle in the right image of
Figure 7 is the pruning point of the lowest petiole.

Sensors 2023, 23, 4040 8 of 14

Sensors 2023, 23, x FOR PEER REVIEW 8 of 15

𝑥 = 𝑢 − 𝑐𝑒𝑛𝑡𝑒𝑟𝑋 ∗ 𝑧𝑓𝑜𝑐𝑎𝑙_𝑙𝑒𝑛𝑔𝑡ℎ

𝑦 = 𝑣 − 𝑐𝑒𝑛𝑡𝑒𝑟𝑌 ∗ 𝑧𝑓𝑜𝑐𝑎𝑙_𝑙𝑒𝑛𝑔𝑡ℎ

where u and v are the column and row values of a pixel in 2D images, and depth (u, v)
returns the distance value from the camera to the pixel saved in the depth image.

In RGB-D images, each RGB image has a corresponding depth image. When the RGB
image is converted to a semantic image, this semantic image shares the same depth image.
Therefore, a 3D semantic point cloud can be created from this semantic image and its cor-
responding depth image.

Figure 6 shows two examples of creating point clouds from a sweet pepper plant
displayed by the PCL library at a resolution of 0.001 m. The left image of row (a) is a 3D
normal point cloud created by the RGB-D image, while the left image of row (b) is a 3D
semantic point cloud created by the semantic image and its depth image. The camera was
set up to be about 1.0 m from the plants, so only points with a depth value of fewer than
1.5m are selected. The black pixels are not plant parts. They are removed when creating
the point cloud. The blue regions are pruning regions detected by our proposed method.
The semantic point cloud has 38,138 points. This number is much smaller than the number
of points in the normal point cloud, which is 107,316. This saves time when applying the
ICP algorithm to create these point clouds.

Figure 6. Two point clouds created from a sweet pepper plant. (a) 3D normal point cloud created
from an RGB and depth image. (b) 3D semantic point cloud created from semantic and depth im-
ages. The red and green lines represent X and Y axes in a 3D coordinate system.

3.3. Detect Pruning Points in the 3D Semantic Point Cloud
Each point in a 3D semantic point cloud has a color. This color has its own meaning.

In our context, blue points represent pruning regions, and the pruning points in 3D space
must be in these areas as well. However, there are many blue regions in the semantic point
cloud. The lowest pruning region and its position should be detected. Therefore, a four-
step method to find the lowest pruning points in 3D space is proposed as in Figure 7.

Firstly, the pruning point cloud is extracted by selecting only blue points from the 3D
semantic point cloud. A 3D point cloud is created by many RGB-D images taken from
different viewpoints. So that a pruning region in a 3D point cloud can be created from
diverse groups of points from different viewpoints, and these groups can be unconnected
to each other. Therefore, in step 2, the closet points are inserted into each group to connect

Figure 6. Two point clouds created from a sweet pepper plant. (a) 3D normal point cloud created
from an RGB and depth image. (b) 3D semantic point cloud created from semantic and depth images.
The red and green lines represent X and Y axes in a 3D coordinate system.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 15

them. Then, each group of points is a pruning region of a petiole. Next, each group is
separated, and small groups seen as noises are removed. The y values in the 3D coordinate
system between the remaining groups are compared. The group with the smallest y value
is the lowest pruning region, belonging to the lowest petiole. Finally, the center point of
this group is the final pruning point. The red point in the white circle in the right image
of Figure 7 is the pruning point of the lowest petiole.

Figure 7. Four steps to detect the lowest pruning point in 3D space, and the red point is the final
pruning point in the white circle. The red and green lines represent X and Y axes in a 3D coordinate
system.

The PCL library can store points in a Kd-tree (k-dimensional tree) data structure. It
provides a function to find points having a distance of less than a value. A method is
proposed to extract each group of pruning region points by applying this function, as in
Figure 8. Firstly, a random point, P, is selected in the point cloud. This will be the first
point of a group. Then all other points having a distance to this point less than a threshold
t are detected. These points are put into a stack. Next, point P is removed from the point
cloud. Then, if the stack size is greater than 0, a point is popped and put into the group,
and then a loop is made as in Figure 8. When the stack is empty, one group has been found
completely. A new round is performed until there are no more points in the point cloud.
The value of t depends on the point cloud’s resolution value, r. We choose t = 1.5 × r.

Figure 8. The diagram of extracting pruning group points.

3.4. The Entire Pruning Points Detection System
The system consists of five main modules: create semantic images by semantic seg-

mentation neural networks and detect the pruning regions, find camera poses by ORB-
SLAM3, create semantic point clouds, register different point clouds by ICP, and detect
pruning points in the 3D semantic point clouds. Figure 9 shows the structure of this sys-
tem. Section 3.2 shows how to create a semantic point cloud from a semantic and depth
image. However, the semantic point cloud should be made from many images. It means
that many semantic point clouds should be aligned. Therefore, we proposed a method

Figure 7. Four steps to detect the lowest pruning point in 3D space, and the red point is the
final pruning point in the white circle. The red and green lines represent X and Y axes in a 3D
coordinate system.

The PCL library can store points in a Kd-tree (k-dimensional tree) data structure. It
provides a function to find points having a distance of less than a value. A method is
proposed to extract each group of pruning region points by applying this function, as in
Figure 8. Firstly, a random point, P, is selected in the point cloud. This will be the first point
of a group. Then all other points having a distance to this point less than a threshold t are
detected. These points are put into a stack. Next, point P is removed from the point cloud.
Then, if the stack size is greater than 0, a point is popped and put into the group, and then a
loop is made as in Figure 8. When the stack is empty, one group has been found completely.
A new round is performed until there are no more points in the point cloud. The value of t
depends on the point cloud’s resolution value, r. We choose t = 1.5 × r.

Sensors 2023, 23, 4040 9 of 14

Sensors 2023, 23, x FOR PEER REVIEW 9 of 15

them. Then, each group of points is a pruning region of a petiole. Next, each group is
separated, and small groups seen as noises are removed. The y values in the 3D coordinate
system between the remaining groups are compared. The group with the smallest y value
is the lowest pruning region, belonging to the lowest petiole. Finally, the center point of
this group is the final pruning point. The red point in the white circle in the right image
of Figure 7 is the pruning point of the lowest petiole.

Figure 7. Four steps to detect the lowest pruning point in 3D space, and the red point is the final
pruning point in the white circle. The red and green lines represent X and Y axes in a 3D coordinate
system.

The PCL library can store points in a Kd-tree (k-dimensional tree) data structure. It
provides a function to find points having a distance of less than a value. A method is
proposed to extract each group of pruning region points by applying this function, as in
Figure 8. Firstly, a random point, P, is selected in the point cloud. This will be the first
point of a group. Then all other points having a distance to this point less than a threshold
t are detected. These points are put into a stack. Next, point P is removed from the point
cloud. Then, if the stack size is greater than 0, a point is popped and put into the group,
and then a loop is made as in Figure 8. When the stack is empty, one group has been found
completely. A new round is performed until there are no more points in the point cloud.
The value of t depends on the point cloud’s resolution value, r. We choose t = 1.5 × r.

Figure 8. The diagram of extracting pruning group points.

3.4. The Entire Pruning Points Detection System
The system consists of five main modules: create semantic images by semantic seg-

mentation neural networks and detect the pruning regions, find camera poses by ORB-
SLAM3, create semantic point clouds, register different point clouds by ICP, and detect
pruning points in the 3D semantic point clouds. Figure 9 shows the structure of this sys-
tem. Section 3.2 shows how to create a semantic point cloud from a semantic and depth
image. However, the semantic point cloud should be made from many images. It means
that many semantic point clouds should be aligned. Therefore, we proposed a method

Figure 8. The diagram of extracting pruning group points.

3.4. The Entire Pruning Points Detection System

The system consists of five main modules: create semantic images by semantic segmen-
tation neural networks and detect the pruning regions, find camera poses by ORB-SLAM3,
create semantic point clouds, register different point clouds by ICP, and detect pruning
points in the 3D semantic point clouds. Figure 9 shows the structure of this system.
Section 3.2 shows how to create a semantic point cloud from a semantic and depth image.
However, the semantic point cloud should be made from many images. It means that
many semantic point clouds should be aligned. Therefore, we proposed a method using
ORB-SLAM3 to get the camera poses to construct 3D point clouds in the same coordinate
system. The ICP algorithm is applied to refine these point clouds to reduce the drift that
has accumulated over time.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 15

using ORB-SLAM3 to get the camera poses to construct 3D point clouds in the same coor-
dinate system. The ICP algorithm is applied to refine these point clouds to reduce the drift
that has accumulated over time.

After receiving a start signal, RGB-D images were passed through the semantic seg-
mentation neural network to recognize the plant parts. Then, these results go through the
pruning region detection module. On the other hand, RGB-D images were passed through
ORB-SLAM3 to detect the camera poses. These are parallel threads. Semantic point clouds
are created at the end of both threads based on the previous results. This process will be
repeated until the system gets the stop signal. The ICP algorithm is applied at each loop
to align the last semantic point cloud with the new one. When receiving a stop signal, the
creation of a 3D semantic point cloud process stops, and the final semantic point cloud is
passed through the 3D pruning point detection module to get the final pruning point po-
sition.

Figure 9. Structure of the sweet pepper leaf pruning point detection system. The orange rectangles
are our proposed modules. The red point in the final semantic point cloud is the pruning point of
the lowest petiole.

4. Experiment and Results
4.1. Experiment

Our experiments focus on accurate visual results and stable values of pruning point
positions. The system is reliable if the pruning points in the point clouds created by dif-
ferent camera trajectories are the same and the difference in pruning position values is
small. The time of execution is also estimated to verify if the system can be applied in
practice.

The experiments were set up in the lab with sweet pepper plants raised in flower
pots. There is some breeze making the plant tremble slightly. The light does not shine
directly on the camera. We used one camera, the Intel RealSense L515, to capture RGB-D
images. The depth and RGB images are aligned before processing by our application. The
camera was placed in three different positions for a sweet pepper plant, as in Figure 10.
At each position, the camera was handheld and moved with four different trajectories: up,
left, right, and a combination of three of them. The camera was stopped at the starting
position.

The application was written as ROS nodes under Ubuntu 20.4. There are three nodes.
One node wraps ORB-SLAM 3 to provide camera poses. One node was written in Python
to predict plant parts by using a semantic segmentation neural network and detect prun-
ing regions from RGB-D images. The final node was written in C++, creating a 3D semantic
point cloud and finding a pruning point in 3D space. The system was installed in a laptop
having a CPU of i7–7500U, and a GPU of Nvidia GeForce 940MX.

Figure 9. Structure of the sweet pepper leaf pruning point detection system. The orange rectangles
are our proposed modules. The red point in the final semantic point cloud is the pruning point of the
lowest petiole.

After receiving a start signal, RGB-D images were passed through the semantic seg-
mentation neural network to recognize the plant parts. Then, these results go through
the pruning region detection module. On the other hand, RGB-D images were passed
through ORB-SLAM3 to detect the camera poses. These are parallel threads. Semantic
point clouds are created at the end of both threads based on the previous results. This
process will be repeated until the system gets the stop signal. The ICP algorithm is applied
at each loop to align the last semantic point cloud with the new one. When receiving a stop
signal, the creation of a 3D semantic point cloud process stops, and the final semantic point
cloud is passed through the 3D pruning point detection module to get the final pruning
point position.

Sensors 2023, 23, 4040 10 of 14

4. Experiment and Results
4.1. Experiment

Our experiments focus on accurate visual results and stable values of pruning point
positions. The system is reliable if the pruning points in the point clouds created by different
camera trajectories are the same and the difference in pruning position values is small. The
time of execution is also estimated to verify if the system can be applied in practice.

The experiments were set up in the lab with sweet pepper plants raised in flower pots.
There is some breeze making the plant tremble slightly. The light does not shine directly
on the camera. We used one camera, the Intel RealSense L515, to capture RGB-D images.
The depth and RGB images are aligned before processing by our application. The camera
was placed in three different positions for a sweet pepper plant, as in Figure 10. At each
position, the camera was handheld and moved with four different trajectories: up, left,
right, and a combination of three of them. The camera was stopped at the starting position.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 15

Figure 10. Setting up the experiments. (a) shows camera positions, and (b) is a camera position ex-
ample of experiments. The black arrows are camera viewpoints. The blue arrows are moving camera
directions.

4.2. Results
The average time for creating and aligning a semantic point cloud is 0.725 s. The total

time to find a pruning point depends on the length of the camera path before stopping.
We got the 3D semantic point clouds for three different camera view points and four

different camera movement directions. Figure 11 shows the twelve semantic point clouds
created by the experiments. The point clouds in one row had the same starting and stop-
ping positions. The point clouds in each column had the same camera moving directions.
In these point clouds, the green, pink, and purple colors represent the leaves, petioles, and
stems, respectively. The light blue dot in each blue point group is the pruning region cen-
ter point. The pruning point of the lowest petiole was marked by surrounding red points.
Although different experiments used different viewpoints, their pruning points in the
point clouds were the same. Some point clouds were blurred, but the pruning point posi-
tions were still correct. In the experiments, there were some sudden changes in positions
and the speed of the camera, which was moved by hand. Additionally, the wind made the
position of soft leaves change. These reasons could make the point cloud blurry. So, PCL
filter libraries are used to remove outliers and noise points. The most common positions
of the plant parts were kept. Thanks to PCL filter libraries, some noise in plant part pre-
dictions by the semantic segmentation neural network was also removed.

Figure 10. Setting up the experiments. (a) shows camera positions, and (b) is a camera position
example of experiments. The black arrows are camera viewpoints. The blue arrows are moving
camera directions.

The application was written as ROS nodes under Ubuntu 20.4. There are three nodes.
One node wraps ORB-SLAM 3 to provide camera poses. One node was written in Python
to predict plant parts by using a semantic segmentation neural network and detect pruning
regions from RGB-D images. The final node was written in C++, creating a 3D semantic
point cloud and finding a pruning point in 3D space. The system was installed in a laptop
having a CPU of i7–7500U, and a GPU of Nvidia GeForce 940MX.

4.2. Results

The average time for creating and aligning a semantic point cloud is 0.725 s. The total
time to find a pruning point depends on the length of the camera path before stopping.

We got the 3D semantic point clouds for three different camera view points and four
different camera movement directions. Figure 11 shows the twelve semantic point clouds
created by the experiments. The point clouds in one row had the same starting and stopping
positions. The point clouds in each column had the same camera moving directions. In
these point clouds, the green, pink, and purple colors represent the leaves, petioles, and
stems, respectively. The light blue dot in each blue point group is the pruning region center
point. The pruning point of the lowest petiole was marked by surrounding red points.
Although different experiments used different viewpoints, their pruning points in the point
clouds were the same. Some point clouds were blurred, but the pruning point positions

Sensors 2023, 23, 4040 11 of 14

were still correct. In the experiments, there were some sudden changes in positions and the
speed of the camera, which was moved by hand. Additionally, the wind made the position
of soft leaves change. These reasons could make the point cloud blurry. So, PCL filter
libraries are used to remove outliers and noise points. The most common positions of the
plant parts were kept. Thanks to PCL filter libraries, some noise in plant part predictions
by the semantic segmentation neural network was also removed.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 15

Figure 11. The images of twelve-point clouds were created through experiments. The pruning
points were a light blue dot surrounded by a red area to be recognized easily by human eyes. The
red, green, and black lines represent X, Y, and Z axes in a 3D coordinate system.

Table 1 presents the pruning points’ position in the 3D coordinate system in which
the camera position is (0,0,0). One unit of the 3D coordinate system represents 1 mm. The
average difference is the distance from the pruning point detected on the mixed path to
other pruning points with the same stopping positions. These values show that the posi-
tions of pruning points with the same stopping position are close. With around 400mm of
distance from the camera to the pruning points, a little difference in stopping place could
lead to a considerable difference in the pruning points. Furthermore, the camera is moved
by a human hand, so the stopping positions could make little difference in our experi-
ments. Therefore, the average difference from 4.1 to 6.2 in Table 1 proved that our system
is stable.

Table 1. The 3D coordinate value of pruning points was detected from twelve camera moving
paths.

Camera Up
(x, y, z)

Left
(x, y, z)

Right
(x, y, z)

Mix Path
(x, y, z)

Average Difference
(mm)

Position 1 (15,−49,400) (12,−45,401) (22,−47,393) (16,−48,401) 4.19
Position 2 (−17,−75,388) (−17,−76,391) (−23,−75,388) (−15,−80,394) 6.15
Position 3 (50,−53,374) (46,−54,374) (50,−46,372) (46,−51,376) 4.01

Figure 11. The images of twelve-point clouds were created through experiments. The pruning points
were a light blue dot surrounded by a red area to be recognized easily by human eyes. The red, green,
and black lines represent X, Y, and Z axes in a 3D coordinate system.

Table 1 presents the pruning points’ position in the 3D coordinate system in which
the camera position is (0,0,0). One unit of the 3D coordinate system represents 1 mm.
The average difference is the distance from the pruning point detected on the mixed path
to other pruning points with the same stopping positions. These values show that the
positions of pruning points with the same stopping position are close. With around 400mm
of distance from the camera to the pruning points, a little difference in stopping place could
lead to a considerable difference in the pruning points. Furthermore, the camera is moved
by a human hand, so the stopping positions could make little difference in our experiments.
Therefore, the average difference from 4.1 to 6.2 in Table 1 proved that our system is stable.

Sensors 2023, 23, 4040 12 of 14

Table 1. The 3D coordinate value of pruning points was detected from twelve camera moving paths.

Camera Up
(x, y, z)

Left
(x, y, z)

Right
(x, y, z)

Mix Path
(x, y, z)

Average
Difference

(mm)

Position 1 (15,−49,400) (12,−45,401) (22,−47,393) (16,−48,401) 4.19
Position 2 (−17,−75,388) (−17,−76,391) (−23,−75,388) (−15,−80,394) 6.15
Position 3 (50,−53,374) (46,−54,374) (50,−46,372) (46,−51,376) 4.01

4.3. Discussion

Our experiments worked on natural sweet pepper plants, and the camera was moved
by hand. Estimating the ground-truth value to evaluate the experiment results took much
work and was expensive. However, in every hardware system, there are always differences.
If it is stable, it can be refined after experiments.

Twelve experiments were conducted on a plant to check the system’s accuracy. Al-
though the camera’s moving path and starting and stopping positions were different, they
returned the same results visually. This proved that the semantic point clouds were created
correctly. The correct visual results do not mean the right distance or position of the pruning
points to the camera. Therefore, the experiments are divided into three groups. Each group
has the same camera stopping position. The pruning point positions are detected and
compared to each other in a group. If the differences in each group were significant, the
distance from the camera to the pruning point was detected incorrectly. However, the
experiments showed that this value was small in each group. It proved that the pruning
point positions detected by the system are correct and reliable.

The experiment environment was set up with lots of light and breeze to simulate a
natural environment. When the robot moves, it could make plants tremble, and the depth
information in RGB-D images could change for the same point. It is a challenge, but our
system can handle this with acceptable results. The first row of Figure 11 is an example of a
trembling plant.

After archiving with the required accuracy, we focus on time consumption. Most of the
time is taken by the creating semantic point cloud process. Creating a semantic point cloud
of pair RGB-D images in these experiments takes around 0.7 s. It is acceptable because the
robot cannot move fast, and images should be taken at a reasonable distance to get more
different viewpoints. In addition, if the camera is moved quickly, it could lead to errors
when applying the ICP method because the overlap between a pair of point clouds is small.
More experiments will be done to detect the maximum moving speed of the camera when
the program is applied to a complete robotic system.

There are little differences in time, resources, and accuracy when the images of the
plants are taken in the field versus those of the potted plant in the laboratory. The plants in
the fields are bigger, but we are interested only in the lower part of the plant for pruning.
Hence, if we capture images of the lower part of the plant, the time, resources, and accuracy
are similar. We took the RGB-D images at many green farms from seedling to mature age
to make our dataset more general and the model more accurate.

Similar to many other SLAM systems, drift is a big problem. If the camera moves
along a curving path, it could lead to errors in creating a semantic point cloud. The camera
moving in a straight line is a good way to decrease this problem. In addition, our point
cloud is made from many viewpoints. One petiole may not be seen in one depth image, but
it can be seen in other depth images. It decreased the occlusion problem and the impact of
the light-to-depth images. We are working on a prototype of the system. This research took
part, which is taking images and returning the cutting position. We will do more research
on controlling robots before experimenting on green farms.

5. Conclusions

We proposed a system to detect sweet pepper leaf pruning points based on a 3D point
cloud and a semantic segmentation neural network. This system can run in a real-time

Sensors 2023, 23, 4040 13 of 14

and realistic environment. Our experiments proved that the proposed system is stable and
reliable, with correct visual results and a distance of pruning points from the camera.

In addition, in an attempt to achieve a complete sweet pepper pruning system, this
research addressed the important task of providing cutting positions. The proposed system
can be applied to the robot’s arm or manipulator with a scissors end effector. In the future,
we will continue to study an entire robotic system. This research can be extended to perform
sweet pepper shot pruning, width, and height, or leaf area detection based on 3D semantic
point clouds, and it can be a good reference for other plant pruning systems. Furthermore,
a 3D semantic point cloud can be used for object detection in 3D space. It would use fewer
resources than training a neural network to detect an object in the original 3D point cloud.

Author Contributions: Conceptualization, T.T.H.G.; data curation, T.T.H.G.; formal analysis, T.T.H.G.;
methodology, T.T.H.G.; programming, T.T.H.G.; supervision, Y.-J.R.; review and editing, T.T.H.G. and
Y.-J.R. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Korea Institute of Planning and Evaluation for Technology
in Food, Agriculture, and Forestry (IPET) and the Korea Smart Farm R&D Foundation (KosFarm)
through the Smart Farm Innovation Technology Development Program, funded by the Ministry of
Agriculture, Food, and Rural Affairs (MAFRA), the Ministry of Science and ICT (MSIT), and the
Rural Development Administration (RDA) (421032-04-2-HD060).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Malik, A.A.; Chattoo, M.A.; Sheemar, G.; Rashid, R. Growth, yield and fruit quality of sweet pepper hybrid SH-SP-5

(Capsicum annuum L.) as affected by integration of inorganic fertilizers and organic manures. J. Agric. Technol. 2011, 7, 1037–1048.
Available online: http://ijat-aatsea.com/pdf/July_v7_n4_11/16IJAT2011_Malik_R.pdf (accessed on 1 March 2018).

2. Marín, A.; Ferreres, F.; Tomás-Barberán, F.A.; Gil, M.I. Characterization and quantitation of antioxidant constituents of sweet
pepper (Capsicum annuum L.). J. Agric. Food Chem. 2004, 52, 3861–3869. [CrossRef]

3. Sobczak, A.; Kowalczyk, K.; Gajc-Wolska, J.; Kowalczyk, W.; Niedzinska, M. Growth, yield and quality of sweet pepper fruits
fertilized with polyphosphates in hydroponic cultivation with led lighting. Agronomy 2020, 10, 1560. [CrossRef]

4. Alsadon, A.; Wahb-Allah, M.; Abdel-Razzak, H.; Ibrahim, A. Effects of pruning systems on growth, fruit yield and quality traits
of three greenhouse-grown bell pepper (Capsicum annuum L.) cultivars. Aust. J. Crop Sci. 2013, 7, 1309–1316.

5. Mussa, A.; Shinichi, K. Effect of planting space and shoot pruning on the occurrence of thrips, fruit yield and quality traits of
sweet pepper (Capsicum annum L.) under greenhouse conditions. J. Entomol. Zool. Stud. 2019, 7, 787–792.

6. Brenard, N.; Bosmans, L.; Leirs, H.; De Bruyn, L.; Sluydts, V.; Moerkens, R. Is leaf pruning the key factor to successful biological
control of aphids in sweet pepper? Pest Manag. Sci. 2020, 76, 676–684. [CrossRef]

7. Giang, T.T.H.; Khai, T.Q.; Im, D.; Ryoo, Y. Fast Detection of Tomato Sucker Using Semantic Segmentation Neural Networks Based
on RGB-D Images. Sensors 2022, 22, 5140. [CrossRef]

8. He, L.; Schupp, J. Sensing and automation in pruning of apple trees: A review. Agronomy 2018, 8, 211. [CrossRef]
9. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
10. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001; Volume 1. [CrossRef]
11. Maier, R.; Sturm, J.; Cremers, D. Submap-based bundle adjustment for 3D reconstruction from RGB-D data. In GCPR 2014: Pattern

Recognition; Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2014; Volume 8753, pp. 54–65. [CrossRef]

12. Rosten, E.; Drummond, T. Fusing Points and Lines for High Performance Real-Time Tracking; University of Cambridge: Cambridge,
UK, 2005.

13. Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle Adjustment—A Modern Synthesis. Zhonghua Wei Zhong Bing
Ji Jiu Yi Xue 2000, 28, 298–372.

14. Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [CrossRef]
15. Özyeşil, O.; Voroninski, V.; Basri, R.; Singer, A. A survey of structure from motion. Acta Numer. 2017, 26, 305–364. [CrossRef]
16. Yu, F.; Gallup, D. 3D reconstruction from accidental motion. In Proceedings of the 2014 IEEE Conference on Computer Vision and

Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3986–3993. [CrossRef]
17. Henry, P.; Krainin, M.; Herbst, E.; Ren, X.; Fox, D. RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of

indoor environments. Int. J. Rob. Res. 2012, 31, 647–663. [CrossRef]
18. Wang, K.; Zhang, G.; Bao, H. Robust 3D reconstruction with an RGB-D camera. IEEE Trans. Image Process. 2014, 23, 4893–4906.

[CrossRef] [PubMed]

http://ijat-aatsea.com/pdf/July_v7_n4_11/16 IJAT2011_Malik_R.pdf
https://doi.org/10.1021/jf0497915
https://doi.org/10.3390/agronomy10101560
https://doi.org/10.1002/ps.5565
https://doi.org/10.3390/s22145140
https://doi.org/10.3390/agronomy8100211
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1109/cvpr.2001.990517
https://doi.org/10.1007/978-3-319-11752-2_5
https://doi.org/10.1109/34.121791
https://doi.org/10.1017/S096249291700006X
https://doi.org/10.1109/CVPR.2014.509
https://doi.org/10.1177/0278364911434148
https://doi.org/10.1109/TIP.2014.2352851
https://www.ncbi.nlm.nih.gov/pubmed/25203988

Sensors 2023, 23, 4040 14 of 14

19. Taketomi, T.; Uchiyama, H.; Ikeda, S. Visual SLAM algorithms: A survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 2017,
9, 16. [CrossRef]

20. Davison Real-time simultaneous localisation and mapping with a single camera. In Proceedings of the Ninth IEEE International
Conference on Computer Vision, Nice, France, 13–16 October 2003; Volume 2, pp. 1403–1410.

21. Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-Time Single Camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell.
2007, 29, 1052–1067. [CrossRef]

22. Newcombe, R.A.; Fitzgibbon, A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.; Hodges, S.
KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International Symposium on
Mixed and Augmented Reality, Basel, Switzerland, 26–29 October 2011; pp. 127–136.

23. Labbe, M.; Michaud, F. Online global loop closure detection for large-scale multi-session graph-based SLAM. In Proceed-
ings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September
2014; pp. 2661–2666.

24. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot.
2015, 31, 1147–1163. [CrossRef]

25. Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras.
IEEE Trans. Robot. 2017, 33, 1255–1262. [CrossRef]

26. Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual,
Visual-Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [CrossRef]

27. Botterill, T.; Paulin, S.; Green, R.; Williams, S.; Lin, J.; Saxton, V.; Mills, S.; Chen, X.; Corbett-Davies, S. A Robot System for Pruning
Grape Vines. J. Field Robot. 2017, 34, 1100–1122. [CrossRef]

28. Amatya, S.; Karkee, M.; Zhang, Q.; Whiting, M.D. Automated detection of branch shaking locations for robotic cherry harvesting
using machine vision. Robotics 2017, 6, 31. [CrossRef]

29. Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International Conference on
Robotics and Automation, Shanghai, China, 9–13 May 2011; Volume 74, pp. 1–4.

30. Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. ROS: An open-source Robot
Operating System. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society,
Yokohama, Japan, 9–12 November 2015. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s41074-017-0027-2
https://doi.org/10.1109/TPAMI.2007.1049
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1002/rob.21680
https://doi.org/10.3390/robotics6040031
https://doi.org/10.1109/IECON.2015.7392843

	Introduction
	Related Works
	Semantic Segmentation Neural Network
	ORB-SLAM3
	ICP Algorithm

	Proposed System
	Detect Pruning Points and Pruning Regions in 2D Semantic Images
	Create a 3D Semantic Point Cloud
	Detect Pruning Points in the 3D Semantic Point Cloud
	The Entire Pruning Points Detection System

	Experiment and Results
	Experiment
	Results
	Discussion

	Conclusions
	References

