
Citation: Oblak, T.; Haraksim, R.;

Beslay, L.; Peer, P. Probabilistic

Fingermark Quality Assessment with

Quality Region Localisation. Sensors

2023, 23, 4006. https://doi.org/

10.3390/s23084006

Academic Editor: Loris Nanni

Received: 17 March 2023

Revised: 9 April 2023

Accepted: 12 April 2023

Published: 15 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Probabilistic Fingermark Quality Assessment with Quality
Region Localisation
Tim Oblak 1,2,*,† , Rudolf Haraksim 2 , Laurent Beslay 2 and Peter Peer 1

1 Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia
2 Joint Research Centre, European Commission, 21027 Ispra, Italy
* Correspondence: tim.oblak@fri.uni-lj.si
† Tim Oblak is working at the JRC as part of the JRC Collaborative Doctoral Partnership Programme, in

collaboration with the University of Ljubljana.

Abstract: The assessment of fingermark (latent fingerprint) quality is an intrinsic part of a forensic
investigation. The fingermark quality indicates the value and utility of the trace evidence recovered
from the crime scene in the course of a forensic investigation; it determines how the evidence will
be processed, and it correlates with the probability of finding a corresponding fingerprint in the
reference dataset. The deposition of fingermarks on random surfaces occurs spontaneously in an
uncontrolled fashion, which introduces imperfections to the resulting impression of the friction ridge
pattern. In this work, we propose a new probabilistic framework for Automated Fingermark Quality
Assessment (AFQA). We used modern deep learning techniques, which have the ability to extract
patterns even from noisy data, and combined them with a methodology from the field of eXplainable
AI (XAI) to make our models more transparent. Our solution first predicts a quality probability
distribution, from which we then calculate the final quality value and, if needed, the uncertainty of
the model. Additionally, we complemented the predicted quality value with a corresponding quality
map. We used GradCAM to determine which regions of the fingermark had the largest effect on the
overall quality prediction. We show that the resulting quality maps are highly correlated with the
density of minutiae points in the input image. Our deep learning approach achieved high regression
performance, while significantly improving the interpretability and transparency of the predictions.

Keywords: fingermark; latent fingerprint; quality assessment; deep learning; quality map; probabilistic
interpretation; explainability; forensic; biometrics

1. Introduction

Fingermarks (latent fingerprints) are a special type of friction ridge skin impression,
found in unconstrained environments in the scope of a forensic investigation [1]. The depo-
sition of a friction ridge pattern is not controlled, and imperfections are often introduced,
which leads to highly inconsistent impressions. Given this complexity, not all impressions
can be assigned the same evidential value. Based on the available resources, dactyloscopic
experts in forensic laboratories prioritise and filter out impressions of insufficient quality,
which tend to be discarded early.

This assessment of quality occurs at different stages during a forensic investigation:
(i) The initial decision is made already by crime scene investigators in the field, who
determine which marks will be developed and recovered for further processing. (ii) Dacty-
loscopic experts in the lab would then run automated searches on fingermarks of sufficient
quality using an Automated Fingerprint Identification System (AFIS), in an attempt to
find corresponding fingerprints in a reference dataset. When choosing a query, the ex-
perts would prioritise higher-quality marks based on their previous experience with the
particular AFIS. (iii) Finally, the experts determine whether a fingermark–fingerprint pair
(resulting from an AFIS search) is suitable for individualisation given the features attributed
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to both impressions. In practice, the final conclusion would be made by a human expert,
who would, upon request, defend it as an expert witness in court.

The assessment of fingermark quality is directly connected to the probability of the
successful identification of an individual (given that his/her fingerprints are present in the
reference dataset). However, subjectivity and bias can play a role in the decision-making
of even highly trained dactyloscopic experts [2–4]. This may lead to early rejection of
evidence, even if it contains sufficient information for identification. Alternatively, valuable
resources could be wasted on impressions with low value for identification. With this work,
we aimed to assist the dactyloscopic experts in their decision-making processes using the
proposed methods.

In our past research, we developed multiple automated fingermark quality assess-
ment (AFQA) methods [5,6]. These include a classic approach, where specific image-
and fingermark-level features were extracted and joined into a 192-value feature vector,
as well as a Deep Learning (DL) approach, where the importance of features was deter-
mined automatically by a Convolutional Neural Network (CNN). Despite the DL approach
performing better and fingermark quality assessment being executed 15-times faster in
comparison to the classic approach, one major limiting factor with the DL solution is the
transparency of model decisions. While we were able to determine which input features
were most important for the classic approach, in our initial work, we did not manage to
correlate the predictions of deep models with any particular feature of the input image.
Just like an expert witness needs to explain his/her decision before a judge, the assisting
automated tools that are used in the course of a forensic investigation should be transparent
and backward-traceable in a way that would offer the reasoning behind the predictions.
Probabilistic reporting of forensic evidence has existed for a while [7,8], and the European
Network of Forensic Science Institutes (ENFSI) is actively promoting probabilistic-based
evidence reporting with a set of best practice manuals since 2016 [9]. Due to this, our new
deep learning AFQA method with improved result reporting coupled with transparent
decision-making should present a great benefit to the scientific community.

In this article, we present our research on explainable fingermark quality assessment
methods. A visual demonstration of the approach is shown in Figure 1. Overall, we made
the following contributions:

• We used data produced in the context of a JRC fingermark quality annotation cam-
paign [10] in which 10 international dactyloscopic experts provided quality labels of
selected fingermark images from the NIST SD301 and SD 302 datasets [11,12]. We
describe the creation of ground truth fingermark quality labels for training the deep
learning models.

• We present a novel approach to fingermark quality assessment. We reformulated the
problem from a regression task to a probability distribution learning task. The final
quality value was produced by calculating the expected value of the predicted quality
probability distribution.

• We used GradCAM [13] from the family of eXplainable AI (XAI) techniques to pro-
duce Class Activation Maps (CAMs) and interpret them to visualise the connection
between the predicted fingermark quality and the input image. Based on our results,
the generated quality maps were good indicators of minutiae point density in the
input image.

In Section 2, we summarise the state of automated fingermark quality assessment
and mention some inspirations from the field of XAI. In Section 3, we present the main
contribution of this work, the next iteration of the AFQA models, probabilistic AFQA
(pAFQA). Finally, we describe the experimental setup and present the results in Section 4
and provide concluding remarks in Section 5.
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Figure 1. The proposed approach. We used a Convolutional Neural Network (CNN) trained on
quality annotations provided by 10 dactyloscopic experts to predict a quality probability distribution
as a first intermediate step. From this distribution, we derived the final quality value, as well as the
uncertainty of the model and, consequently, the complexity of the input image. Furthermore, we
used Class Activation Maps (CAMs) to localise image regions, which contributed most to the specific
quality ranges in the predicted quality distribution. The figure is best viewed in colour.

2. Related Work

We divided the related work on AFQA methods into two groups based on the under-
lying methodology, the heuristic and data-driven approaches. Then, we discuss various
concepts from the field of XAI and introduce them into the domain of fingermark qual-
ity assessment.

2.1. Automated Fingermark Quality Assessment Methods

With the intention of standardising fingerprint quality assessment, the National Insti-
tute of Standards and Technology (NIST) developed the NIST Fingerprint Image Quality
(NFIQ) algorithm [14–16]. NFIQ was the first quality assessment algorithm to indicate
the probability of finding a matching print using an Automated Fingerprint Identification
System (AFIS). Automated methods specifically aimed at the evaluation of fingermark
quality only started to appear in the last decade in response to rapid digitisation of foren-
sic practices and the need to make the subjective evaluation of fingermark evidence by
forensic practitioners more transparent and coherent. A brief overview of these methods is
presented in Table 1.

Heuristic approach: Fingermark quality assessment methods in this category use
various algorithms for friction ridge processing to extract features and then combine them.
Yoon et al. [17] were the first to develop a quality metric specifically for fingermarks, called
the Latent Fingerprint Image Quality (LFIQ). They extracted local image features and
minutiae data and then heuristically combined them to evaluate the quality of fingermarks.
The method was designed under the assumption that the provided minutiae points are
reliable. Consequently, the LFIQ provides the most-accurate results when the minutiae are
marked manually by trained dactyloscopic experts. On the other hand, the LFIQ performs
sub-optimally when using automated minutiae extractors, since these tend to produce
spurious minutiae on noisy fingermarks. Sankaran et al. [18] predicted the quality of a
fingermark based on a combination of clarity and quality, derived from local image-level
features. Clarity is calculated by using second-order image derivatives, while quality is
based on the consistency of the local orientation field. Their approach, however, does
not consider second-level friction ridge features, such as minutiae points, often used in
fingerprint recognition systems. Swofford et al. [19] recently proposed an approach to assess
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the reliability of individual minutiae and combine those estimates into a global quality
value. Like the LFIQ, our tests indicated that their method is sensitive to spurious minutiae
and is, therefore, not suitable to be used in combination with automated minutiae extractors.

Table 1. A taxonomy of published related work. These methods are specifically aimed at the
assessment of fingermark image quality.

Name Approach Type Deep Learning Target Quality
Range Fully Automated Implementation

Available †

Yoon et al. [17]
(LFIQ) Heuristic N/A [1, 100] No ** No

Sankaran et al. [18] Heuristic N/A Unspecified Yes No

Swofford et al. [19]
(DFIQI) Heuristic N/A

[−1.0, 1.0] for
value, complexity,

and difficulty
No Yes

Kalka et al. [20]
(LQmetric) Data-driven No [1, 100] Yes Yes *

Chugh et al. [21] Data-driven No [1.0, 5.0] Yes No

Ezeobiejesi
et al. [22] Data-driven Yes

Classification into
good, bad, and

ugly
Yes No

Ours (pAFQA) Data-driven Yes [1.0, 100.0] Yes Yes

† To the best of our knowledge. * Available upon request for law enforcement agencies or for research purposes as
part of the ULW [23]. ** Achieves the best performance only using manually labelled minutiae points.

Data-driven approach: Data-driven methods typically make use of supervised ML
techniques and require a set of labelled data in order to guide the optimisation process. The
FBI published a series of publications on the topic of evaluating expert opinions [3,4,24,25],
where they studied the consistency, variability, and bias of their decisions. In collaboration
with an external contractor, the FBI developed the LQmetric [20]. The LQmetric first calcu-
lates the minutiae points using an automated minutiae extractor. Then, a local clarity map
is constructed using a random forest model, trained on clarity maps that were annotated
by dactyloscopic experts. It is these features that are used to predict an overall quality
value. The process was further fine-tuned with the result from the FBI’s Next Generation
Identification AFIS. The LQmetric is included in the Universal Latent Workstation software,
available upon request to law enforcement agencies [23]. Chugh et al. [21] trained a model
for quality assessment of fingermarks by using crowd-sourced data, gathered from selected
fingermark examiners using a web-based annotation tool. They correlated the annotated
labels with a collection of extracted features to determine which features were the most-
indicative of fingermark quality. Features with the highest correlation were used to train a
quality-assessment model, which yielded a better prediction performance in comparison to
the LFIQ. Deep learning was first used for the purpose of fingermark quality assessment by
Ezeobiejesi et al. [22]. In their approach, they first segmented the friction ridge impression
from the background and then classified individual local patches into different quality
classes. The final quality values were determined based on voting on individual patches.
In our previous research [6], we compared the performance of “classic” machine learning
models to the performance of modern deep learning models in the context of fingermark
quality. The superiority of deep models was hindered only by the lack of transparency in
the resulting predictions. This paper aims to address this issue.

Many methods in this category rely on the informal “good”, “bad”, and “ugly” labels
to classify fingermarks into different quality levels. This labelling scheme was introduced
in the (now discontinued) NIST SD 27 dataset [26]. We instead conformed to the standard
set by the ISO/IEC 29794-1 [27], which defines biometric sample quality as a value in the
range from 1 to 100.
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2.2. Explaining Model Predictions

Machine learning models, in particular deep neural networks, tend to be rather com-
plex with a substantial parameter space. Due to this, it is very difficult to interpret their
predictions, and the models are often considered as black-box solutions. In recent years,
more focus is being directed towards explainable deep models.

Probabilistic reporting: One aspect of making model predictions more transparent is
to expand the scope of the results, available to the final user. We were inspired by the recent
developments in the field of Blind Image Quality Assessment (BIQA). BIQA methods aim
to evaluate image quality in general and are used for many practical applications, such
as remote imaging, compression, enhancement, etc. An approach currently popular with
BIQA methods is predicting a quality probability distribution, which can be interpreted
using different statistical measures to derive the final quality value. Liu et al. [28] first
used a CNN to extract a latent feature vector from an input image. The authors then
used a separate model, called the Label Distribution Support Vector Regressor (LDSVR).
The LDSVR is a multi-output support vector machine, which predicts a target quality
probability distribution. Similarly, Zeng et al. [29] proposed a probabilistic model for BIQA;
however, they trained a CNN to predict a probability distribution vector in an end-to-end
fashion. In the training stage, the loss function was calculated using the Kullback–Leibler
(KL) divergence [30], which minimises the difference between the predicted and target
quality probability distributions. In general terms, these approaches can be considered as
label distribution learning [31], since multiple labels are estimated at the same time. This
concept is also particularly useful in our case, since the ground truth data for a specific
fingermark in our dataset is not a single quality number, but an ensemble of subjective
scores from different fingermark examiners. In contrast to simply calculate the average,
or Mean Opinion Score (MOS) [32], a distribution of quality values also encodes other
properties, such as variance or skewness. These offer better insight into the disagreement
of the expert crowd and, consequently, the complexity of the fingermark in question.

Calculating attribution: One category of XAI approaches tries to solve the outcome
explanation problem. These methods provide an interpretable connection, called attri-
bution, between an input instance (e.g., a fingermark image) and the model prediction
(e.g., a quality score) by following how information propagates through the network during
computation [33,34]. Class discriminative localisation maps have become a popular method
for explaining deep models in recent years. Zhou et al. [35] were the first to propose an
approach to generate Class Activation Maps (CAMs) for networks with a global average
pooling layer. They weighted the activation maps of the last convolutional layer by activa-
tions from the last fully connected layer to calculate the CAM for a specific input. Selvaraju
et al. later generalised this approach and proposed GradCAM [13], an algorithm that
uses the backpropagation of gradients to weigh the activation maps. This means that any
network can be used to calculate CAMs and a global average pooling layer is not required.
GradCAM has been criticised for sometimes showing irrelevant regions as important due
to its averaging step. HiResCAM [36] attempts to address this by using elementwise mul-
tiplication of the feature maps and gradients instead of only using the average gradient.
Muhammad et al. [37] argued that CAM methods often imply that classification is 100%
correct when calculating CAMs. They proposed EigenCAM, which instead computes the
principal components of the learned feature maps. These methods offer a way to connect
the predicted quality of a fingermark with the specific pixels or pixel regions in the input
image. Since determining the quality of fingermarks on a continuous scale from 0 to 100
is not a classification problem, we need to modify the problem definition and change the
underlying methods to enable the usage of CAM methods.

3. Probabilistic Fingermark Quality

In this section, we first define the problem, then we describe the CNN architecture
used in our experiments, and finally, we describe our approach to explain the individual
predictions of the model.
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3.1. Problem Formulation

To calculate a quality value y ∈ [1, 100] from an input image x ∈ Rn, in this article,
we propose a CNN learning strategy such that the learned model FCNN produces quality
values that are as close as possible to the ground truth quality labels y:

ŷ = E(q̂), q̂ = FCNN(x; θCNN), (1)

where ŷ is the predicted quality value for an input fingermark image x. FCNN : Rn 7→
R100 is a CNN model with θCNN being its “learnable” parameters. The CNN outputs
an intermediate prediction q̂ ∈ R100, which is a vector representing the discrete quality
probability distribution in a range from 1 to 100. To calculate the final predicted quality
value for a fingermark, we simply take the expected value (or mean) of the predicted
probability distribution:

E(q̂) =
100

∑
i=1

i× q̂i, (2)

where i ∈ [1, 100] represents individual quality bins and each qi is equal to the probability
P(qi = i) that the fingermark falls into that bin, i.e., has a quality of i.

The predicted probability distribution allows us to compute various distribution
properties. Here, we used the expected value as our final quality value; however, other
statistics could be used instead. For example, if the predicted quality distribution is skewed,
a distribution median might be more useful as the final quality value.

Finally, we search for the optimal parameters θ of the model with the following
loss function:

L(q, q̂) =
1
m

m

∑
i=1

qi × log(
qi
q̂i
), (3)

which minimises the difference between the predicted quality distribution q̂ and the ground
truth quality distribution q using the Kullback–Leibler divergence [30].

3.2. CNN Encoder

As the basis for our predictive model FCNN , any modern CNN architecture can be used.
We retained the configuration of the initial convolutional layers of the reference architecture.
Based on preliminary testing, we used two fully connected layers with 256 neurons after
the convolutional layers, both followed by a Leaky ReLU [38] activation function. The
selected activation function retains the good convergence performance of the established
ReLU function, but also guarantees non-zero gradients during training. Finally, an output
layer with 100 neurons and a softmax activation is added to produce a quality probability
distribution vector q̂ with 100 values that sum up to 1. The hierarchical structure and the
widening of perceptual field allows the model to learn image features for fingermarks
captured at different scales, which means predictions can be made on fingermark images
of varying resolution (PPI).

3.3. Generating Target Probability Distributions

A major novelty of this approach lies in the prediction of an intermediate probability
distribution q̂ before a final quality value is determined. In order to train the model in a
supervised manner, we first need to produce the target probability distributions q. For a
particular fingermark image, we are given quality labels yl from a set of L grading functions.
While we use quality labels annotated by an ensemble of 10 dactyloscopic experts [10],
the approach is general and allows for any kind of ensemble of ground truth scores to be
used. Instead of simply computing the Mean Opinion Score (MOS), we modelled a discrete
normal distribution for each of the labels yl and then joined them together into a final
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probability distribution q. The equation for individual probability qi for a given quality
value i is then

qi =
1
L

L

∑
l=1
N (i; yl , σ), i ∈ [1, 100]. (4)

Here, σ is a parameter for the standard deviation of the normal distribution N . We
assumed equal σ for all grading functions and set it to 1. However, if the uncertainty of
the individual labels is known (for example, if an examiner is less confident in his/her
decisions), we can modify this parameter accordingly. The process of creating the target
probability distributions is shown in Figure 2.

0 25 50 75 1000 25 50 75 100

1 4 6 9 102 5 7 83

1. Expert ensemble 2. Histogram of  annotations

4. Target quality 
probability distribution

3. Model with 
discrete Gaussian 

[ 2 6 6 4 5 6 5 8 7 6 ]

Figure 2. Creating the quality probability distributions. Here, we show the process of constructing
the quality probability distribution from multiple labels, gathered from a group of 10 dactyloscopic
experts [10]. For each label in a range from 1 to 10, we model the normal distribution and then add
them together to generate a final quality distribution of the fingermark.

3.4. Calculating Attribution

We wanted to be able to interpret the predictions of the model and better understand
what it actually learned. The first step is to choose the appropriate XAI approach for our
problem. The aspect we were most interested in is feature attribution. Specifically, we
aimed to establish a connection between the output of the model and the input fingermark
image. In other words, we would like to calculate the contribution of individual pixels to
the final quality prediction. To calculate feature attribution, we used CAMs. While our
problem is not a classification task by definition, the output layer of the CNN encoder
allowed us to treat it like one. We can use the following process:

ci = G(x; i), (5)

where G : Rn 7→ Rn can be any CAM-generating algorithm, x is the input image, i ∈ [1, 100]
is a specific quality value (or class), for which we want to generate the CAM, and ci ∈ Rn

is the resulting CAM. For a single fingermark image and a quality range from 1 to 100,
we obtained a set C ∈ R100×n of 100 CAMs, which were generated based on the final
convolution layer of the network.

3.5. Quality Region Localisation

Finally, we propose two ways of interpreting the calculated attributions for individual
quality values. The first interpretation is an overall contribution map. Here, we joined
all contributions over the entire quality spectrum by adding the individual CAMs in C
into a single map csum = ∑ C ∈ Rn. The resulting heat map indicates which regions in the
image have the largest overall impact on the final prediction. The higher the value of the
individual pixels, the more important these are during inference.

The second interpretation is a quality map. We wanted to calculate how much
individual pixels contributed to a specific sub-range of the final quality spectrum. To



Sensors 2023, 23, 4006 8 of 22

achieve that, we joined together K groups of consecutive CAMs in C. The parameter
K determines the number of quality levels, which will be assigned to individual pix-
els. The choice of K is arbitrary and can be changed based on the requirements of the
final system. In our approach, we used K = 5 to ensure a direct comparison and to
maintain compatibility with some previously established quality metrics (friction ridge
quality is commonly divided into 5 quality levels in the related literature [14,20]). We
split C into groups C1 = {c1, c2, . . . , c20}, C2 = {c21, c22, . . . , c40}, C3 = {c41, c42, . . . , c60},
C4 = {c61, c62, . . . , c80}, and C5 = {c81, c82, . . . , c100}. For each group Ck, we added together
the contained CAMs into a single map ∑ Ck. The resulting maps ∑ Ck thus show pixel
contribution towards a specific range of quality. The process of obtaining maps ∑ Ck is
shown in Figure 3. Finally, for each pixel in the input image, we found the Ck where the
contribution of that pixel was the strongest: cquality = arg maxk ∑ Ck. The resulting map
cquality ∈ Zn specifies a quality level of each respective pixel in the input image. A value of
1 means that the pixel contributed most positively towards the lowest quality range (1–20).
In contrast, a value of 5 means the pixel contributed most positively towards the highest
quality range (80–100).

CAMs groups (Ck)Quality map Quality ∑Ck

1–20

21–40

41–60

81–100

61–80

Figure 3. Creating the quality map. Groups of Class Activation Maps (CAMs) are joined together to
calculate the contribution of individual pixels towards different quality values in the distribution. The
quality spectrum is divided into 5 quality ranges, which correspond to the 5 colours with which we
visualise the computed regions: grey, red, orange, red, and green. The figure is best viewed in colour.

4. Experiments

In this section, we first describe the experimental setup, datasets, and metrics. Then,
we discuss the quantitative results and compare our model to existing quality assessment
methods. Finally, we show how our interpretation of feature attribution correlates with
actual friction-ridge-level features.

4.1. Data

We used two fingermark datasets, namely the NIST SD 302 [12] and NIST SD 301 [11].
Both datasets contain fingermarks lifted from various surfaces by trained forensic examiners
in a simulated environment. In total, the datasets contain 11200 fingermarks along with
rolled and flat fingerprints from 224 subjects.

In order to integrate expert opinion into our AFQA models, we organised an annota-
tion campaign in June 2022, where 10 experts assessed the quality of a collection of friction
ridge impressions [10]. The certified dactyloscopic examiners were invited from 8 member
states of the European Union, Australia, and Europol. During 6 one-hour sessions, the
experts used a web-based annotation tool to assign quality values in a range from 1 to 10 to
a collection of fingermark images. In total, we gathered quality labels for 956 fingermark
images with varying quality and 44 images of rolled fingerprints, which represent the
best-possible quality impressions in the subset. In this way, the model was exposed to
the entire quality spectrum of friction ridge impressions during training. On average,
each fingermark received a quality score from 8 distinct examiners during the annotation
campaign. We used these quality annotations to train our models in a supervised manner.
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For the purpose of this paper, we used two subsets of the NIST SD301 and SD302
datasets. The data were divided as follows:

• Training data: These included the aforementioned set of 1000 annotated images,
coming from both the SD301 and SD302. For each image and the respective examiner
annotations, we created a discrete quality probability distribution using Equation (4)
to be used as the target during training. The training data were used for the initial
model selection by performing a 10-fold cross-validation. For each fold, 10% of the
data were reserved as the validation set. Once the best model configuration was found,
the entire training set was used to train the final model.

• Test data: A hold out set of 9115 images from the SD302 dataset alone was used to
compare the final model to the state-of-the-art and to demonstrate our approach to
quality region localisation. The images were selected to ensure that there was no
overlap with the training set. Out of the 9115 images in the test set, 6665 also included
minutiae point annotations, which were recently added to the SD302 dataset by NIST.

Given the relatively small size of the annotated training set, we used data augmen-
tation to artificially enlarge the set during training. We carefully selected specific image
manipulation techniques, which did not interfere with the friction ridge pattern in the
input image. We used the following operations: flip vertically (p = 0.5), flip horizontally
(p = 0.5), random rotation in a range of [−90, 90] degrees, and random translation by 5%
of the image size. By doing this, we wanted to ensure that the quality predictions were
invariant to the rotation or small translation of the friction ridge pattern while retaining
all the existing information contained in the impression. Furthermore, the images were
padded to maintain the aspect ratio of the captured impression. Finally, all images were
resized to a resolution of 512× 512.

4.2. Metrics

To assess the regression performance of our models, i.e., to measure the ability to learn
the given task, we used standard regression metrics. These included the Mean-Squared
Error (MSE), Mean Absolute Error (MAE), which have to be minimised, and the R-squared
(R2), which needs to be maximised. These metrics were also used to perform the initial
model selection. Furthermore, we used two correlation metrics to compare our model
with other existing friction-ridge-quality-assessment models. We used the Pearson Linear
Correlation Coefficient (PLCC), which measures the linear correlation between two sets of
quality scores. Since the relation between two metrics is not guaranteed to be linear, we
also calculated the Spearman Rank Correlation Coefficient (SRCC). The SRCC measures
how two variables are monotonically related and is therefore less sensitive to outliers or
non-linear relationships.

4.3. Experimental Setup

For the selection of the backbone CNN model, we first performed a 10-fold cross-
validation on the training set. In the end, we selected ResNet [39] as the architecture of
choice, in particular because it offers a good compromise between regression performance,
execution time, and model size. We have shown in our previous research [6] that a depth
of 34 layers was sufficient for ResNet to capture features related to friction ridge quality.
During training, we used the Adam [40] optimisation algorithm with a learning rate of
1× 10−4, which was multiplied by a factor of 0.1 on the loss plateau. In order to facilitate
a faster optimisation process, we initialised the network with the weights pre-trained on
the ImageNet [41] dataset. This resulted in a significantly faster convergence compared to
using random weights, while at the same time, this did not have a negative effect on the
final performance of the model.

To generate the CAMs, we opted for a gradient-based approach, which follows the
propagation of gradients through the network to determine the contribution of input pixels
to a specific class in the output vector. We also considered various perturbation-based
methods [42,43], which modify the input to calculate the contribution. These methods,
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however, dramatically increase the computational complexity of the system due to the
many forward passes needed to generate a detailed activation map. The implementation of
the CAM-generating algorithm was provided by Captum [44], an interpretation framework
for PyTorch. Specifically, we used the GradCAM [13] implementation. We also tested other
iterations of the algorithm, such as HiResCAM [36] and GradCAM++ [45], but found no
significant added value to the final attribution maps. GradCAM generates the attribution
for a specific layer in the target network. We chose the final layer of the ResNet-34 to be
the target layer from which the attribution was calculated. The final layer of the encoder
typically learns the more high-level concepts within the provided data. Due to the down-
sampling that occurs in the CNN, the resulting CAMs had a reduced resolution of 16× 16.
We used bi-cubic interpolation to resize the CAMs to the original image size of 512× 512.

To train and test our models, we used an Ubuntu workstation with a GeForce RTX
3080 GPU. With this configuration, using a ResNet-34 as the backbone, the model computes
the quality score for a single image in 5 milliseconds on average. Furthermore, it takes
around 450 milliseconds to calculate the CAMs and the resulting quality maps.

4.4. Quantitative Evaluation

The main reason behind using a discrete probability distribution as the target variable
is to obtain a better understanding of the predicted quality value. Besides calculating
the final quality value, we can extract other distribution properties, such as the level of
uncertainty. In principle, learning to predict a discrete probability distribution is a more
complex problem than predicting a single variable. In our first experiment, we explored
whether the added computational complexity adversely influences the training process or
the final performance of the model more.

In our first experiment, we compared the performance metrics of two models, where
one was trained to predict the MOS values and the other was trained to predict the quality
probability distributions, from which the expected value from Equation (2) was calculated.
Both were trained on the training set using a 10-fold cross-validation. For the probabilistic
model, we computed the expected value of both predicted and ground truth distributions
and computed the regression metrics between these values. The results are shown in
Table 2.

Table 2. Comparison between predicting the MOS and probability distribution. We compared the
regression performance metrics for two models. The model mMOS was trained as a regressor on the
Mean Opinion Score (MOS) of the examiner ensemble, while the mPROB was trained to predict a
quality probability distribution. The results indicate that predicting a probability distribution has no
adverse effects compared to predicting an MOS.

Model Predictions MSE MAE R2 KL-Div

MOS-based 47.49 5.10 0.938 /
probabilistic 31.25 3.98 0.951 0.138

Best regression performance is marked in bold font.

On average, the probabilistic model achieved a KL-divergence of 0.138 between the
target and predicted distributions. Once we calculated the expected value, we compared the
predictions with the MOS-based model. We observed that predicting a quality distribution
had no disadvantages compared to predicting the MOS quality value directly. On the
contrary, the probabilistic model appeared to perform better, based on the regression
metrics. The R2, which indicates the correlation between the ground truth and predicted
scores, was relatively high for both models. However, using the probabilistic model, we
observed an R2 of 0.951 and 0.013, which were higher than the R2 of the MOS-based model.
We believe the additional information about the spread of scores, embedded within the
quality probability distributions, provided better guidance to the training process. This, in
turn, resulted in better regression performance. Furthermore, the probabilistic model also
achieved lower MSE and MAE metrics. To put the errors in context, in a range from 1 to
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100, the resulting MAE represented only around 4% of the whole output range. The MSE,
on the other hand, was more indicative of how the models handle outliers, where again,
the probabilistic model performed better.

With an R2 of 0.951, the probabilistic model achieved a relatively high correlation with
the examiner annotations. In our previous research [5,6], we trained several regression
models based on quality scores, obtained by existing quality assessment methods, which
were trained to predict the results of an AFIS. Although these models were trained on a
different subset of the SD301/SD302 dataset, we never observed regression performance as
high as that in Table 2. The grading function of the examiner ensemble appeared more linear
in relation to fingermark quality and was therefore easier to approximate by a machine
learning model. We believe this contrast was caused by two factors related to existing
AFQA methods. (a) These methods might only work when all pre-defined conditions are
met. For example, an impression will be given a quality score of 0 if the size of its area is
below a certain threshold. (b) Some methods use a set of handcrafted features, which might
not be sufficient to capture the wide array of distortions present in a fingermark image.
Humans, on the other hand, are much better at extrapolating between two concepts and
can, therefore, be more consistent even when observing a new one.

We compared the pAFQA with four other methods, namely (i) the open-source fin-
gerprint quality metric NFIQ 2, (ii) the LQmetric, a quality assessment method used by
the FBI, and the metrics (iii) Verifinger and (iv) the Morpho quality metric, provided by
two commercial vendors in their fingerprint matching software packages. Note that the
NFIQ 2 and both commercial methods were trained on different data for different purposes.
Furthermore, NFIQ 2 was developed solely on AFIS performance predictions, while the LQ-
metric predictions relied on manual annotations from dactyloscopic experts. We assumed
that Verifinger and Morpho were developed to predict matching performance for AFIS
solutions, but have no information regarding their design. In contrast, the pAFQA model
in this paper was trained solely on expert annotations. The comparison can be observed in
Figure 4. We visualise the scatter plots between the metrics together with the respective
score distributions. The visualisation is complemented with correlation metrics, shown in
Table 3.

Figure 4. A scatter plot comparing the pAFQA with existing solutions. We compare visually a
selection of quality assessment methods, computed on the testing subset of the NIST SD302 dataset.
Each dot in the plot represents one fingermark image, where the y-position marks the pAFQA quality
values, while the x-position marks the quality values of other quality metrics. Displayed also are the
score distribution histograms of the five quality metrics being compared.
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Table 3. Correlation between the pAFQA and existing solutions. We calculated Pearson’s Linear
Correlation Coefficient (PLCC) and the Spearman Rank Correlation Coefficient (SRCC) to measure
the correlation.

Quality Assessment Method PLCC SRCC

NFIQ 2 0.209 0.116
LQmetric 0.627 0.591
Morpho 0.738 0.744

Verifinger 0.730 0.704
Highest correlation to pAFQA is marked in bold font.

Within the group of evaluated quality assessment methods, the NFIQ 2 had the lowest
correlation with the pAFQA by far. Given that the NFIQ 2 was trained on flat fingerprints,
a big difference between pAFQA and NFIQ 2 was expected. This was confirmed by the low
correlation, which means that the pAFQA and, by extent, the expert opinion on fingermarks
could hardly be approximated with NFIQ 2, or vice versa, even if accounting for potential
non-linearity and different scales of the effective output range. The remaining quality
metrics were much more correlated with the pAFQA. A similar behaviour to that of the
NFIQ 2 quality algorithm was observed for the Morpho quality metric, where relatively low
quality values were attributed to fingermarks (the highest score given was 53). However, it
appeared Morpho was much more correlated with the pAFQA if adjusted for scale. Morpho
was then followed by Verifinger, which had a similarly non-linear, almost sigmoidal scatter
pattern on a considerably larger output range. Third was the LQmetric, which had a much
more linearly correlated pattern. We can also observe the ripples in the scatter pattern of
the LQmetric, which appeared to be the result of some non-linear decision-making in the
core of the algorithm. Overall, the visualisation in Figure 4 demonstrates well the difference
between these quality metrics and the variance of the attributed scores. For example, one
metric can attribute a very high score (>90), while the other could give a very low score
(<10) to the same fingermark image.

4.5. Interpreting Probability Distributions

In this section, we demonstrate how the pAFQA model predicts the intermediate
quality probability distributions. These are shown in Figure 5. For each fingermark image,
the red line represents the target quality probability distribution, while the predicted
distribution is shown in blue colour. We also show the final quality value (expected
value of the probability distribution) with the vertical lines, with colours matching their
respective distribution.

First, we observed that all fingermarks were assigned a final quality value very
close to the target quality value. However, the slight changes between the predictions
and ground truth labels only become apparent when comparing the quality distributions.
For example, the predicted distributions were mostly Gaussian-like, while the target
distributions were often skewed, or sometimes even bi-modal. This came from the
variance in the opinions of the expert ensemble, the distribution of which was not
necessarily Gaussian. The predictions, however, were mostly normally distributed,
which suggested that the model was able to generalise rather than over-fitting to the
labels of individual examiners. This made the model more robust and removed the effect
of potential outliers. This was particularly visible on medium-quality fingermarks (b),
where the examiners often had varying opinions about the quality and the variance of
the scores was consequently larger.
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(a) Low quality fingermarks

(b) Medium quality fingermarks

(c) High quality fingermarks

Figure 5. Quality distributions of various fingermarks. Here, we show the predicted quality distri-
butions of (a) bad-quality, (b) medium-quality, and (c) good-quality fingermarks from a validation
subset during training. The dashed red line represents the target quality probability distributions,
created from expert labels, while the grey line is the predicted quality distribution. Indicated also are
the derived final quality values for predicted (grey rectangle) and target distribution (red rectangle).

A qualitative assessment of the attributed scores revealed several properties of the
pAFQA model. First, low-quality fingermarks (a) mostly contained impressions with
missing friction-ridge-level features, such as minutiae points. The fingermark on the left
appears to have a visible friction ridge pattern; however, the pattern is severely blurred in
one direction. This makes the ridges ambiguous, since we cannot be sure whether a ridge
structure is real or only a smudge. The fingermark on the right-hand side contains a clearly
visible ridge, but the area is relatively small and only contains a few minutiae points. The
medium-quality fingermarks (b) caused the most discrepancies amongst the examiners.
These often contained a large enough impression, but ambiguous ridges. For example, in
the left image, the polarity of ridges changes (on the right, the ridges are lighter than the
background; on the left, they are darker). On the right image is a dry impression with many
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discontinuities in the ridge structure. The high-quality fingermarks (c) often contained
visible cores and deltas, as well as a clear ridge structure. Our model was able to attribute
high quality values to these images even at different contrasts between ridges and valleys
of the impression. In contrast, classic ML models often struggle with low-contrast images.

4.6. Attribution-Based Quality Maps

The quality of a friction ridge impression is usually not consistent throughout the
entire impression. The impressions tend to have multiple regions with varying quality. For
example, half of a fingermark can have perfectly distinguishable ridge formations including
second-level detail, while the other half could be severely distorted. Predicting the quality
probability distribution provided us the opportunity to see whether the pAFQA was able
to differentiate between high- and low-quality regions within a fingermark. To visualise
this, we computed the CAMs for each quality value represented by the discrete quality
distribution.

4.6.1. Model Focus

In Figures 6 and 7, we observe the overall contribution map, generated using the
outputs of the GradCAM algorithm. Such an image would supplement the final quality
prediction and would allow an end user to better understand the prediction. Note that
the activation maps were much smaller in size compared to the original image due to
the hierarchical structure of the CNN. The CAMs were, therefore, resized back to the
dimensions of the original input image. Due to this, the resulting maps were not very
detailed and, therefore, only had the ability to weakly localise the contribution to the final
prediction. The visualisation of CAMs was masked to match with the regions of interest of
fingermark images.

Figure 6. Salient regions on high-quality fingermarks. We can observe how the model focuses on
the central area of the fingermark, where core points (loops and deltas) are present. The presence of
core points can often be considered as an indicator of a high-quality fingermark. The figure is best
viewed in colour. Blue colour indicates a low contribution and red a high contribution toward the
final prediction.

We first looked at the visualisations of high-quality fingermarks in Figure 6. The
pAFQA model focused on the high-level features of the fingermark, specifically the cores
and deltas [46]. These are locations where the orientation of the friction ridge pattern
changes. When these features are present in a fingermark, the dactyloscopic experts will
consider such traces as high(er)-quality. This is because, from the location of cores and
deltas in a fingerprint image, we can determine the first-level detail—the general pattern
of the fingerprint, which on its own already contains some evidential value [47]. If a
fingermark can be correctly classified into one of the general patterns, this means that we
can eliminate fingerprints with a different pattern and the number of possible matches is
substantially reduced. Additionally, we also know the orientation, which helps with the
matching process, since fingerprints in a reference database are normally oriented upwards
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from the phalanx in the bottom to the fingertip at the top. The presence of cores and deltas
could, therefore, speed up the automated matching process.

Figure 7. Salient regions on low-quality fingermarks. In the case of low-quality fingermarks, the
focus area of the model is spread out, often with no clearly distinguished region of interest. The
figure is best viewed in colour. Blue colour indicates a low contribution and red a high contribution
toward the final prediction.

In contrast, we can see how the model interpreted a low-quality fingermark image in
Figure 7. On fingermarks that contained no clear friction ridge structure, but still contained
some high-frequency information, such as dust and other particles, the model focused
mostly on the empty space, and the centre of attention appeared to be spread out over the
image. On fingermarks that contained clearly distinguishable friction ridge information,
the model was able to roughly localise the borders of the impression.

4.6.2. Quality Region Localisation

The intensity of individual CAMs is proportional to the contribution of the input
pixels towards the respective quality value. We can, therefore, add CAMs from a particular
quality range and construct a quality map that visualises the different quality regions of the
fingermark. As already indicated in Figure 3, we attributed different colours to the different
quality regions: the lowest-quality region (0–20) is coloured grey, low-quality (20–40) red,
medium-quality (40–60) orange, high-quality (60–80) yellow, and highest-quality (80–100)
green. The final results are presented in Figure 8.

The first row (a) contains only fingermarks with a small impression area, various
distortions, or ambiguous friction ridge structure. Consequently, the image pixels are
mostly categorised into the lowest- and low-quality regions. We can see that that empty and
noisy areas in the image were best correlated with the lowest-quality category. However,
we can see that the model appeared to correctly localise the ridge structure in all three
cases in the first row. The fingermarks in Row (b) mostly contain a mix of different quality
regions. Within the fingermarks in Row (c), we can observe high contributions to the
highest-quality range (80–100) for large areas of the impression. This also included the
first-level features of the fingermark, i.e., cores and deltas, when these were present. The
calculated quality maps may contain some artefacts (apparent salient regions, where there
was no friction ridge pattern from that category present). Such artefacts normally occurred
on the border of the friction ridge pattern where the image was masked or were a side-effect
of resizing the CAMs to the dimensions of the original image. We believe the generated
quality map should be observed together with the overall contribution map to obtain the
best understanding of the final quality prediction.
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(a) Low quality fingermarks

(b) Medium quality fingermarks

(c) High quality fingermarks

Figure 8. Quality region visualisation. In our final experiment, we show how the CAMs can be
correlated with different quality regions in the input fingermark image. The figure is best viewed
in colour. The colours represent the respective quality region in a range of 0–20 (grey), 20–40 (red),
40–60 (orange), 60–80 (yellow), and 80–100 (green).

4.6.3. Minutiae Point Density

Purely by intuition, the quality maps generated by the pAFQA model appeared to be
connected with some aspects of fingermark quality. In this experiment, we established the
correlation between the generated quality regions and any friction ridge- or image-level
features that are used in practice to individualise friction ridge impressions. Based on the
visual analysis of the maps, we already deduced that the generated CAMs showed a strong
response around the cores and deltas of the impression. These points are important for the
orientation and classification of an impression; however, there is also strong evidence that
suggests minutiae points are more densely distributed around those areas in comparison to
other areas of the friction ridge structure [48–50]. Based on this, we hypothesised that the
generated quality maps were related to the minutiae density in the fingermarks.

Another good indicator for minutiae density is local clarity. While clarity by itself does
not guarantee the presence of minutiae, it makes it easier for dactyloscopic experts to detect
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them if they are present [25,51]. The clarity and density of minutiae are therefore highly
correlated [18]. We can use this information and examine how well our generated maps
predicted the minutiae density, in comparison to a clarity-based map. We used clarity maps
produced by the LQmetric [20], which was generated by a random forest model based on
clarity annotations from dactyloscopic experts.

To confirm our hypothesis, we measured the minutiae frequency in the fingermarks,
present in the SD302 dataset, and associated it with the five quality regions that made up
our quality maps (grey, red, orange, yellow, and green). We first calculated the total area of
each region produced on our test set. Given the known pixel density (PPI) of the images in
the SD302 dataset, we transformed the area measurement from pixels2 to cm2. Next, we
counted minutiae points for each of the five regions independently. Finally, we calculated
the minutiae density by dividing the total number of minutiae by the total area for a
particular region. We repeated this procedure for the LQmetric clarity maps. The results are
shown in Figure 9. We observed that both our quality maps, as well as the LQmetric clarity
maps were highly correlated with the minutiae density. In comparison, the quality maps
produced by our model appeared to be more consistent; each successive quality region
contained roughly twice the number of minutiae of the previous level. The first quality level
contained almost no minutiae points and was therefore a good background indicator. For
the highest level in both our quality maps and LQmetric clarity maps, the minutiae density
was calculated at 19.0 min/mm2 and 18.9 min/mm2, respectively. The average minutiae
density ranges from around 19 to 24 mm2 in fingerprints [52]. The results in Figure 9 were
consistent with these statistics. Given that even the best fingermark impressions contain
some imperfections, we expected the minutiae density in the highest-quality areas in the
fingermarks to be slightly lower than that of the fingerprints.

–

Figure 9. Attribution-based quality maps as indicators for minutiae density. We assessed the the
correlation between different quality regions and the density of minutiae (in minutiae/cm2) and
compared the results with the clarity maps, produced by the LQmetric [20].

In Figure 10, we show the quality maps in relation to the minutiae points and compare
these with the clarity maps produced by the LQmetric. The difference in the density
of the minutiae for a specific quality region became apparent once the minutiae were
superimposed. The green regions captured well the areas with a high minutiae density, in
particular near singular points (cores and deltas). The density then dropped with lower-
quality regions. In comparison, the LQmetric clarity maps were more detailed and fit
better to the area of the friction ridge pattern, which made it a better tool for determining
the region of interest. However, the relation between the LQmetric clarity maps and the
minutiae point density was not as apparent visually. We can conclude that the quality maps
generated by the pAFQA model were able to roughly localise and identify regions with
different levels of minutiae density.
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(a) LQmetric clarity maps

(b) Our Quality maps

Figure 10. Qualitative evaluation of quality maps. We demonstrate how our proposed quality
maps (b) visually correlate with the manually annotated minutiae points, provided in the NIST
SD302 [12] dataset. Red points represent ridge bifurcations, and blue points represent ridge endings.
We compared the results on the same set of fingermarks with the clarity maps, generated by the
LQmetric (a). The figure is best viewed in colour.

4.6.4. User Presentation

The pAFQA method was designed with the intent to assist the dactyloscopic experts
in their work. The final quality prediction is best interpreted together with other interme-
diate results, as shown in Figure 11. We coloured the different sub-ranges of the quality
probability distribution to match the colours in the quality map for a more intuitive un-
derstanding. The quality map could be used to better guide the dactyloscopic experts
when marking friction ridge features. This visualisation can contribute to “more informed”
decisions and serve as a transparent bridge between the AI method and the interpretation
of forensic evidence.

Predicted qualityInput fingermark Overall contributionQuality map

Figure 11. Example of the results, as presented to the end user. The pAFQA method not only
predicted fingermark quality, but also generated intermediate representations, such as a quality
distribution, a quality map, and the overall contribution of pixels to the final prediction. For the best
understanding of model prediction, the results should be viewed together. The figure is best viewed
in colour.
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5. Conclusions

In this article, we presented a study on explainable fingermark quality assessment
methods using deep learning. We proposed the pAFQA model, which predicts a quality
probability distribution as an intermediate result, prior to calculating the final fingermark
quality. The quality predictions were further enhanced with additional information, such
as the overall contribution map, which showed the contribution of individual pixels to
the final prediction, as well as a quality map, which divided the image into different
quality regions. This post hoc explanation of model predictions led to a more transparent
decision-making and produced results that were interpretable to a human operator. The
dactyloscopic experts were, thus, able to connect the predicted quality value with the
known visual properties of the friction ridge impression, as they normally would in their
standard practice.

Our experiments showed that reformulating the task from a regression problem to a
distribution learning problem improved the final regression performance. The properties
of the predicted distribution also offered additional information, such as the uncertainty of
the model. Finally, we showed that the individual regions in our quality maps correlated
highly with the minutiae point density and could be used in practice to better assist forensic
experts in their work.

The implementation of the pAFQA was developed based on quality labels, provided
by trained dactyloscopic examiners. As the model was trained, tested, and validated
exclusively using expert opinion, it is not directly compatible with existing methods, which
were developed to produce quality as a predictor of AFIS performance. In order to design
a truly universal fingermark quality metric, multiple aspects of fingermark identification
need to be considered. Fingermark quality should be indicative of the performance of
both human and automated biometric identification systems. In the future, we aim to
combine both of these aspects together, as well as develop a common evaluation strategy,
which would improve interoperability and enable better comparison with state-of-the-
art methods.

Author Contributions: Conceptualisation, T.O., R.H. and P.P.; methodology, T.O.; software, T.O.;
validation, T.O. and R.H.; formal analysis, T.O.; investigation, T.O.; resources, T.O., P.P., R.H. and L.B.;
data curation, T.O. and R.H.; writing—original draft preparation, T.O.; writing—review and editing,
T.O., R.H., L.B. and P.P.; visualisation, T.O.; supervision, R.H., P.P. and L.B.; project administration,
L.B.; funding acquisition, L.B. and P.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was realised with the collaboration of the European Commission Joint Research
Centre under the Collaborative Doctoral Partnership Agreement No. 35171. Peter Peer is partially
supported by the Slovenian Research Agency ARRS through the Research Programme P2–0214 (A)
“Computer Vision”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The fingermark images used in this paper have been released publicly
by NIST as part of the N2N challenge. Access to the datasets can be requested at https://www.nist.
gov/itl/iad/image-group/nist-special-database-302 (accessed on 13 February 2023). The quality
annotations that we used to train our models in a supervised manner will be released to the public in
the near future. For more information, updates, and the source code for the experiments, visit our
GitHub page at https://github.com/timoblak/OpenAFQA (accessed on 13 February 2023).

Acknowledgments: We would like to thank to all of the participants of the JRC Fingermark annota-
tion workshop in June 2022.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.nist.gov/itl/iad/image-group/nist-special-database-302
https://www.nist.gov/itl/iad/image-group/nist-special-database-302
https://github.com/timoblak/OpenAFQA


Sensors 2023, 23, 4006 20 of 22

Abbreviations
The following abbreviations are used in this manuscript:

AFQA Automated Fingermark Quality Assessment
MOS Mean Opinion Score
PPI Pixels Per Inch
CNN Convolutional Neural Network
XAI eXplainable AI
CAM Class Activation Map
PLCC Pearson Linear Correlation Coefficient
SRCC Spearman Rank Correlation Coefficient
MSE Mean-Squared Error
MAE Mean Absolute Error
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