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Abstract: An improved whale optimization algorithm is proposed to solve the problems of the
original algorithm in indoor robot path planning, which has slow convergence speed, poor path
finding ability, low efficiency, and is easily prone to falling into the local shortest path problem.
First, an improved logistic chaotic mapping is applied to enrich the initial population of whales
and improve the global search capability of the algorithm. Second, a nonlinear convergence factor
is introduced, and the equilibrium parameter A is changed to balance the global and local search
capabilities of the algorithm and improve the search efficiency. Finally, the fused Corsi variance and
weighting strategy perturbs the location of the whales to improve the path quality. The improved
logical whale optimization algorithm (ILWOA) is compared with the WOA and four other improved
whale optimization algorithms through eight test functions and three raster map environments for
experiments. The results show that ILWOA has better convergence and merit-seeking ability in the
test function. In the path planning experiments, the results are better than other algorithms when
comparing three evaluation criteria, which verifies that the path quality, merit-seeking ability, and
robustness of ILWOA in path planning are improved.

Keywords: indoor robotics; path planning; whale optimization algorithm; nonlinear convergence
factor; Corsi variance

1. Introduction

Path planning is an important part of the indoor robotics research process, and the
quality of the path is one of the most important factors for the robot to be able to move
efficiently and autonomously to perform related tasks, which is directly related to the
robot’s mobility efficiency. As the scope of robot applications continues to expand, in recent
years from industrial environments to logistics and warehousing, home services, catering
industry and other indoor environment applications, the requirements for robot navigation
and movement continue to rise. Many intelligent algorithms have been applied to the
field of mobile navigation for robots, such as common biological heuristics: ant colony
algorithm [1,2], particle swarm algorithm [3], gray wolf algorithm [4], etc. Compared
with traditional non-heuristic algorithms, intelligent optimization algorithms rely less
on mathematical models, are easy to understand, and have better global optimization
finding ability. It is widely used in indoor robot path planning and has very important
research significance.

The traditional whale optimization algorithm (WOA) is widely favored since it has the
advantages of fewer parameters, a simple structure, and is easy to understand and apply.
In recent years, it is applied in model prediction [5,6], fault diagnosis [7,8], optimization
design [9,10], path planning [11,12], scheduling problems [13,14], etc. However, the algo-
rithm also has some defects, such as poor population initialization ability, low population
diversity, a poor balance between global search ability and local search ability, low search
efficiency and accuracy, easily falls into a local optimum, etc. Qiang Zhang [15] used the
local search ability and global search ability of the inertial weight balancing algorithm to
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discretize whale individuals by an improved Sigmoid function to increase the richness of
the population, but at the same time aggravate the computational power of the algorithm
and increase the computation time. Wu Kun [16] introduced the hierarchy in the whale
optimization algorithm and the greedy strategy in the differential evolution algorithm in
solving the UAV path planning problem based on the whale algorithm to improve the
exploitation and search capability of the algorithm. Jingnan LI [17] introduced an adaptive
nonlinear inertia weight based on the Branin function to balance global and local search,
and proposed a mirror selection method to improve population richness and convergence
speed. Dingli Chu [18] proposed an adaptive weighting strategy and introduced the sim-
ulated annealing algorithm into the whale algorithm, which improved the convergence
speed and global merit-seeking ability of the algorithm. Wenqiang Yang [19] proposed an
exploratory prey mechanism and designed a constraint processing strategy to improve the
population diversity of the algorithm and increase the global search capability. Kumar S [20]
combined fuzzy logic techniques with the WOA algorithm to design a hybrid path planning
algorithm and applied it to the static and dynamic path planning of robots. Simulation
and real machine experiments in MATLAB verified the effectiveness of the improvement
and improved the distance by about 20.63% compared to other algorithms that have been
improved. Yaonan Dai [21] proposed a new whale optimization algorithm (NWOA), which
designs virtual obstacles and introduces adaptive techniques to solve the problems of slow
convergence and easy to fall into local optimization in robot path planning by the original
algorithm and other two improved algorithms for experiments, and the results showed that
the path planning time and the average lengths of the path of the NWOA are as short as
possible. Yucen Cai [22] used the secondary optimization of the harmonic search algorithm
to improve the quality and global search ability of the population and improve the search
accuracy, and introduced a dynamic balancing strategy and a population reconstruction
mechanism to regulate the global search ability and local search ability of the algorithm
to avoid getting into local optimal solutions. The improved algorithm shows obvious
advantages in path optimality, stability, and convergence speed in path planning when con-
ducting path planning experiments in different environments. Weijun Zhang [23] proposed
a discrete whale optimization algorithm (DWOA) for indoor logistics robot path planning
and established an AGV path planning model, and through simulation experiments, the
transportation time of AGV was shortened and the transportation efficiency was improved.

For the above analysis of the improvement of the whale optimization algorithm,
this paper proposes a multi-strategy fusion improved whale optimization algorithm. An
improved logistic chaotic mapping is used to initialize the whale population strategy to
enrich the diversity of the population. A sinusoidal weighting strategy is introduced with
the adjustment balance parameter A to enhance the adaptive ability of the algorithm in
global search and local search. A nonlinear factor is introduced in the bracketing mechanism
of the algorithm and a cosine weighting strategy is introduced in the spiral mechanism to
perturb the whale position to avoid falling into the local optimum in the local area and to
accelerate the convergence speed and convergence accuracy of the algorithm. Finally, in
MATLAB software, comparative experiments were conducted using eight test functions and
comparative experiments on path planning simulations using three indoor environments
of varying complexity to verify the effectiveness of the improved application of the whale
optimization algorithm to path planning and improve the path quality of the robot when
moving indoors.

The rest of this paper is structured as follows: Section 2 provides a detailed intro-
duction of the whale algorithm; Section 3 provides a brief analysis of the shortcomings of
the whale algorithm as well as a proposed improvement strategy; Section 4 conducts test
function experiments on the improved whale algorithm and five other improved whale
algorithms, and analyzes the mean, standard deviation, and iteration count results of the
solutions, proving that the improved whale algorithm has better performance in finding
the best solution. Indoor raster maps of three different complex environments are built
and path planning simulation experiments are conducted to verify the effectiveness and
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feasibility of the improved whale algorithm in solving indoor path planning problems.
Finally, Section 5 summarizes the conclusions and identifies the next steps.

2. The Whale Optimization Algorithm

The whale optimization algorithm (WOA) [24] is a novel population intelligence
optimization algorithm proposed by Mirjalili scholars in 2016, which is inspired by the
foraging behavior of humpback whales and is divided into three main types: (1) swimming
and foraging, (2) surround foraging, and (3) attacking prey. Wandering foraging and
encircling predation are determined by the regulation coefficient A, where A takes values
in the range [−2, 2]. A schematic diagram of the whale optimization algorithm is shown
in Figure 1.
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Figure 1. Schematic diagram of the whale optimization algorithm.

When 0 ≤ |A| ≤ 1, the algorithm performs a wandering encirclement mechanism
or a surround predation mechanism; when 1 ≤ |A| ≤ 2, the algorithm performs a prey
search mechanism.

(1) Swim away encirclement. Assuming that the optimal solution in the current
generation population is the target prey and all individual whales swim toward the optimal
position, the mathematical model is as follows:

X(t + 1) = X∗(t)− A×|C× X∗(t)− X(t)| (1)

where X(t) denotes the position of individual whales in the first-generation population,
X*(t) denotes the optimal position of the whale individuals in the first-generation popula-
tion, and A, C denote the adjustment coefficient. The specific expressions are as follows:

A = 2a× r1 − a (2)

C = 2× r2 (3)

where a denotes the convergence factor that decreases linearly from 2 to 0, and r1, r2 denotes
a random number between [0, 1]. The specific expression is as follows:

a = 2− 2× t
tmax

(4)

where t denotes the number of current iterations. tmax denotes the maximum number
of iterations.



Sensors 2023, 23, 3988 4 of 17

(2) Surround predation. After spotting prey, humpback whales spiral up in preparation
for an attack, with the following position update expression:

X(t + 1) = X∗(t) + Dp × eb×l × cos(2× π × l) (5)

where l denotes a random number between [−1, 1], b denotes the constant coefficient
defining the shape of the logarithmic spiral, and Dp denotes the distance between a
whale in the current generation and the current optimal individual, as expressed by the
following expression:

Dp =
∣∣X∗(t)− X(t)

∣∣ (6)

As the whale spirals around the prey, it must also swim away to surround the prey. To
express this process, Mirjalili scholars assumed that the probability p of a humpback whale
choosing both swim-and-surround and surround predation is 50%, which is represented
by the mathematical model:

X(t + 1) =

{
X∗(t)− A×|C× X∗(t)− X(t)| p < 0.5

X∗(t) + Dp × eb×l × cos(2× π × l) p ≥ 0.5
(7)

(3) Searching for prey. When 0 ≤ |A| ≤ 1, whales move by probabilistically choos-
ing to swim away to surround and encircle their prey. When 1 ≤ |A| ≤ 2, instead of
approaching the current generation of optimal individuals as prey, the humpback whale
selects a random whale individual in the population as prey for roundup, and the specific
mathematical model expression is as follows:

X(t + 1) = Xrand(t)− A×|Xrand(t)− X(t)| (8)

where Xrand(t) indicates the location of a random individual whale in the t generation population.

3. The Problem Statement and Improvement Were Measured

Initializing population strategies based on chaotic mapping. Initialization of whale
population strategy using improved logistic chaos mapping. The original whale opti-
mization algorithm uses a random distribution of whale populations, resulting in uneven
distribution and poor diversity of the initial populations, leading to slow convergence
of the algorithm and low convergence accuracy, reducing the search performance of the
algorithm and leading to lower speed and poorer accuracy of robot path planning. Chaotic
mapping with good disorder and ergodicity is used to initialize the whale population,
enrich the diversity of the population, and improve the full specific exploration ability of
the algorithm in a certain range. Logistic chaos mapping, which is often used in intelligent
bionic algorithms to initialize populations, applies logistic chaos mapping to the algorithm
with the following specific mathematical model expression:

X(t + 1) = r× X(t)× (1− X(t)) (9)

where X(t) denotes the location of individual whales in the t generation population, t
denotes the number of iterations, r denotes the random number of [0, 4].

Figures 2 and 3 show the distribution and histogram of the chaotic mapping values of
the original logistic in the interval [0, 1], respectively. The mapping values are relatively
more distributed near the two endpoints in the interval [0, 1], the distribution in the
middle is sparse and uneven, the initial population distribution applied in the algorithm is
relatively uneven, and the population diversity is not significantly enhanced.



Sensors 2023, 23, 3988 5 of 17
Sensors 2023, 23, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 2. Logistic chaos value distribution. 

 
Figure 3. Logistic chaos value histogram. 

Therefore, an improved logistic chaotic mapping is proposed, as shown in Figures 4 
and 5. The improved logistic chaotic mapping values are more uniformly distributed, the 
percentage of each region in the interval [0, 1] does not differ much from each other, and 
the initialized particles are more evenly distributed. The chaotic sequence generated by 
the improved logistic chaos mapping is introduced into the search space of whale indi-
viduals to generate the sequence of individual positions in the initial stage of the whale 
optimization algorithm to improve the initial population distribution of whales, whose 
mathematical model expression is 

1 1 1

2 2 2

( ) (1 ( )) (4 ) ( ) / 2 0.5
( 1)

( ) (1 ( )) (4 ) (1 ( )) / 2 0.5
X t X t X t if t

X t
X t X t X t if t

λ λ λ
λ λ λ

× × − + × − × <
+ =  × × − + × − × − ≥

(10)

where 𝑋(𝑡) denotes the location of individual whales in the tth generation of the popula-
tion, 𝑡 denotes the number of iterations. 𝑋 ∈ [0, 1]. 𝜆 , 𝜆  indicates the adjustment coef-
ficient in the range of [0, 4]; all values are 0.3. 

Figure 2. Logistic chaos value distribution.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 2. Logistic chaos value distribution. 

 
Figure 3. Logistic chaos value histogram. 

Therefore, an improved logistic chaotic mapping is proposed, as shown in Figures 4 
and 5. The improved logistic chaotic mapping values are more uniformly distributed, the 
percentage of each region in the interval [0, 1] does not differ much from each other, and 
the initialized particles are more evenly distributed. The chaotic sequence generated by 
the improved logistic chaos mapping is introduced into the search space of whale indi-
viduals to generate the sequence of individual positions in the initial stage of the whale 
optimization algorithm to improve the initial population distribution of whales, whose 
mathematical model expression is 

1 1 1

2 2 2

( ) (1 ( )) (4 ) ( ) / 2 0.5
( 1)

( ) (1 ( )) (4 ) (1 ( )) / 2 0.5
X t X t X t if t

X t
X t X t X t if t

λ λ λ
λ λ λ

× × − + × − × <
+ =  × × − + × − × − ≥

(10)

where 𝑋(𝑡) denotes the location of individual whales in the tth generation of the popula-
tion, 𝑡 denotes the number of iterations. 𝑋 ∈ [0, 1]. 𝜆 , 𝜆  indicates the adjustment coef-
ficient in the range of [0, 4]; all values are 0.3. 

Figure 3. Logistic chaos value histogram.

Therefore, an improved logistic chaotic mapping is proposed, as shown in Figures 4 and 5.
The improved logistic chaotic mapping values are more uniformly distributed, the per-
centage of each region in the interval [0, 1] does not differ much from each other, and the
initialized particles are more evenly distributed. The chaotic sequence generated by the
improved logistic chaos mapping is introduced into the search space of whale individuals to
generate the sequence of individual positions in the initial stage of the whale optimization
algorithm to improve the initial population distribution of whales, whose mathematical
model expression is

X(t + 1) =

{
λ1 × X(t)× (1− X(t)) + λ1 × (4− λ1)× X(t)/2 i f t < 0.5

λ2 × X(t)× (1− X(t)) + λ2 × (4− λ2)× (1− X(t))/2 i f t ≥ 0.5
(10)

where X(t) denotes the location of individual whales in the tth generation of the population,
t denotes the number of iterations. X ∈ [0, 1]. λ1, λ2 indicates the adjustment coefficient in
the range of [0, 4]; all values are 0.3.
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Next, the balancing strategy using nonlinear convergence factors is discussed. In
the original whale optimization algorithm, the balancing parameter A is used to regulate
the local search capability and the global search capability of the algorithm. The original
algorithm has weak global search capability, and to increase the global exploration capa-
bility of the algorithm, the share of global exploration is expanded. After several tests
adjusting the A-value to 1.3 (a 15% improvement in the percentage), the algorithm has
a stronger global exploration capability. The value of A varies depending on the linear
factor. Since the value of a decreases linearly from 2 to 0, it leads to slow convergence of
the algorithm, weak global exploration ability, and low convergence accuracy. Therefore, a
nonlinear convergence strategy is introduced to reduce the speed of decreasing the value
of the improved a at the beginning of the iteration compared with the value of the original
a. This ensures that larger values are used at the beginning of the iteration to increase
the global exploration capability of the algorithm and improve the search accuracy; the
value decreases at a faster rate at the end of the iteration and the local search capability is
enhanced to speed up the convergence of the algorithm, as shown in Figure 6.The specific
mathematical model expression for the improved convergence factor is as follows:

a = amax − (amax − amin)× sin((
1
2
× (t/tmax)

2)× π) (11)

where amax indicates the maximum value within the range of values taken for a, which is 2;
amin indicates the smallest value within the range of values taken for a, which is 0.
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The nonlinear factorial balancing strategy, to a certain extent, improves the global
search performance of the algorithm, and because the value of A is affected by the random
numbers in Equations (2) and (3), the local search capability of the algorithm is affected,
and the line accuracy of the robot path planning is reduced. Therefore, a weighting strategy
is introduced in the position update formula for global and local search of the nonlinear
factors in collaboration to improve the local search capability of the algorithm, with the
following specific weight expressions:

φ(t) = 1−
(

t
tmax

)λ

(12)

where λ indicates the adjustment coefficient; here the value is taken as 3. The improved
position update equations are, respectively,

X(t + 1) = φ(t)× X∗(t)− A×|C× X∗(t)− X(t)| (13)

X(t + 1) = φ(t)× X∗(t) + Dp × eb×l × cos(2× π × l) (14)

X(t + 1) = φ(t)× Xrand(t)− A×|Xrand(t)− X(t)| (15)

Next, the location update strategy is adjusted by using the Corsi variant. When the
WOA is updated with the position after the above strategy improvement, it relies on the
new position after each iteration without active perturbation update of the target position,
and it is easy to fall into local optimum in the late iteration, which leads the robot to fall into
local shortest path in path planning. Therefore, based on this, the Corsi variation strategy
is introduced to perform a random perturbation update on the target position, which helps
to improve the algorithm’s search capability and search accuracy and avoid falling into
local optimum. The improved position update expression is as follows:

X(t + 1) = X(t) + [Cauchy× A]α (16)

where α denotes the variance factor, which here takes the value of 1. Cauchy is the standard
Cauchy distribution, and the specific variable generating function is

Cauchy = tan((rand(1, dim)− 0.5)× π) (17)

The specific workflow of ILWOA is shown in Figure 7.
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4. Verification and Analysis of Simulation Experiments

In order to test the improvement effect of ILWOA in robot path planning, the im-
proved algorithm is verified in the standard test function and path planning, respectively.
Experimental simulation platform: Windows 10 computer with model 3.0 GHz, 8 GB RAM,
Intel(R) Core(TM) i5-8500U CPU, and software MATLAB R2018a.The algorithm parameters
in the simulation experiments are set as shown in Table 1. To verify the objectivity and
accuracy of the path planning comparison experiments, the population size is set uniformly
as N, the maximum number of iterations as tmax, the search dimension as dim, the nonlinear
factors amax, amin, and the balance parameter A in the ILWOA algorithm.
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Table 1. Algorithm parameter settings.

Parameter Name Parameter Value

Population size N 30

Search Dimension dim 30

Maximum number of iterations tmax 500

Nonlinear factor minimum amin 0

Nonlinear factor maximum amax 2

Balancing parameter A in ILWOA algorithm 1.3

Remaining parameters of WOA algorithm Referring to the literature [24]

Remaining parameters of MWOA algorithm Referring to the literature [25]

Remaining parameters of TWOA algorithm Referring to the literature [26]

Remaining parameters of IWOA algorithm Referring to the literature [27]

Remaining parameters of AWOA algorithm Referring to the literature [28]

4.1. Standard Test Function Experiment

To detect the improved performance of ILWOA algorithm, the ILWOA algorithm
is compared with traditional WOA, MWOA, TWOA, IWOA, and AWOA algorithms in
standard test function comparison experiments. The specific parameter settings of the five
algorithms are shown in Table 1, and they are tested by eight standard test functions in
single-peak, multi-peak, and fixed dimensions, and the specific test functions are shown in
Table 2, and the convergence curves are shown in Figure 8. Thirty experiments were run
in eight test functions and the standard deviation and average of the experimental results
were taken, as shown in Table 3.

Table 2. Standard test functions.

Standard Functions Dimensionality Search Space Minimum Value

F1 = ∑n−1
i=1

[
100
(

xi+1 − x2
i

)2
+
(
xi − 1

)2] 30 [−30, 30] 0

F2 =
30
∑

i=1
(
∣∣xi + 0.5

∣∣) 2 30 [−100, 100] 0

F3 = π
30

{
10sin2(πy1) + ∑29

i=1 (yi − 1)2 ·
[
1 + 10sin2(πyi+1)

]
+ (yn − 1)2

}
+ ∑30

i=1 u
(
xi , 10, 100, 4

) 30 [−50, 50] 0

F4 = 0.1
{

sin2(π3x1) + ∑29
i=1 (xi − 1)2 ·

[
1 + sin2(3πxi+1)

]
+ (xn − 1)2

[
1 + sin2(2πx30)

]}
+ ∑30

i=1 u(xi , 5, 100, 4) 30 [−50, 50] 0

F5 =

 1
500 + ∑25

j=1
1

j+∑2
i=1 (xi−aij )

6

−1
30 [−65.536, 65.536] 1

F6 =
[
1 +

(
x1 + x2 + 1

)2(19− 14x1 + 3x2
1 − 14x2 + 6x1 x2 + 3x2

2

)]
×[

30 +
(
2x1 − 3x2

)2(18− 32x1 + 12x2
1 + 48x2 − 36x1 x2 + 27x2

2

)] 2 [−2, 2] 3

F7 = −∑4
i=1 ci exp

[
−∑4

j=1 aij (xj − pij )
2
]

4 [0, 1] −3.86

F8 = ∑5
i=1

[
(x− ai )(x− ai )

T + ci
]−1 4 [0, 10] −10

As shown in Figure 8, the horizontal coordinate represents the number of iterations of
the algorithm, and the vertical coordinate represents the optimal fitness value; the lower
fitness value represents the better ability of the algorithm to solve the problem and the
more superior performance. Among the eight test functions, the red line represents the
500 iterations of the ILWOA algorithm, and from Figure 8a–e,g, it can be concluded that the
ILWOA algorithm can escape from the local optimum after 500 iterations, the accuracy of
the search for the optimum is improved, the value of the fitness of the solution is the lowest,
and the ability of the search for the optimum is the strongest. From Figure 8f,h, it can be
seen that all algorithms find the same fitness value after 500 iterations, but the ILWOA
finds the optimal value after less than 20 iterations, and the algorithm has an improved
search efficiency.
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Table 3. Experimental results of standard test functions.

Function
Name Statistical Results ILWOA WOA MWOA TWOA IWOA AWOA

F1
Average value 2.75 × 101 2.79 × 101 2.80 × 101 2.80 × 101 2.79 × 101 2.82 × 101

Standard deviation 2.82 × 10−1 4.51 × 10−1 2.09 × 10−1 4.09 × 10−1 5.28 × 10−1 3.90 × 10−1

F2
Average value 1.96 × 10−2 4.53 × 10−1 1.96 × 10−1 4.25 × 10−1 5.87 × 10−1 6.19 × 10−1

Standard deviation 8.30 × 10−3 2.66 × 10−1 7.42 × 10−3 2.46 × 10−1 3.38 × 10−1 3.40 × 10−1

F3
Average value 8.92 × 10−4 2.95 × 10−2 1.00 × 10−2 1.68 × 10−2 2.85 × 10−2 3.46 × 10−2

Standard deviation 4.44 × 10−4 3.04 × 10−2 4.81 × 10−3 8.98 × 10−3 1.93 × 10−2 2.71 × 10−2

F4
Average value 3.31 × 10−2 4.90 × 10−1 1.47 × 10−1 5.22 × 10−1 5.71 × 10−1 5.48 × 10−1

Standard deviation 1.91 × 10−2 1.93 × 10−1 8.41 × 10−2 3.19 × 10−1 2.33 × 10−1 2.87 × 10−1

F5
Average value 9.98 × 10−1 3.23 1.29 4.32 3.68 2.31

Standard deviation 2.45 × 10−11 3.29 9.75 × 10−1 4.35 3.77 2.66

F6
Average value 3.00 3.00 3.03 3.00 3.90 3.00

Standard deviation 4.51 × 10−7 1.86 × 10−4 8.94 × 10−2 2.58 × 10−4 4.95 7.18 × 10−4

F7
Average value −3.86 −3.85 −3.84 −3.85 −3.86 −3.85

Standard deviation 1.96 × 10−5 1.71 × 10−2 1.74 × 10−2 2.20 × 10−2 7.65 × 10−3 1.65 × 10−2

F8
Average value −1.02 × 101 −8.69 −1.01 × 101 −8.18 −7.30 −9.04

Standard deviation 7.75 × 10−4 2.45 1.17 × 10−1 2.63 2.91 2.27

As shown in Table 3, the mean and standard deviation were obtained from 30 experi-
ments of six improved whale correlation algorithms in eight test functions. By comparing the
data, the average fitness values and standard deviations solved 30 times by the ILWOA algo-
rithm are larger compared with the results of other improved algorithms and are the lowest
values, verifying that the stability of the improved algorithms is significantly improved.

4.2. Path Planning

The feasibility and effectiveness of the improvement of the ILWOA algorithm is
initially verified through the experiments of the test function. The algorithm is applied
to path planning, which is also the process of solving. In order to further verify the
feasibility of the ILWOA algorithm for solving path planning problems, this section uses
raster maps as a simulation environment for robot path planning to verify the experiments
comparing the ILWOA with other algorithms on improved applied path planning. First,
the function solved is replaced by the algorithm with a raster map, the population of whales
is redistributed in the two-dimensional raster map using Formula (10), the length of whales
from the target point is calculated and the whales closest to the target point are determined.
Then, the whales start to search the target location of the raster map, according to the
change in the A value. The whales search according to Formulas (13)–(15) in three ways;
Equation (16) is updated for the position accordingly, and the nearest whale to the target
point is determined again, and the cycle is reiterated until a whale finds the target point
and all whales approach it. When the number of iterations is equal to 500, the whales
stop searching, and finally, the shortest path from the initial point to the target point is
found according to the paths taken by all whales. Three indoor environments with different
levels of complexity were designed, as shown in Figures 9–13, for the specific simulated
indoor maps of Environment 1 (a small indoor area with a small level of environmental
complexity in a 15 × 15 grid), Environment 2 (a medium indoor area with a medium level
of environmental complexity in a 25 × 25 grid), and Environment 3 (a large indoor area
with a large level of environmental complexity in a 40 × 40 grid), all with the upper left
corner set as the starting point and the lower right corner set as the end point. The average
path length, standard deviation, and average number of iterations are used as metrics to
evaluate the quality of path planning.
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Figure 9. Robot path planning in Environment 1 scenarios.

As shown in Figures 9 and 10, in the 15× 15 grid environment, the number of obstacles
set on the optimal path is small and the shape is simple, and the optimal results of 30 path
planning experiments are the same, but the ILWOA algorithm finds the optimal path
after five iterations, with fewer iterations, and the planning efficiency of ILWOA in robot
path planning is improved. This is due to the introduction of an adaptive weighting
strategy and nonlinear factor, balancing the weight of local search and global search,
accelerating the convergence speed, improving the search efficiency, and enhancing the
global search capability.
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As shown in Figures 11 and 12, in a 25× 25 raster environment with a medium number
of obstacle settings and complex shapes on the optimal path, among the optimal results
of 30 path planning experiments, the shortest path length found by the ILWOA algorithm
is smaller than the other five algorithms, and the number of path turns is smaller, and
the path quality is improved. This is attributed to the introduction of the Corsi variation
strategy, which makes the algorithm jump out of the local optimum by random position
perturbation and improves the accuracy of the algorithm.



Sensors 2023, 23, 3988 13 of 17
Sensors 2023, 23, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 11. Robot path planning in Environment 2 scenarios. 

 
Figure 12. Optimal iteration curve. 

As shown in Figures 13 and 14, in the 40 × 40 grid environment, the number of obsta-
cles set on the optimal path is more dense and the search area is larger. In the optimal 
results of 30 path planning experiments, the number of iterations and the distance when 
the shortest path is found by the ILWOA algorithm are smaller than the other five algo-
rithms, which verifies that the robot’s ability to find the optimal in a complex indoor en-
vironment is better than the other authors’ improvements. This is made possible by ap-
plying an improved logistic chaos mapping and resetting the value of the equilibrium 
parameter A, which enriches the diversity of the population, increases the global search 
capability, search efficiency and robustness of the algorithm, and improves the robot’s 
ability to fully explore the planned path. 

Figure 11. Robot path planning in Environment 2 scenarios.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 11. Robot path planning in Environment 2 scenarios. 

 
Figure 12. Optimal iteration curve. 

As shown in Figures 13 and 14, in the 40 × 40 grid environment, the number of obsta-
cles set on the optimal path is more dense and the search area is larger. In the optimal 
results of 30 path planning experiments, the number of iterations and the distance when 
the shortest path is found by the ILWOA algorithm are smaller than the other five algo-
rithms, which verifies that the robot’s ability to find the optimal in a complex indoor en-
vironment is better than the other authors’ improvements. This is made possible by ap-
plying an improved logistic chaos mapping and resetting the value of the equilibrium 
parameter A, which enriches the diversity of the population, increases the global search 
capability, search efficiency and robustness of the algorithm, and improves the robot’s 
ability to fully explore the planned path. 

Figure 12. Optimal iteration curve.

As shown in Figures 13 and 14, in the 40 × 40 grid environment, the number of
obstacles set on the optimal path is more dense and the search area is larger. In the optimal
results of 30 path planning experiments, the number of iterations and the distance when the
shortest path is found by the ILWOA algorithm are smaller than the other five algorithms,
which verifies that the robot’s ability to find the optimal in a complex indoor environment
is better than the other authors’ improvements. This is made possible by applying an
improved logistic chaos mapping and resetting the value of the equilibrium parameter A,
which enriches the diversity of the population, increases the global search capability, search
efficiency and robustness of the algorithm, and improves the robot’s ability to fully explore
the planned path.
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Figure 14. Optimal iteration curve.

As shown in Tables 4–6, after 30 independent experiments based on three different
environments, the average path length of the ILWOA algorithm for the raster map ILWOA
algorithm at 15 × 15 is 30.667, the average number of iterations is 36 and the standard
deviation of the path is 0.956.The average path length of the ILWOA algorithm for the
raster map at 25× 25 is 53.467, with an average number of 73 iterations and a path standard
deviation of 1.479.The average path length of the raster map ILWOA algorithm at 40 × 40
is 90.667, the average number of iterations is 98, and the standard deviation of the path is
2.746. By comparing the average path length, path standard deviation, and average number
of iterations, the ILWOA application shows some advantages in robot path planning. It
can be seen that ILWOA has a better comprehensive merit-seeking ability in path planning
problems compared to those of other authors.
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Table 4. Experimental results of Environment 1 scenarios.

Evaluation Indicators ILWOA WOA MWOA TWOA IWOA AWOA

Average length of path 30.667 32.210 31.793 31.517 31.862 32.140
Path standard deviation 0.956 2.024 1.792 1.153 1.302 1.767

Average number of iterations 36 66 57 61 63 64

Table 5. Experimental results of Environment 2 scenarios.

Evaluation Indicators ILWOA WOA MWOA TWOA IWOA AWOA

Average length of path 53.467 58.533 57.530 57.400 56.867 56.670
Path standard deviation 1.479 4.725 2.956 2.851 3.848 3.252

Average number of iterations 73 93 83 79 82 86

Table 6. Experimental results of Environment 3 scenarios.

Evaluation Indicators ILWOA WOA MWOA TWOA IWOA AWOA

Average length of path 90.667 99.667 96.600 95.533 97.600 96.733
Path standard deviation 2.746 17.301 6.35 5.888 6.61 7.956

Average number of iterations 98 113 103 108 103 100

5. Conclusions and Future Work

In this study, an improved whale optimization algorithm (ILWOA) is proposed to
solve the global path planning problem for indoor robots. To address the shortcomings of
the uneven population distribution of the WOA algorithm, an improved logistic chaotic
mapping is introduced to initialize the population, improve the global search capability
of the algorithm, and increase the path finding capability of the robot. To address the
problem of incoordination between global exploration and local exploration of the WOA
algorithm, a nonlinear convergence factor is introduced and the value of the equilibrium
parameter A is increased to improve the comprehensive exploration capability, speed up
the convergence speed and accuracy, and enhance the accuracy and efficiency of robot path
planning. Since the WOA algorithm easily falls into the local optimum, the position update
weight strategy and the Corsi variation strategy are used to randomly jump the updated
position to avoid falling into the local optimum and enhance the robot to find the best path
in the entire planning path environment. The standard test function and indoor global path
planning simulation experiments verify the following:

(1) In the comparison to the standard test function, the ILWOA has a significant
advantage in the number of iterations, convergence speed, and optimization-seeking
accuracy, verifying the effectiveness of the improvement.

(2) In the path planning comparison experiments under three different environments,
the ILWOA’s ability to find optimal paths, stability, environmental adaptability, and con-
vergence efficiency in path planning are improved more than other comparison algorithms.
After the above two verifications, ILWOA has certain superiority in indoor path planning
in terms of seeking ability, stability of seeking results, convergence speed, and path quality,
and solves the problems of a poor path, a long planning time, and the bottom efficiency of
the WOA algorithm in robot path planning.

For future work, we will next investigate the smoothing of the ILWOA’s routes in
robot path planning, as well as combining the algorithm with other algorithms to further
demonstrate the research and application value of the algorithm.

Author Contributions: Conceptualization, Q.S.; methodology, Q.S.; software, Q.S.; validation, Q.S.;
formal analysis, C.L.; investigation, C.L.; resources, Q.S.; data curation, C.L.; writing—original draft
preparation, Q.S.; writing—review and editing, Q.S.; visualization, C.L.; supervision, C.L. All authors
have read and agreed to the published version of the manuscript.



Sensors 2023, 23, 3988 16 of 17

Funding: This study was supported by the Natural Science Foundation of Xinjiang Uygur Au-
tonomous Region (Grant No. 2021D01C052).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, D.; Hu, X.; Jiang, Q. Design and optimization of logistics distribution route based on improved ant colony algorithm. Optik

2023, 273, 170405. [CrossRef]
2. Ren, T.; Luo, T.; Jia, B.; Yang, B.; Wang, L.; Xing, L. Improved ant colony optimization for the vehicle routing problem with split

pickup and split delivery. Swarm Evol. Comput. 2023, 77, 101228. [CrossRef]
3. Chen, Z.; Wu, H.; Chen, Y.; Cheng, L.; Zhang, B. Patrol robot path planning in nuclear power plant using an interval multi-objective

particle swarm optimization algorithm. Appl. Soft Comput. 2022, 116, 108192. [CrossRef]
4. Qu, C.; Gai, W.; Zhong, M.; Zhang, J. A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial

vehicles (UAVs) path planning. Appl. Soft Comput. 2020, 89, 106099. [CrossRef]
5. Ding, Y.; Chen, Z.; Zhang, H.; Wang, X.; Guo, Y. A short-term wind power prediction model based on CEEMD and WOA-KELM.

Renew. Energy 2022, 189, 188–198. [CrossRef]
6. Zhang, B.; Wang, S.; Deng, L.; Jia, M.; Xu, J. Ship motion attitude prediction model based on IWOA-TCN-Attention. Ocean Eng.

2023, 272, 113911. [CrossRef]
7. Zhou, J.; Xiao, M.; Niu, Y.; Ji, G. Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM. Sensors 2022, 22, 6281. [CrossRef]
8. Li, J.; Cheng, X.; Peng, J.; Meng, Z. A new adaptive parallel resonance system based on cascaded feedback model of vibrational

resonance and stochastic resonance and its application in fault detection of rolling bearings. Chaos Solitons Fractals 2022, 164, 112702.
[CrossRef]

9. Shen, Y.; Zhang, C.; Gharehchopogh, F.S.; Mirjalili, S. An improved whale optimization algorithm based on multi-population
evolution for global optimization and engineering design problems. Expert Syst. Appl. 2023, 215, 119269. [CrossRef]

10. Dadashzadeh, S.; Aghaie, M.; Zolfaghari, A. Optimal design of separation cascades using the whale optimization algorithm. Ann.
Nucl. Energy 2022, 172, 109020. [CrossRef]

11. Han, Q.; Yang, X.; Song, H.; Du, W. Multi-objective ship path planning using non-dominant relationship-based WOA in marine
meteorological environment. Ocean Eng. 2022, 266, 112862. [CrossRef]

12. Yan, Z.; Zhang, J.; Zeng, J.; Tang, J. Three-dimensional path planning for autonomous underwater vehicles based on a whale
optimization algorithm. Ocean Eng. 2022, 250, 111070. [CrossRef]

13. Manikandan, N.; Gobalakrishnan, N.; Pradeep, K. Bee optimization based random double adaptive whale optimization model
for task scheduling in cloud computing environment. Comput. Commun. 2022, 187, 35–44. [CrossRef]

14. Bo, L.; Li, Z.; Liu, Y.; Yue, Y.; Zhang, Z.; Wang, Y. Research on Multi-Level Scheduling of Mine Water Reuse Based on Improved
Whale Optimization Algorithm. Sensors 2022, 22, 5164. [CrossRef] [PubMed]

15. Zhang, Q.; Guo, Y.; Wang, Y.; Liu, X. A discrete whale algorithm and its application. J. Univ. Electron. Sci. Technol. 2020, 49, 622–630.
[CrossRef]

16. Wu, K.; Tan, S. UAV flight path planning based on improved whale optimization algorithm. J. Aeronaut. 2020, 41, 107–114.
[CrossRef]

17. Lee, K.-N.; Le, M. Improved whale optimization algorithm based on selection of mirror images. J. Nanjing Univ. Aeronaut.
Astronaut. 2020, 37, 115–123. [CrossRef]

18. Chu, D.L.; Chen, H.; Wang, X.G. Whale optimization algorithm based on adaptive weights and simulated annealing. J. Electron.
2019, 47, 992–999.

19. Yang, W.; Peng, Z.; Yang, Z.; Guo, Y.; Chen, X. An enhanced exploratory whale optimization algorithm for dynamic economic
dispatch. Energy Rep. 2021, 7, 7015–7029. [CrossRef]

20. Kumar, S.; Parhi, D.R.; Kashyap, A.K.; Muni, M.K. Static and dynamic path optimization of multiple mobile robot using
hybridized fuzzy logic-whale optimization algorithm. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 5718–5735.
[CrossRef]

21. Dai, Y.; Yu, J.; Zhang, C.; Zhan, B.; Zheng, X. A novel whale optimization algorithm of path planning strategy for mobile robots.
Applied Intelligence 2022, 1–15. [CrossRef]

22. Cai, Y.; Du, P. Unmanned vehicle path planning based on balanced whale optimization algorithm. Control. Decis. Mak. 2021, 36, 2647–2655.
[CrossRef]

23. Zhang, W.; Xue, C. Discrete whale optimization algorithm-based path planning for AGVs in warehouse logistics. Logist. Technol.
2022, 41, 115–119+139.

24. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]

https://doi.org/10.1016/j.ijleo.2022.170405
https://doi.org/10.1016/j.swevo.2023.101228
https://doi.org/10.1016/j.asoc.2021.108192
https://doi.org/10.1016/j.asoc.2020.106099
https://doi.org/10.1016/j.renene.2022.02.108
https://doi.org/10.1016/j.oceaneng.2023.113911
https://doi.org/10.3390/s22166281
https://doi.org/10.1016/j.chaos.2022.112702
https://doi.org/10.1016/j.eswa.2022.119269
https://doi.org/10.1016/j.anucene.2022.109020
https://doi.org/10.1016/j.oceaneng.2022.112862
https://doi.org/10.1016/j.oceaneng.2022.111070
https://doi.org/10.1016/j.comcom.2022.01.016
https://doi.org/10.3390/s22145164
https://www.ncbi.nlm.nih.gov/pubmed/35890844
https://doi.org/10.12178/1001-0548.2019116
https://doi.org/10.7527/S1000-6893.2020.24286
https://doi.org/10.16356/j.1005-1120.2020.S.015
https://doi.org/10.1016/j.egyr.2021.10.067
https://doi.org/10.1177/0954406220982641
https://doi.org/10.1007/s10489-022-04030-0
https://doi.org/10.13195/j.kzyjc.2020.0416
https://doi.org/10.1016/j.advengsoft.2016.01.008


Sensors 2023, 23, 3988 17 of 17

25. Zhang, D.; Xu, H.; Wang, Y.; Song, T.; Wang, L. Whale optimization algorithm with embedded Circle mapping and dimension by
dimension small-hole imaging backward learning. Control. Decis. Mak. 2021, 36, 1173–1180. [CrossRef]

26. Wang, Q.; Yao, D.; Zhao, G.; Wang, H. Research on long range support composite interference airspace planning. J. Northwestern
Polytech. Univ. 2018, 36, 1176–1184. [CrossRef]

27. Liu, X.; Jiang, M. Research on dual-loop composite control of air-craft rudder electric loading system based on WOA. Vib. Shock
2021, 40, 246–253+289. [CrossRef]

28. Sun, L.; Huang, J.; Xu, J.; Ma, Y. Feature selection algorithm based on adaptive whale optimization algorithm and fault tolerant
neighborhood rough set. Pattern Recognit. A-Rtificial Intell. 2022, 35, 150–165. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.13195/j.kzyjc.2019.1362
https://doi.org/10.1051/jnwpu/20183661176
https://doi.org/10.13465/j.cnki.jvs.2021.12.031
https://doi.org/10.16451/j.cnki.issn1003-6059.202202006

	Introduction 
	The Whale Optimization Algorithm 
	The Problem Statement and Improvement Were Measured 
	Verification and Analysis of Simulation Experiments 
	Standard Test Function Experiment 
	Path Planning 

	Conclusions and Future Work 
	References

