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Abstract: To effectively ensure the operational safety of an electric vehicle with in-wheel motor
drive, a novel diagnosis method is proposed to monitor each in-wheel motor fault, the creativity of
which lies in two aspects. One aspect is that affinity propagation (AP) is introduced into a minimum-
distance discriminant projection (MDP) algorithm to propose a new dimension reduction algorithm,
which is defined as APMDP. APMDP not only gathers the intra-class and inter-class information of
high-dimensional data but also obtains information on the spatial structure. Another aspect is that
multi-class support vector data description (SVDD) is improved using the Weibull kernel function,
and its classification judgment rule is modified into a minimum distance from the intra-class cluster
center. Finally, in-wheel motors with typical bearing faults are customized to collect vibration signals
under four operating conditions, respectively, to verify the effectiveness of the proposed method. The
results show that the APMDP’s performance is better than traditional dimension reduction methods,
and the divisibility is improved by at least 8.35% over the LDA, MDP, and LPP. A multi-class SVDD
classifier based on the Weibull kernel function has high classification accuracy and strong robustness,
and the classification accuracies of the in-wheel motor faults in each condition are over 95%, which is
higher than the polynomial and Gaussian kernel function.

Keywords: in-wheel motor; vibration signal; fault diagnosis; affinity propagation minimum-distance
discriminant; multi-class support vector data description; Weibull kernel function

1. Introduction

Faced with the problems of resource shortage and environmental pollution, the de-
velopment of electric vehicles has become a mainstream trend of the automobile industry,
especially electric vehicles with in-wheel motor drive [1]. This is because the in-wheel
motor drive technology not only simplifies the components of the vehicle drivetrain and
enhances the efficiency of the driving system but also flexibly controls the vehicle and
optimizes its spatial arrangement [2–4]. At present, some literature exists on the control
of an electric vehicle with in-wheel motor drive, such as a fault-tolerant control [5] and a
linear parameter-varying controller [6]. The stability and activity of the steering system
are improved. In view of the body structure and automobile theory, an even number of
in-wheel motors are equally distributed on both sides of the vehicle, and each in-wheel
motor is specially installed in the wheel. Moreover, the running condition of the vehicle
is frequently varied, and the operation environment is hostile. However, it is also easy to
induce damage to some parts of an in-wheel motor. When the damage is severe, some
mechanical faults occur. When one or more in-wheel motors go astray, the driving torques
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on both sides of the body will lose balance. The vehicle is then pulled to one side, which
could endanger the security of the vehicle and the driver. Therefore, it is necessary to
establish an effective real-time monitoring and fault diagnosis system for the running state
of an in-wheel motor.

It is well-known that some pre-processing works, such as noise reduction [7,8] and
feature extraction [9,10], can improve the accuracy of fault diagnosis [11,12]. For many
interference factors or a complex environment, multidimensional condition monitoring
information is often used to extract the object of a follow-on process. However, the response
speed of the diagnosis system is reduced to some extent. Then, it is important that high-
dimensional condition data are reduced into low-dimensional fault features. At present,
dimension reduction algorithms can be divided into two categories, namely, linear and
nonlinear dimension reduction [13]. The linear dimension reduction method is based on
using a linear transformation to find the appropriate projection direction so as to obtain
a low-dimensional observation of the original data. This method is good at discovering
the overall characteristics of data, while the nonlinear dimension reduction method in-
volves the expansion of nonlinear data, which is better at exploring the distribution law
of complex, nonlinear data. The linear dimension reduction method realizes the mapping
of data from a high-dimensional space to low-dimensional space by learning a specific
linear transformation. Its essence is to find the basis of a new space to transform the data
as a whole [14]. The global structure is a type of important information in the spatial
distribution of data, and many classical feature extraction methods are proposed based
on this information. The most common methods are the principal component analysis
(PCA) [15], linear discriminant analysis (LDA) [16], Fisher discriminant analysis (FDA) [17],
etc. The LDA constructs an optimal projection matrix by minimizing intra-class diver-
gence and maximizing inter-class divergence. The LDA can prevent the problems of a
long identification time and low classification efficiency due to the relatively high feature
dimension [18]. The LDA is a dimensionality reduction algorithm based on the overall
sample structure, but it cannot consider the local manifold structure of the sample. The
locality-preserving projection (LPP) algorithm is then proposed to linearize the traditional
Laplacian feature mapping algorithm to achieve data clustering performance with a smaller
computation loss [19]. The LPP algorithm considers the local structure of the sample, but
neglects the category information conducive to classification; thus, more information about
the spatial structure of high-dimensional data cannot be explored. Based on the advantages
and disadvantages of the LDA and LPP algorithms, the minimum-distance discriminant
projection (MDP) algorithm is proposed to introduce the weight of inter-class similarity and
intra-class similarity for evaluating the distances between all samples and the inter-class
and intra-class centers [20]. However, the above methods are only based on the mean value
of the whole class, and neither consider the spatial structure distribution of the samples
nor think about the nearest neighbor relationship among the different classes. Affinity
propagation (AP) is used to cluster large-scale data [21,22]. AP is also employed to improve
the traditional MDP algorithm and propose a new dimension reduction algorithm, which
is defined as affinity propagation minimum-distance discriminant projection (APMDP).
APMDP takes the nearest neighbor relationship and the local structure information of
samples as important reference indexes to select the clustering center and construct the
sample neighborhood.

Moreover, it is essential to select a suitable and effective classifier for an on-time
fault diagnosis system of an in-wheel motor. In recent years, there are many classifica-
tion algorithms that have been widely used in the field of fault diagnosis, such as the
support vector machine [23,24], artificial neural networks [25], convolutional neural net-
work (CNN) [26,27], multi-scale CNN [28], artificial hydrocarbon network [29], generative
adversarial network [30], dynamic Bayesian network [31], graph attention network [32], seg-
mentation framework [33], Gaussian process regression [34] and hidden Markov model [35].
These methods are constructive to the fault diagnosis system of an in-wheel motor. How-
ever, the traditional fault diagnosis and monitoring methods are mostly used in off-line
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diagnosis and can be used rarely in the field of on-line diagnosis which conforms to practi-
cal engineering applications [36]. In addition, the problem of missing or unsound fault data
in actual engineering also increases the difficulty of on-line diagnosis [37]. It is necessary
to diagnose the fault state on the basis of the monitoring data in the normal state. Thus,
support vector data description (SVDD) is proposed to construct the hypersphere to achieve
the classification of target data and non-target data [38]. Traditional SVDD can only give
a description of the target data set and ignores the description of different sample classes
in the target data set. Based on this, multi-class SVDD is proposed to construct multiple
hyperspheres and realize the simultaneous classification and recognition of two or more
types of samples [39]. Moreover, multi-class SVDD introduces different kernel functions to
map samples from the input space to the high-dimensional feature space. At present, poly-
nomial and Gaussian kernel functions are often used in the multi-class SVDD algorithm [40].
A polynomial kernel function can realize the prediction of the summary by subjectively
setting the power number, but it is not suitable for the power number of a large order of
magnitude. The Gaussian kernel function can be mapped to infinite dimensions, but its
interpretability is poor and it is easy to overfit. In the field of reliability engineering and
data-related fitting, Weibull distribution is widely used. For example, the three-parameter
Weibull distribution is combined with a neural network (NN) and genetic algorithm (GA)
to estimate kernel density [41]. Certainly, three-parameter Weibull distribution can be
transformed into two parameters [42]. The scale and shape parameters can be adjusted to
map to infinite dimensions and avoid overfitting, and it has a strong sensitivity to similar
logarithmic data points and high differentiation [43]. Therefore, the Weibull function is
based on constructing a kernel function, which is called the Weibull kernel function, and
the Weibull kernel function is then introduced into a multi-class SVDD algorithm.

Vibration signals contain an abundance of information, and vibration signals are often
used to monitor the running state and diagnose a fault in the field of fault diagnosis [44,45].
For a mechanical fault of an in-wheel motor, common bearing faults are regarded as a
representative of measured vibration signals. Under near-real operating conditions of an
electric vehicle, high-dimensional fault features are extracted to represent the different
states of the in-wheel motors. APMDP is presented to reduce the dimension of a follow-on
process for accelerating the response speed of the diagnosis system in Section 2. Affinity
propagation (AP) is introduced into the minimum-distance discriminant projection (MDP)
algorithm to propose a new dimension reduction algorithm, which is defined as APMDP.
APMDP not only gathers the intra-class and inter-class information of high-dimensional
data but also obtains the spatial structure information. Weibull-kernel-function-based
SVDD is proposed to improve the classification accuracy and enhance the robustness in
Section 3. A multi-class support vector data description (SVDD) is improved using the
Weibull kernel function, and its classification judgment rule is modified into the minimum
distance from an intra-class cluster center. Section 4 describes the self-made test bench
of in-wheel motor and three bearing faults that frequently occur in engineering practice,
builds the diagnosis system of an in-wheel motor, demonstrates the recognition capability
of the proposed methods, and compares the stability and robustness of the diagnosis
system. Finally, conclusions are summarized, and future research is determined.

2. Affinity Propagation Minimum-Distance Discriminant Projection
2.1. Minimum-Distance Discriminant Projection

Let a high-dimensional sample set X be divided into C categories. The D-dimensional
sample set of the cth (c∈C) class is Xc =

{
xc

i

∣∣i = 1, 2, · · · , nc; xc
i ∈ RD}. Then, the intra-

class divergence matrix Sw and inter-class divergence matrix Sb can be defined as follows:

Sw =
C

∑
c=1

nc

∑
i=1

ωc
i (xc

i −mXc)(xc
i −mXc)T (1)
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Sb =
C

∑
c=1

nc

∑
i=1

C

∑
k=1,k 6=c

bk
i (xc

i −mXk )(xc
i −mXk )

T (2)

where xc
i is the ith sample in the cth class, and ωc

i and bk
i express the weight of the similarity

of xc
i to the class inner center point mXc and the center point mXk of the kth class (k 6= c),

respectively. In general, mXc and mXk can be determined by the sample mean of the
corresponding class.

The objective function of the minimum-distance discriminant projection (MDP) is:

JMDP = argmax
a

aTSba
aTSwa

(3)

The eigenvalues of S−1
w Sb are calculated and sorted by their values, and the eigenvec-

tors a1, a2, · · · , at, corresponding to the top t eigenvalues, are used to construct the feature
matrix of the MDP algorithm AMDP = [a1, a2, · · · , at]. The sample set of the cth class is
then projected to obtain the t-dimensional feature set, which is expressed as Xc AMDP.

2.2. Affinity Propagation Minimum-Distance Discriminant Projection

Based on the MDP algorithm, affinity propagation (AP) is employed to propose a
new dimension reduction algorithm, which is defined as affinity propagation minimum-
distance discriminant projection (APMDP). APMDP takes the nearest neighbor relationship
and the local structure information of samples as important reference indexes to select
the clustering center and construct the sample neighborhood. This has the advantages of
avoiding the setting of the cluster number in advance and taking the original sample points
as the final clustering center.

For the sample set of the cth class Xc, the AP algorithm is used to obtain the cluster
number and its center point. Here, the cluster number is labeled as Tc, the ith cluster
sample set in the cth class is defined as Xc

i =
{

xc
ij

∣∣∣j = 1, 2, · · · , nci; xc
ij ∈ Xc

}
, and the

corresponding center point is xc
oi. Therefore, the intra-class divergence matrix S′w and

inter-class divergence matrix S′b can be expressed as:

S′w =
C

∑
c=1

Tc

∑
i=1

nci

∑
j=1

wc
ij

(
xc

ij −mXc
i

)(
xc

ij −mXc
i

)T
(4)

S′b =
C

∑
c=1

Tc

∑
i=1

nci

∑
j=1

C

∑
k 6=c

bc,k
ij

(
xc

ij −mXk
i

)(
xc

i −mXk
i

)T
(5)

where mXc
i

is the intra-class local mean that is the mean value of Xc
i , mXk

i
is the inter-class

local mean that is the mean value of Xk
i (k 6= c), wc

ij is the similarity weight between mXc
i

and each sample xc
ij in Xc

i , and bc, k
ij is the similarity weight between mXk

i
and each sample

xc
ij in Xc

i . wc
ij and bc, k

ij can be defined as follows:

ωc
ij = exp

(
−1

t

∥∥∥xc
i −mXc

j

∥∥∥2
)

(6)

bc,k
ij =

{
δ, δ > σ
0, others

(7)

where δ = exp
(

1
t ‖xc

ij −mXc
i
‖2 − ‖xc

ij −mXk
i
‖2
)

, t is the square of the mean Euclidean
distance among all samples, σ is adjustable parameter (0 < σ < 1).
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Similarly, the objective function of APMDP is defined as

JAPMDP = argmax
a′

a′TS′ba′

a′TS′wa′
(8)

The APMDP algorithm is shown as Figure 1.
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The eigenvalues of (S′w)
−1S′b are calculated to select the top t eigenvalues, and the

corresponding eigenvectors a′1, a′2, · · · , a′t, are then confirmed to construct the feature
matrix of APMDP AAPMDP =

[
a′1, a′2, · · · , a′t

]
. Let Yc be the main projection matrix

that the sample set Xc has been projected; then, Yc = Xc AAPMDP. Obviously, Yc is the
t-dimensional features set that is expressed as Yc =

{
yc

i

∣∣i = 1, 2, · · · , nc; yc
i ∈ Rt}. The

sample set X is then projected by APMDP to obtain the main projection matrix Y.

3. Weibull-Kernel-Based SVDD
3.1. AP-Based SVDD

SVDD is a promising and popular method for one-class classification or data descrip-
tion. It features a non-parametric sparse model without requiring the knowledge of explicit
data distribution [46]. Multi-class SVDD is a generalized SVDD algorithm which finds mul-
tiple spheres around the multi-class data [47]. For the main projection matrix Y, multi-class
SVDD is suitable for the classification of C categories samples. When the main projection
matrix Y is taken as the input, and each type of main projection matrix Yc is described
as a closed and compact hypersphere, and the sample points of Yc are fully contained or
contained or as much as possible in the sphere. The objective function of SVDD is:

min
rc

(
(rc)2 + pc

nc
∑

i=1
ξc

i

)
s.t

∥∥yc
i − sc

∥∥2 ≤ (rc)2 + ξc
i , ξc

i ≥ 0

(9)
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where sc and rc are the center and radius of the cth class hypersphere, respectively, ξc
i is

slack variable, pc is penalty parameter. K(yi, yj) is introduced instead of the inner product,
and the dual form of Equation (9) can be converted into:

maxL =
nc
∑

i=1
αc

i K
(
yc

i , yc
i
)
−

nc
∑

i=1

nc
∑

j=1
αc

i αc
j K
(
yc

i , yc
i
)

s.t
nc
∑

i=1
αc

i = 1, 0 ≤ αc
i ≤ pc, i = 1, 2, . . . , nc

(10)

The quadratic programming problem corresponding to Equation (10) is solved to
obtained C hyperspheres, and the center and radius of the cth class hypersphere are
expressed as:

sc =
nc
∑

i=1

nc
∑

j=1
αc

i αc
j K
(

yc
i , yc

j

)
(rc)2 = K(y∗c, y∗c)− 2

nc
∑
i

αc
i K
(
y∗c, yc

i
)
+

nc
∑

i=1

nc
∑

j=1
αc

i αc
j K
(

yc
i , yc

j

)
∀ y∗c ∈ SVc

(11)

For a certain test point z, APMDP is used to obtain the corresponding input
z′ = z·AAPMDP, and then the distance between the test point z and the center sc of the
hypersphere is calculated as follows:

(dc)2 =
∥∥z′ − sc∥∥2

= ‖z · AAPMDP − sc‖2 (12)

The traditional method is to compare the size relation of rc and dc. If dc ≤ rc, then the
test point belongs to the cth class [48]. However, it often occurs that multiple hyperspheres
are mixed together, and if dc is smaller than the radius of these hyperspheres at the same
time, the simple comparison method is unreliable. Therefore, the AP clustering algorithm is
used to optimize the classification criterion of SVDD. In the paper, the classification model
is called AP-based SVDD.

The major objective of AP-based SVDD is to refine the distances between the test point
and each cluster center of the overlapped hyperspheres to find the cluster and its center with
the smallest distance. The test point is then classified correctly. Suppose l (l ≥ 2) hyperspheres
are mixed together. The corresponding classes are labeled with q1, q2, . . . , qj, . . . , ql, the center

point of the sample set of the ith (i ≤ Tqj ) cluster X
qj
i in the jth overlapped hypersphere is x

qj
oi ,

and the center point after the projection is y
qj
oi . The distance between the test point z and the

cluster center y
qj
oi is then calculated by:(

d
qj
i

)2
=
∥∥∥z′ − y

qj
oi

∥∥∥2
=
∥∥∥z · AAPMDP − y

qj
oi

∥∥∥2
(13)

The traditional minimum distance classification method is optimized to propose a
novel criterion which the distance from a cluster center in each intra-class is a minimum.
For the test point z and the cluster center y

qj
oi , the classification criterion of AP-based SVDD

can be expressed as follows

dq∗

i∗ = min
qj , i

(dq1
1 , dq1

2 , · · ·, dq1
Tq1

, dq2
1 , dq2

2 , · · ·, dq2
Tq2

, · · ·, dql
1 , dql

2 , · · ·, dql
Tql

) (14)

3.2. Weibull Kernel Function

SVDD can convert the nonlinear problem in the original space into the linear problem
in the higher dimensional space; this is attributed to the kernel function. At present, the
polynomial and Gaussian kernel functions are often used in the SVDD algorithm. However,
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there are two issues that are the focus of the application for the above kernel function. One
is the problem of overfitting or parameter selection in a high-order condition, and the other
is that a kernel function is used to describe multiple distribution types of observation data.
For multiple faults of an in-wheel motor, the monitoring data are distributed differently,
and the data distributions in the different operating conditions vary greatly. Then the
polynomial and Gauss kernel functions are not a good fit for the diagnosis field of an
in-wheel motor fault.

The Weibull function, as the theoretical basis for reliability analysis and life test, is
widely used in the data processing of cumulative wear failures and the life testing of
various mechanical and electrical equipment [49]. It can not only describe the distribution
characteristics of various data but can also distinguish the data with close distances or a
high feature similarity. Therefore, Weibull function is used to construct a Weibull kernel
function, as follows:

K
(
yi, yj

)
= exp

(
−
(∥∥yi − yj

∥∥
β

)γ)
(15)

where β (β > 0) is the scale parameter, and γ (γ > 0) is the shape parameter. Equation (15) is
used to obtain the kernel function matrix, and it is then easily proven that the matrix is a
symmetric matrix with diagonal elements of 1 and is positive semi-definite. Therefore, if
the Weibull kernel function satisfies Mercer’s theorem, it is an effective kernel function.

Figure 2 shows the curves of a Weibull kernel function with different parameters.
In the case of γ = 1 or γ = 3, the value of K(yi, yj) decreases with the increase in yi − yj.
The larger the β is, the gentler the curve is. When γ = 2 or γ = 4, the kernel function has
symmetry, the axis of symmetry is yi − yj = 0, and the curve becomes more gentle with the
increase in β. Obviously, the Weibull kernel function is a global kernel function when γ
is an odd number, and has global characteristics and can extract the global characteristics
of samples. When γ is an even number, it is a local kernel function that has local features
and can extract the local features of the sample. In particular, the Weibull kernel function
becomes the Gaussian kernel function when γ = 2’ it is obvious that the Gaussian kernel
function is a special case of the Weibull kernel function. Therefore, the Weibull kernel
function has broader application prospects. The appropriate parameters are selected to
describe uniformly different distribution types of data.
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3.3. Weibull-Kernel-Function-Based SVDD

The Weibull kernel function was selected to calculate the center and radius of each
class hypersphere. Then, the objective of SVDD was converged for multi-class classification.
In this paper, the algorithm is called Weibull-kernel-function-based SVDD. To verify the
robustness and effectiveness of the proposed method, three data sets were selected by
the University of California, Irvine (UCI), and SVDD algorithms based on polynomial,
Gaussian, and Weibull kernel functions were then performed. The recognition accuracies
and running times were analyzed as shown in Table 1. However, it is important to note that
all data were directly input into different SVDD algorithms for verifying the performance
of each kernel function.

Table 1. Performance comparison of SVDD algorithms based on different kernel functions.

Data Set Polynomial Kernel Gaussian Kernel Weibull Kernel

Name Class Accuracy/% Time/ms Accuracy/% Time/ms Accuracy/% Time/ms

Iris
I 100.0

367
100.0

379
100.0

350II 75.0 75.0 75.0
III 90.0 90.0 95.0

Wine
I 86.7

365
86.7

360
86.7

355II 73.3 66.7 73.3
III 100.0 100.0 100.0

Seeds
I 55.0

396
55.0

397
65.0

389II 45.0 40.0 80.0
III 85.0 85.0 85.0

On the whole, the recognition accuracy of Weibull-kernel-function-based SVDD is
higher than the polynomial and Gaussian kernel functions, and the running time is also
slightly less. According to the local situation analysis, there are many differences in the
discriminations of the three data sets. In particular, the features of the three classes in the
Seeds data set are ambiguous, the recognition accuracies of the SVDD based on polynomial
and Gaussian kernel functions are generally low, and one of Class II is not more than 50%.
However, the Weibull-kernel-function-based SVDD can boost the recognition accuracy by
up to 80%. Therefore, the Weibull-kernel-function-based SVDD has strong robustness and
high classification ability.

4. Experiment Verification

To verify the effectiveness of the proposed fault diagnosis system using APMDP and
the Weibull-kernel-function-based SVDD, in-wheel motor monitoring data from the self-
made test stand were studied in this section. Moreover, traditional LDA, MDP, and LPP
are performed with the experimental data, and the classification performances of SVDDs
based on different kernel functions are compared.

4.1. In-Wheel Motor Test Bench

Figure 3 is a photograph of the in-wheel motor test bench that was designed to simulate
the actual operating condition of an electric vehicle. The installation of the in-wheel motor
was the same as real electric vehicle, which has a stator axis mounted on the suspension and
the rotor fixed into the hub of a wheel. A hydraulic excitation table was controlled to simulate
road shocks, and the base height of the table was adjusted to simulate a vertical load of
1 ton. The power supply and controller of the real electric vehicle were used directly to control
the rotating speed of the in-wheel motor, and a digital tachometer (Type: DM6234P) was
used to measure the speed so that the speed was stable in 300, 400, 500, or 600 rev/min and
thereabouts. The accelerometer (Type: QKC100LTH; Sensitivity: 13.3 mV/A) was fixed on
the stator axis to acquire the vibration signal. Moreover, the features of bearing faults, the
processing power, and the timeliness of the on-board processor were considered, the sampling
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frequency was set to 12.8 kHz, and the sampling time was chosen at 60 s. Vibration signals
were collected by an LMS SCADAS mobile multifunctional data acquisition instrument and
its supporting LMS Test-Lab Rev 11B software.
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Figure 3. In-wheel motor test bench.

To quantitatively research the faults of the in-wheel motor, three common bearing
faults such as an inner race defect, rolling element defect, and outer race defect were
artificially built onto the stator axis of each in-wheel motor by professionals. Certainly,
the dimensions of the in-wheel motor were DU2505237, and the defect sizes were the
same: the width was 0.3 mm, and the depth was 0.1 mm. In the process of performing
the experiments, a normal in-wheel motor was first used to demarcate the basic operating
environment and the control voltages for different speeds. In-wheel motors with an inner
race fault, rolling element fault, and outer race fault were exchanged in order to run in
the above controlled and operated environment. The partial experiment signals of four
different in-wheel motors, including a normal state and three faults at 600 rev/min, are
shown as in Figure 4.
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4.2. Construction of In-Wheel Motor Fault Diagnosis System

Firstly, symptom parameters (SPs) were extracted from vibration signals to represent
the different states of the in-wheel motor. Since the rotating speed of an in-wheel motor
changes frequently and the operating environment is complicated, it is difficult to select
SPs in single domain to distinguish multiple faults [50]. Eight SPs in time and frequency
domains, as shown in Table 2, were then chosen to construct an observation sample of the
in-wheel motor in each condition.

Table 2. Symptom parameters used in an in-wheel motor diagnosis system.

Domain Features Definition

Time

Root mean square (RMS) P1 =
√

1
N ∑N

i=1 x2
i

Mean of Peaks P2 = E(
∣∣∣xpi

∣∣∣)
Skewness of maximum P3 = E[( xpi−µp

σp
)

3
]

Kurtosis of maximum P4 = E[( xpi−µp
σp

)
4
]

Frequency

Spectral Skewness P5 = 1
σ3·I ∑I

i=1 ( fi − f )
3 · F( fi)

Spectral Kurtosis P6 = 1
σ4·I ∑I

i=1 ( fi − f )
4 · F( fi)

Total power spectrum P7 = ∑I
i=1 F(fi)

RMS of power spectrum P8 =
√

1
I ∑I

i=1 F2(fi)

It is well-known that an observation period contains at least two cycles of sampling
points; thus, 8192 sampling points were taken as an observation sample in this study.
The original vibration signal from the in-wheel motor in each condition was filtered by
a hand-pass filter with 1~5 kHz to calculate the corresponding SPs and form the SP set
{P1, P2, . . . , P8} of an observation sample. Therefore, 90 observation samples could be
obtained for each condition of the in-wheel motor; of them, 60% were used as training
samples, and the others were used as test samples.

Secondly, APMDP was used to refine the in-wheel motor observation samples into
a lower-dimensional features set, which was regarded as the input of the SVDD model.
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In view of the different states of the in-wheel motor, with its varied rotating speed and
complex operating environment, the target of the dimension reduction was set as three,
and the features after the APMDP were recorded as the first, second, and third projections,
in order. Meanwhile, the update step of the adjustable parameter σ was set to 0.1, and
the optimal value was 0.7, based on the experimental data. When the training samples
of the in-wheel motor with four states in the same rotating speed were input into the
APMDP algorithm, the feature matrix corresponding to the rotating speed AAPMDP can be
established, and then the three-dimensional feature set of the in-wheel motor was obtained.
Here, the feature matrix AAPMDP of the in-wheel motor t 300 rev/min is shown as follows:

AAPMDP =


−0.0153 0.0050 −0.0111
· · · · · · · · ·

0.2050 −0.2807 0.5198
−0.9786 −0.9598 −0.8542


8×3

Finally, the three-dimensional feature set of the in-wheel motor was used to build the
fault diagnosis model of the Weibull-kernel-function-based SVD. In the study, a differen-
tial evolution algorithm [51,52] was utilized to optimize the parameters of the in-wheel
motor diagnosis system, such as the scale parameter β and the shape parameter γ of the
Weibull kernel function, and the punitive coefficient p of the multi-class SVDD model. The
population size was then set to 100, the evolution algebra to 50, the mutation operator to
0.5, and the crossover operator to 0.2. For clear expression, rotating speeds of 300, 400,
500, or 600 rev/min and thereabouts are denoted as the operating conditions 1, 2, 3, and 4
of the in-wheel motor, respectively, and the parameters β, γ, and p of the in-wheel motor
diagnosis system are given the numeric subscript of i (i = 1, 2, 3, and 4), such as, βi, γi, and
pi; therefore, the values 1, 2, 3, and 4 stand for the normal state, inner race fault, rolling
element fault, and outer race fault, respectively. When the three-dimensional feature sets of
the in-wheel motor with four states in the same condition were input into the algorithm of
the Weibull-kernel-function-based SVDD, the parameters of the in-wheel motor diagnosis
system were confirmed. Here, the diagnosis model of the in-wheel motor in operation
condition 1 is introduced as an example: the scale and shape parameters of Weibull kernel
function corresponding to the four in-wheel motor four states are β1 = 6.246, β2 = 2.171,
β3 = 5.748, β4 = 1.467, γ1 = 4, γ2 = 8, γ3 = 10, and γ4 = 6, respectively, and the punitive
coefficients of the multi-class SVDD model corresponding to the four in-wheel motor states
are p1 = 0.747, p2 = 0.859, p3 = 0.646, and p4 = 0.959, respectively. In this way, the diagnosis
models of the in-wheel motor in operation conditions 2, 3, and 4 were built, and thus the
fault diagnosis system of the in-wheel motor was determined.

4.3. Construction of In-Wheel Motor Fault Diagnosis System

To verify the effectiveness of the proposed method, the unused observation samples
from the above experiment were planned to evaluate the fault diagnosis system of the
Weibull-kernel-function-based SVDD. Firstly, the above feature matrix AAPMDP of the in-
wheel motor in each condition was directly used to refine the observation samples into the
three-dimensional feature set. Secondly, the three-dimensional feature set of the in-wheel
motor in each condition was input into the fault diagnosis system, and the diagnosis states
of the in-wheel motor were then obtained. According to the actual state of each observation
sample, the recognition rates of each in-wheel motor state in different condition were
counted, as shown in Figure 5. It is obvious that all recognition rates are over 98.75%
and most of them remain above 99%, meaning that the proposed diagnosis system can be
applied to recognize the common bearing faults of an in-wheel motor.
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Moreover, different numbers of observation samples were planned as training samples
to demonstrate the robustness of the proposed diagnosis system. The above option of
training samples was used to plan the other two. One option is that the observation
samples are equally divided into training and test samples; another is to select 40% of the
observation samples for training the diagnosis model and use the others for testing the
ability. The above parameters of the in-wheel motor diagnosis system remain constant,
and each diagnosis model is built to recognize the corresponding test samples for each
condition. The classification accuracies of the four states of the in-wheel motor for each
condition were over 95%. Here, the average accuracies of the three diagnosis models with
different training options are shown in Figure 6. Although the training samples have
significant differences, the fluctuations in the diagnosis accuracies are small. This indicates
that the proposed diagnosis system for the in-wheel motor has good robustness.
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4.4. Comparison with Other Methods

To further confirm the contribution of the proposed diagnosis method for the in-
wheel motor, APMDP and Weibull-kernel-function-based SVDD were compared with other
methods on the basis of the same experimental data above.

Firstly, the performance of APMDP was analyzed using a divisibility parameter
and compared with popular dimension reduction methods such as LDA, MDP, and LPP.
Certainly, there are different definitions of divisibility parameter, one of which is based
on the distances between the inter-class and intra-class, which considers not only the
different inter-class influence factors but also the extent of the intra-class influence [53]. Let
yc

i (c = 1, 2, · · · , C; i = 1, 2, · · · , nc) be the element of the lower-dimensional features set,
and yc =

1
nc

∑nc
i=1 ync

i is the clustering center of the cth class. Then, the divisibility parameter,
based on the inter-class distance and intra-class distance, is defined as follows:

ρ =
Hb
Hw

(16)
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Hb =
2

C(C− 1)

C−1

∑
c=1

C

∑
s=c+1

‖yc − ys‖ (17)

Hw =
1
C

C

∑
c=1

(
1
nc

nc

∑
i=1
‖yc

i − yc‖) (18)

where Hb is the inter-class distance, which reflects the dispersion degree among different
classes, and Hw is intra-class distance, which informs the aggregation degree of each class.
Obviously, the greater the inter-class distance Hb and the smaller the intra-class distance
Hw, the greater the divisibility parameter ρ. This means that the separability of the feature
set is better.

For the same experimental data in each condition, LDA, MDP, LPP and APMDP were
performed to obtain the lower-dimensional features set and then calculate the divisibility
parameters of the four in-wheel motor states, as shown in Table 3. It is obvious that the
APMDP-based divisibility parameter for each condition is larger than the other methods,
and the divisibility of the in-wheel motor faults is improved by at least 8.35%; thus, APMDP
is an excellent dimension reduction method.

Table 3. Divisibility parameter of four in-wheel motor states by different methods.

Method
Divisibility Parameters of Four In-Wheel Motor States

Condition 1 Condition 2 Condition 3 Condition 4

LDA 0.1182 0.6827 0.1998 0.1580
MDP 0.3462 0.2272 0.6220 0.0726
LPP 0.3654 0.7139 0.2859 0.2733

APMDP 0.3959 0.9411 1.0544 0.3783

Secondly, the multi-class SVDD classifiers based on polynomial and Gaussian kernel
functions were built to explore the influence of different kernel functions on SVDD perfor-
mance. Certainly, the basic parameters of algorithm optimization, such as the population
size, the evolution algebra, the mutation operator, and the crossover operator, remained
constant, and the corresponding training and test samples were used, respectively. Here, 60%
of experimental data of the four in-wheel motor states in operation condition 1 were used to
train the parameters of the diagnosis system. The optimal orders of the polynomial kernel
function corresponding to the four in-wheel motor states were de1 = 6, de2 = 6, de3 = 2, and
de4 = 6, and the corresponding punitive coefficients were p1 = 0.272, p2 = 0.772, p3 = 0.663,
and p4 = 0.289, respectively. Then, the recognition rates of the four in-wheel motor states
were 94.79%, 93.75%, 55.21%, and 96.88% respectively. Similarly, the dimension parameters
of the Gaussian kernel function were τ1 = 44.056, τ2 = 457.542, τ3 = 502.144, and τ4 = 508.626;
the penalty coefficient of the multi-class SVDD model was p1 = 0.644, p2 = 0.895, p3 = 0.363,
and p4 = 0.472. Then, the recognition rates of the four running states of the wheel motor were
87.50%, 83.33%, 58.33%, and 79.17%, respectively. Similarly, 60% of the experimental data
of the four in-wheel motor states in the operation conditions 2, 3, 4, and 50% and 40% of
the experimental data were used to build the diagnosis systems based on polynomial and
Gaussian kernel functions. Then, the corresponding experimental data were used to test the
classification abilities, respectively. Here, the recognition rates of the three diagnosis models
with different training options in the same condition are averaged, as shown in Figure 7.
Obviously, the stability and generalization of the Weibull-kernel- function-based SVDD are
superior to the polynomial and Gaussian kernel functions.
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Figure 7. Average diagnosis accuracy of each in-wheel motor fault by multi-class SVDD based on
other kernel functions: (a) polynomial kernel function; (b) Gaussian kernel function.

5. Conclusions

To effectively monitor the operating state of an in-wheel motor and diagnose the com-
mon faults, a novel method using APMDP and a Weibull-kernel-function-based SVDD was
proposed to build the fault diagnosis system for an in-wheel motor, and the effectiveness
was demonstrated experimentally. The superiority of the methods proposed in the paper
can be described by the following points:

(1) The proposed APMDP not only gathered the intra-class and inter-class information of
high-dimensional data but also obtained the information about the spatial structure.
This is attributed primarily to the reasonable combination of the AP clustering algo-
rithm and traditional MDP algorithm. Specifically, the divisibility of in-wheel motor
faults by APMDP was improved by at least 8.35% over LDA, MDP, and LPP.

(2) A multi-class SVDD classifier based on the Weibull kernel function has a high classi-
fication accuracy and strong robustness, which essentially results from the Weibull
kernel function and the category judgment rule of the minimum distance from the
intra-class cluster center in the multi-class SVDD algorithm. Specifically, the classifica-
tion accuracies of in-wheel motor faults in each condition were over 95%.

(3) The fault diagnosis system using APMDP and Weibull kernel function SVDD was
not only adapted to the multi-speed operating conditions of an in-wheel motor but
also performed classification with high precision, which is conducive to constructing
an on-line condition monitoring system of the distributed drive system based on
multiple in-wheel motors.

Considering the actual operating conditions and environment of an electric vehicle,
an experiment involving an in-wheel motor with more mechanical and electrical faults
under the actual operating conditions and different loads of the electric vehicle will be
planned to verify the effectiveness and generalization capability of the proposed methods
and subsequently expand their range of application.
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