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Abstract: Deployment of deep convolutional neural networks (CNNs) in single image super-resolution
(SISR) for edge computing devices is mainly hampered by the huge computational cost. In this work,
we propose a lightweight image super-resolution (SR) network based on a reparameterizable multi-
branch bottleneck module (RMBM). In the training phase, RMBM efficiently extracts high-frequency
information by utilizing multibranch structures, including bottleneck residual block (BRB), inverted
bottleneck residual block (IBRB), and expand–squeeze convolution block (ESB). In the inference
phase, the multibranch structures can be combined into a single 3 × 3 convolution to reduce the
number of parameters without incurring any additional computational cost. Furthermore, a novel
peak-structure-edge (PSE) loss is proposed to resolve the problem of oversmoothed reconstructed
images while significantly improving image structure similarity. Finally, we optimize and deploy the
algorithm on the edge devices equipped with the rockchip neural processor unit (RKNPU) to achieve
real-time SR reconstruction. Extensive experiments on natural image datasets and remote sensing
image datasets show that our network outperforms advanced lightweight SR networks regarding
objective evaluation metrics and subjective vision quality. The reconstruction results demonstrate
that the proposed network can achieve higher SR performance with a 98.1 K model size, which can
be effectively deployed to edge computing devices.

Keywords: lightweight image super-resolution; reparameterizable multibranch bottleneck module;
PSE loss; edge computing device

1. Introduction

With the development of deep learning [1], single image super-resolution (SISR)
models based on the convolutional neural network (CNN) [2] have achieved excellent
performance compared to traditional interpolation methods. However, increasing net-
work complexity is frequently used to improve reconstruction performance, making it
challenging to deploy the latest super-resolution (SR) algorithms on resource-limited edge
computing devices. On the one hand, although neural processor units (NPUs) optimized
for neural network are common on edge computing devices, most SR networks do not
consider compatibility with NPUs and hence cannot fully utilize NPUs. On the other
hand, the requirement for high-resolution (HR) image processing (720 p/1080 p or higher)
significantly increases memory and computational requirements. The existing SISR algo-
rithms have very limited optimization for NPUs. Operations contained in the networks
that are not supported by the NPUs will be partially processed by the CPUs or GPUs.
This introduces additional data transfer costs between processors, resulting in a significant
computational overhead. Therefore, there is growing interest in how to deploy SR models
on resource-limited devices while improving computational efficiency.

Recently, many lightweight models have been proposed to facilitate the deploy-
ment [3,4]. Ahn et al. [5] proposed the cascading residual network (CARN), which reused
information from different levels by cascading residuals, but the performance of this method
significantly drops. Li et al. [6] designed a feedback network (SRFBN), which adopted a
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recurrent neural network structure to share the parameters of the hidden layers, but this
method is not sufficiently lightweight and its performance needs further improvement.
Hui et al. [7] proposed the information multidistillation network (IMDN), which employed
a multiple information distillation block to distill and selectively fuse some features to
compress parameters while enhancing the performance. Liu et al. [8] proposed the resid-
ual feature distillation network (RFDN), which built on IMDN by replacing all channel
separation operations with 1 × 1 convolution and adding feature distillation connections
to further improve the performance. These lightweight models can effectively reduce the
number of parameters and floating-point operations (FLOPs). However, recent studies
have shown that the number of parameters and FLOPs does not necessarily correlate
positively with the performance on edge computing devices [9]. For example, residual
connections and multibranch structures are commonly used in lightweight SISR tasks [10].
These operations may lead to high memory access costs, which hinder fast operation on
edge computing devices. In addition, most of the existing efficient SISR networks have
been evaluated for performance only on GPUs, which does not reflect their running speed
on edge devices.

To minimize computational costs even more, reparameterization [11] is implemented
into the SISR tasks. Zhang et al. [12] proposed an edge-oriented convolution block for
real-time super-resolution (ECBSR), which provided high reconstruction quality while
preserving fast inference speed by collapsing training multibranch modules into normal 3
× 3 convolutions in the inference phase. Bhardwaj et al. [13] proposed collapsible linear
blocks for super-efficient super-resolution (SESR), which achieved 60 FPS reconstruction
for 4K images on mobile devices by a folding network structure. However, both ECB
and CLB fail to take full advantage of reparameterization and have some problems such
as model overfitting, long training time, and slow convergence, which may limit the SR
performance. To address these problems, we design a reparameterizable multibranch
bottleneck module (RMBM) that consists of a bottleneck residual block (BRB), an inverted
bottleneck residual block (IBRB), and an expand–squeeze convolution block (ESB). Based
on these important components, RMBM can increase the field of perception and effectively
improve model expression. RMBM accelerates the convergence of the model and solves
the overfitting problem by using residual connection and normalization. Furthermore, we
design a lightweight SISR model, termed the reparameterizable multibranch bottleneck
network (RMBN), based on RMBM, which can reduce performance degradation caused by
model quantization during deployment.

To stabilize the training and refine the parameters, SISR tasks often utilize L1 loss and
L2 loss to determine the pixel disparities between the reconstructed images and ground
truth. However, it has been proved that using a single loss is insufficient for accurately
restoring locally varying diverse shapes in images, often generating undesirable artifacts
or unnatural details [14]. To enhance the visual effect, Ledig et al. [15] proposed the
super-resolution generative adversarial network (SRGAN), which used a succession of
complicated losses. Nevertheless, the generative adversarial network (GAN) [16] training
procedure is challenging and prone to gradient disappearance, collapse, and training
instability. To address the issue of oversmoothed SR images, we introduce a simple but
efficient peak-structure-edge (PSE) loss in this work. This new loss allows the network to
concentrate more on the recovery of high-frequency texture details.

The main contributions of this work can be summarized as follows:

(1) We propose a lightweight image SR network, named RMBN, which uses the residual
learning of image dimension and feature dimension to make the network focus on re-
covery of high-frequency information. Additionally, by adding constrained activation,
the performance degradation of the uint8 model is decreased. The deployment SR
network can run efficiently and stably on the edge device equipped with the rockchip
neural processor unit (RKNPU).

(2) We propose RMBM to improve the expressiveness of the model by increasing the
width and depth of the network during the training phase. In the deployment phase,
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RMBM is equivalently transformed into a simple convolutional layer using reparame-
terization to reduce the number of parameters.

(3) We propose a novel PSE loss that takes into account the recovery of both global
and edge information and achieves better balance between perception quality and
objective evaluation metrics.

The rest of this work is organized as follows. In Section 2, related works concerning
CNN-based SISR methods and structure reparameterization are summarized. We also
introduce model optimization in the same section. In Section 3, the network structure
is proposed and the process of reparameterization is mentioned. Section 4 details the
experimental results of the proposed method and compares it with state-of-the-art methods
in natural image datasets and remote sensing image datasets. At last, the conclusions are
drawn in Section 5.

2. Related Work
2.1. Single Image Super-Resolution

In a pioneer work, Dong et al. [17] proposed a shallow super-resolution CNN (SR-
CNN), which consisted of three layers of convolutional neural network and was used to
perform end-to-end learning of image super-resolution. This approach showed outstand-
ing performance compared to conventional solutions. Kim et al. [18] proposed very deep
super-resolution (VDSR), which applied a residual learning strategy to SISR by increasing
the network depth. Shi et al. [19] proposed an efficient subpixel convolutional neural
network (ESPCN), which produced the subpixel operation, which is a learnable upsam-
pling layer. Inspired by ESPCN, increasingly excellent SISR networks were proposed. Lim
et al. [20] proposed an enhanced deep super-resolution network (EDSR), which integrated
the modified residual blocks, considerably improving SISR performance. Other works, such
as enhanced super-resolution generative adversarial network (ESRGAN) [21], persistent
memory network (MemNet) [4], and residual dense network (RDN) [22], explored dense
connectivity by using all features of the convolutional layers. Although these methods
achieved significant performance, they were costly in memory consumption and computa-
tional complexity, limiting their applications on edge computing devices. Some recent SISR
networks focus on the tradeoff between performance and complexity. CARN [5] used group
convolution to make image SISR networks lightweight and efficient. Hui et al. [23] designed
an information distillation network (IDN), which proposed a residual feature distillation
structure for better exploiting hierarchical features. IMDN [7] improved IDN by using a
channel-splitting strategy in an information multidistillation block. RFDN [8] rethought
the channel splitting operation and introduced the progressive refinement module as an
equivalent architecture. Different from other models, the linearly assembled pixel-adaptive
regression network (LAPAR) [24] transformed SISR tasks to linear regression tasks for
multiple base filters. Luo et al. [25] designed the lattice block network (LatticeNet), which
used a lattice filter based on the butterfly structure and applied reverse fusion strategy to
extract hierarchical context information. These works maintained good tradeoff between
performance and model complexity on GPUs, but their performance on edge computing
devices has to be studied further. Herein, we propose a single-branch deployment network
consisting of simple operators that are suitable for most edge computing devices and can
be run efficiently on NPUs.

2.2. Structure Reparameterization

The asymmetric convolution block network (ACNet) [11] was the first to apply the
concept of structure reparameterization. It refers to the methodology that parameterizes
a structure with the parameters transformed from another structure. Ding et al. [26]
introduced a convolutional neural network architecture termed RepVGG, which was similar
to the very deep convolutional network (VGG) [27]. It employed reparameterization to
decouple the multibranch topology and the plain architecture, resulting in good speed–
precision tradeoff in image classification. Zhang et al. [28] further extended RepVGG by
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combining multiple branches of different sizes and complexity to enrich feature spaces,
including convolution sequences, multiscale convolution, and mean pools. Benefiting from
the advantages of reparameterization, some works have successfully introduced it into SISR
tasks. ECBSR [12] proposed an edge-oriented convolution block (ECB) that comprises four
types of carefully designed operators to extract edge and texture details more effectively.
SESR [13] designed a collapsible linear block (CLB), which consists of a series of linear
convolutions that can be jumbled and merged in the inference phase. SESR achieved good
balance between reconstruction image quality and computational complexity. However,
as the depth of the network based on reparameterization has increased, problems such
as slow training and overfitting have arisen. Therefore, we add residual connection and
normalization to the multibranch structure to solve these problems.

2.3. Model Optimization

In computer vision tasks, a loss function is used to calculate and describe the gap
between the prediction result and the ground truth, and this gap is quantified by the
loss function to judge the degree of prediction error. Therefore, choosing an appropriate
loss helps to obtain better results. Previous works on SISR tasks have tended to optimize
network parameters through L1 and L2 losses [7]. However, some researchers found that
using these losses alone may result in fuzzy and oversmoothed reconstructed images [14].
Therefore, a variety of special losses are proposed for SISR tasks. Feature reconstruction
loss [29] was proposed to encourage the network to generate reconstructed images that
are more similar to the ground truth in perception. The Laplacian pyramid network
(LapSRN) [14] is applied the Charbonnier loss to improve the robustness of the deep SR
network, which can better handle outliers. SRGAN [15] employed the perceptual loss,
including content loss and adversarial loss, to make results more photorealistic. The
u-shaped residual network (URNet) [30] uses a high-frequency loss design to alleviate
the problem of oversmoothed SR images. In this work, we propose an efficient visual
perceptual enhancement loss that is effective in improving the structural similarity of
SR images.

3. Method

In this section, we first describe the overall structure of our proposed network. Then,
we describe the structure of the reparameterizable multibranch bottleneck module and the
process of reparameterization, respectively. Finally, we introduce the proposed PSE loss in
detail, including the composition and the computation.

3.1. Network Structure

As shown in Figure 1, the proposed reparameterizable multibranch bottleneck network
(RMBN) consists of three parts: the shallow feature extraction module (SFEM), the deep
feature extraction module (DFEM), and the image reconstruction module (IRM). SFEM is
used to extract the shallow feature information of the input LR image. To further extract
the rich high-frequency information, the shallow feature information is further parsed
by a cascaded reparameterizable multibranch bottleneck module (RMBM) in DFEM. IRM
processes the deep feature information to obtain the reconstructed SR image. The deploy-
ment network (d-RMBN), as illustrated in Figure 2, reduces the number of parameters and
computation by replacing the RMBM with a simple 3 × 3 convolutional layer. It can be
efficiently deployed for edge computing devices.

We use a 3 × 3 convolutional layer to extract shallow features. SFEM takes advantage
of the fact that convolutional layers are good at extracting features to transform the LR
image into high-dimensional shallow feature maps and filter out some of the low-frequency
information. The process is expressed as follows:

M0 = HSFEM(ILR), (1)
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where ILR denotes the low-resolution (LR) image, and HSFEM (·) denotes the shallow
feature extraction module. M0 denotes the shallow feature maps.
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The shallow feature maps are fed into the DFEM to extract deeper and more abstract
high-level features in order to obtain high-frequency information. The process is expressed
as follows:

MDF = HDFEM(M0), (2)

where HDFEM (·) denotes the deep feature extraction module, and MDF denotes the deep
feature maps. DFEM consists of multiple cascaded reparameterizable multibranch bottle-
neck modules (RMBMs) and PReLU activation [31], which can be equivalently converted
to cascaded 3 × 3 convolutional layers and PReLU activation in the deployment phase.
The PReLU activation introduces an implicit nonlinearity to the RMBM module, allowing
the optimization of the model to better achieve local minima and improve the stability and
convergence of the training process. The RMBM can effectively extract detailed information
for the SISR tasks and enhance the cross-channel learning capability of the network.

After the deep feature extraction module, we use IRM to fuse the shallow feature maps,
deep feature maps, and image dimensional feature maps composed of LR images. We also
perform upsampling operations by rearranging channel features into spatial dimensions
using a subpixel convolution layer, which is expressed as follows:

HIRM = fup

(
f3×3(MDF + M0) +

.
ILR

)
, (3)

ISR = HIRM

(
MDF + M0 +

.
ILR

)
, (4)

where HIRM (·) denotes the image reconstruction module, and fup (·) denotes the sub-pixel
convolutional layer function; f3×3 (·) denotes the 3 × 3 convolutional layer function, and
.
ILR denotes the image dimensional feature maps. ISR represents the output images.

The shallow feature maps mainly contain the low-frequency information represented
by the background, while the deep feature maps include the high-frequency details, such
as edges and contours required for the SR. The network can transfer low-frequency infor-
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mation directly to the IRM via residual learning of feature dimension and image dimension.
This helps the DFEM to focus on recovering high-frequency information and to reduce the
difficulty of network training.

SISR networks generally employ linear output of floating-point data with no data
range constraints. These networks are prone to lose some important information when
quantizing uint8, resulting in dull colors and severe degradation in the SR images. In this
work, we add the constrained activation function (Clipped ReLU) to the output of the
model and reduce performance degradation by restricting the output pixel values to the
range 0–255. The process is expressed as follows:

ClippedReLU(x) = max(0, min(x, 255)), (5)

where max (·) denotes the maximum value, and min (·) denotes the minimum value.

3.2. Reparameterizable Multibranch Bottleneck Module

ECB [12] contains a single 3 × 3 convolutional layer branch and three edge detection
operator branches. The edge detection operator branches are trained by predefined tem-
plates and given learnable scaling weights, which are equivalent to depthwise convolution
and prolongs part of the training time. The learning ability of a single learnable scaling
weight is insufficient and the extracted edge information is limited for complex scenes. The
simple structure of a single 3 × 3 convolutional layer branch does not fully exploit the
advantages of reparameterization. Inspired by ECB, we remove the these branches and
design a new reparameterizable multibranch bottleneck module (RMBM) based on the
reparameterization. Different from RepVGG [26] and the diverse branch block (DBB) [28],
we introduce the bottleneck structure and the inverted bottleneck structure to the RMBM
during the training phase, which allows the model to extract multiscale features by scaling
the channel dimensions. Moreover, we replace the normalization in the structure, mak-
ing the module more beneficial for SR tasks. As shown in Figure 3, RMBM is primarily
composed of bottleneck residual blocks (BRB), inverted bottleneck residual blocks (IBRB),
and expand–squeeze convolution blocks (ESB). It can extract edge and high-frequency
texture details for SISR tasks more effectively, improve the feature representation capabil-
ity, and shorten the training time for the network. Each component and its function are
described below:
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The BRB consists of two 1 × 1 convolutional layers, a 3 × 3 convolutional layer, and a
residual connection. First, the 1 × 1 convolutional layer is employed to reduce the feature
maps channel by half in order to achieve cross-channel interaction and information fusion.
The 3 × 3 convolutional layer, which has a larger perceptual field than the 1 × 1 convolu-
tional layer, is then utilized to extract the low-dimensional deep features. Finally, we apply
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the 1 × 1 convolutional layer to increase the feature maps. The BRB makes good use of the
small number of parameters and low computational complexity of the 1 × 1 convolutional
layer, and it improves the computational efficiency of the 3 × 3 convolutional layer while
using the internal residual connection to effectively avoid gradient disappearance and
explosion. The BRB can be expressed as follows:

FBRB = KS1 ∗ [IN(K3 ∗ (KF1 ∗ X + BF1) + (KF1 ∗ X + BF1))] + BS1, (6)

where ∗ denotes the convolution operation, and KF1, BF1 , respectively, represent the
weight and bias of the first 1 × 1 convolution layer. KS1, BS1, respectively, denote the
weight and bias of the second 1 × 1 convolution layer, and K3 denotes the weight of the
3 × 3 convolution layer. IN (·) denotes the instance normalization, and FBRB denotes the
output of the BRB.

A wider range of features can significantly improve model representation and con-
tribute to better performance on SISR tasks [32]. The reduced dimensionality of BRB may
not be sufficient to retain sufficient high-frequency information. We design IBRB to expand
the channel of the feature maps twice and three times using the first 1 × 1 convolutional
layer, which enables the network to learn deeper features. IBRB improves the utilization of
features and the representation capability of the network, and helps the information flow
and gradient back-propagation of the network. The simple composition of IBRB and BRB
reduces memory requirements and is suitable for most deep learning training frameworks,
as well as being easily applied to edge computing devices. The process of IBRB is consistent
with Equation (6).

Firstly, the feature maps channel is expanded to double and triple by a 1 × 1 convo-
lution layer, which is compressed to the original by a 3 × 3 convolution layer to better
learn the interrelationship between features. ESB further enhances the capability of feature
extraction for RMBM. It can be expressed as follows:

FESB = IN(K3 ∗ (K1 ∗ X + B1)), (7)

where K1, B1, respectively, denote the weight and bias of 1 × 1 convolutional layers. K3
denotes the weight of 3 × 3 convolutional layers, and FESB denotes the output of the ESB.

After multibranch fusion, the final RMBM output can be expressed as follows:

F = FBRB + FIBRB + FESB, (8)

As the network deepens, some models use batch normalization (BN) [33] to mitigate
the covariance drift within the model. Owing to the variability in different image patches
within each batch and the different configurations of training and testing, BN is not com-
mon in low-level vision tasks, especially for SISR tasks. It tends to produce block artifacts
in SR results. Inspired by HINet [34], we add instance normalization (IN) [35] after the
3 × 3 convolutional layers in the above module to solve the overfitting problem caused
by the overdepth network. IN also speeds the training and convergence of the network
and prevents gradient explosion and disappearance. IN is a nonlinear operator in the
training phase, which normalizes the feature mapping and contains learnable parameters
to participate in the back-propagation computation. In the inference phase, IN becomes a
linear operator that uses the parameters obtained during training to merge the 3 × 3 convo-
lutional layers into a single 3 × 3 convolutional layer to reduce the number of parameters
and the computational effort of the network.

3.3. Reparameterization

After the network training is completed, the RMBM can be reparameterized to equiva-
lently transform the training model into a single-branch deployment model. The following
describes the reparameterization method.
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For ESB, the 1 × 1 expanded convolutional layer, 3 × 3 squeezed convolutional layer,
and IN can be equivalently transformed into a single 3 × 3 convolutional layer by the
following equations:

K3 =
γ√

σ2 + ε
· K3, (9)

B3 = − γ · µ√
σ2 + ε

+ β, (10)

Kn3 = K3 ∗ perm(K1), (11)

Bn3 = K3 ∗ rep(B1) + B3, (12)

where µ, σ, γ, β denote the mean, variance, scale factor, and offset factor of IN, re-
spectively; ε denotes the constant 10−5, and K3, B3, respectively, denote the weight and
bias of 3 × 3 convolutional layers after merging IN with 3 × 3 squeezed convolutional
layers; perm (·) denotes the first and second dimensions of the exchange tensor K1, and
rep (·) denotes the broadcast operation; Kn3, Bn3 denote the weight and bias of the 3 × 3 con-
volutional layers after merging the ESB.

For BRB and IBRB, the reparameterization process is shown in Figure 4. First, the
transformation from (a) to (b) is achieved by repeating Equations (9)–(12) and combining
the IN and the 3 × 3 convolutional layer into a single 3 × 3 convolutional layer. Then,
the internal residual connection is replaced by a 3 × 3 convolutional layer with the center
weight of the i-th channel of the i-th convolutional kernel being one and the rest being zero.
Finally, the transformation from (b) to (c) is achieved by adding the weight and bias of the
replaced 3 × 3 convolutional layer and the single 3 × 3 convolutional layer, respectively,
which is calculated as follows:

K3 = K3 + Kr3, (13)

B3 = B3 + Br3, (14)

where Kr3, Br3 denote the weight and bias of the 3 × 3 convolutional layers replacing
the residual connection;

.
K3,

.
B3 denote the weight and bias of the 3 × 3 convolutional

layers after merging the residual connection and the 3 × 3 convolutional layers, respec-
tively. The transformation from (c) to (e) can be achieved by repeating the ESB equivalent
transformation process twice.
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Figure 4. The process of reparameterization. The subfigures (a–e) describe how to reparameterize the
BRB into a single 3 × 3 convolution.

After the above equivalent transformation, multibranches containing only a single
3 × 3 convolutional layer can be obtained. Since the multibranch module has only convo-
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lution before going through the PReLU activation [31], the five branches of convolutional
layers can be combined into a single 3 × 3 convolutional layer by exploiting the additivity
of convolution, which is computed as follows:

KRMBM = K1 + . . . + Ki (i = 1, 2, . . . , 5), (15)

BRMBM = B1 + . . . + Bi (i = 1, 2, . . . , 5), (16)

where Ki, Bi denote the weight and bias of the i-th branch 3 × 3 convolutional layer, and
KRMBM, BRMBM denote the weight and bias of the 3 × 3 convolutional layer obtained from
RMBM equivalent transformation.

3.4. Loss Function

Using only L1 or L2 loss leads to SR images that lack high-frequency detail and present
unsatisfactory results with oversmoothed texture. Therefore, we propose a novel PSE loss,
which consists of common objective evaluation metrics for SISR tasks (peak signal-to-noise
ratio [36], structural similarity [37] and edge loss [38]). We design the loss function from the
perspective of improving the evaluation metrics of the reconstructed images. Considering
that the loss function always tends to be decreasing, we utilize the calculation of (1-SSIM)
in the numerator and PSNR in the denominator to satisfy the requirement. During the
training process, we found that there existed a very small value of PSNR, which made
the calculation of (1-SSIM)/PSNR not appear as a number (NaN). Therefore, a value was
needed to be added to the denominator to stabilize the loss calculation. Further, we found
that adding a SSIM calculation can improve the metrics better than adding a tiny fixed
value, especially for the SSIM metric. Then, inspired by [38], we also added edge loss to the
final loss function to further enhance the model’s ability to extract edge features. It is simple
to compute without additional learnable parameters, which are calculated as follows:

LPSC =
1− SSIM(X, Y)

PSNR(X, Y) + SSIM(X, Y)
+ αLEdge , (17)

where X, Y denote the SR image and the ground truth, respectively; SSIM (·) denotes the
calculated structural similarity, and PSNR (·) denotes the calculated peak signal-to-noise
ratio; α denotes the weight parameter, which is empirically set to 0.05 to balance the loss
term; LEdge denotes the variant Charbonnier loss [14], which is calculated as follows:

LEdge =
√
‖ ∆(X)− ∆(Y) ‖2 +ε2, (18)

where ∆ (·) is the Laplace operator, and ε denotes the constant 10−3.

4. Experiments
4.1. Datasets and Metrics

In this work, 3450 images from the DIV2K dataset [39] and Flicker2K [40] are used to
train the network, and five standard benchmark datasets, including Set5 [41], Set14 [42],
BSD100 [43], Urban100 [44], and DIV2K [39], are used to test the performance of the model.
Various data augmentation methods are used to increase the size of the dataset during
training, including random horizontal flip, random vertical flip, and random 90◦ rotation.
In line with previous SISR algorithms, peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) are employed as metrics to assess network performance. SR images are
first converted from RGB to YCbCr color space, and the luminance component (Y) is taken
to calculate the evaluation metric uniformly.

4.2. Implementation Details

We use the Adam [45] optimizer for training, where the optimizer parameters are
β1= 0.99, β2= 0.999, and ε = 10−8. The training process is divided into two stages and
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the optimizer parameters are kept consistent. The first stage lasts 800 epochs, the learning
rate is initialized to 5× 10−4, and shrinks by half after every 200 epochs. In the first stage,
64 randomly cropped 64 × 64 patches from the LR images are used as the batch size for
training. The L1 loss is used for the first stage of training. The second stage lasts for
200 epochs, and the network is trained using the proposed PSE loss based on the first stage
pretraining model with a batch size of 16 image patches of 128 × 128. The learning rate is
initialized to 5× 10−4 and remains constant in the second stage. The networks are trained
and tested on four NVIDIA GTX 3090 GPUs using the Pytorch 1.7.0 framework.

Similar to ECBSR [12], we set up RMBN with several groups of different sizes, includ-
ing RMBN-M4C8, RMBN-M4C16, RMBN-M10C16, RMBN-M10C32, and RMBN-M16C64,
where M denotes the number of RMBMs and C denotes the number of intermediate feature
map channels.

4.3. Ablation Studies

To analyze the impact of the three blocks in RMBM, we conduct experiments on five
standard benchmark datasets. The baseline network uses the modules containing five
3 × 3 convolutions without channel scaling operation. All models are trained from scratch
using the same setting. As shown in Table 1, the performance of the base network can
be improved by using any of the three components, and is further improved when the
different components are stacked. When all three components are used simultaneously
(0.32 dB improvement in PSNR value on the Set5 dataset), the performance reaches the
highest. These results show that RMBM can make full use of the correlation between feature
maps to facilitate the flow of information and make the network give more attention to the
high-frequency texture details.

Table 1. Ablation experiment results of different blocks based on RMBN-M4C16 (×4 SR). Bold
indicates the best performance.

Module Set5
PSNR/SSIM

Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Urban100
PSNR/SSIM

DIV2K
PSNR/SSIMBRB IBRB ESB

× × × 30.82/0.8769 27.58/0.7680 27.00/0.7272 24.42/0.7435 29.38/0.8188√
× × 30.89/0.8781 27.62/0.7683 27.04/0.7279 24.47/0.7440 29.41/0.8195

×
√

× 31.08/0.8795 27.71/0.7690 27.09/0.7286 24.62/0.7451 29.55/0.8212
× ×

√
31.01/0.8790 27.66/0.7687 27.08/0.7282 24.53/0.7443 29.48/0.8201√

×
√

31.10/0.8799 27.74/0.7694 27.10/0.7289 24.66/0.7458 29.60/0.8214√ √
× 31.12/0.8804 27.77/0.7708 27.11/0.7291 24.72/0.7462 29.63/0.8218

×
√ √

31.13/0.8806 27.80/0.7714 27.12/0.7292 24.77/0.7464 29.65/0.8220√ √ √
31.14/0.8810 27.82/0.7721 27.14/0.7295 24.83/0.7469 29.69/0.8222

To verify the effectiveness of the constrained activation, two sets of comparison ex-
periments are conducted to analyze the performance of the networks before and after
quantization. We test the running time when the LR images are scaled to 1280 × 720 pixels
on the edge computing device. As shown in Table 2, the PSNR value of the floating-point
model decreases severely after uint8 quantization without using the constraint activation,
especially on the Set14 dataset, which reaches 1.59 dB. However, the performance decreases
by only 0.27 dB after using the constraint activation and increases only a few NPU running
times (0.002 s). The experimental results show that constraint activation reduces the perfor-
mance degradation caused by model quantization, making the SR results more suitable for
network deployment.

As shown in Table 3, we design two sets of comparison experiments to prove the effec-
tiveness of the feature dimension residual learning (FDRL). In addition, the performance
of the prequantization and postquantization networks is also compared. We can see that
the floating-point model with FDRL outperforms the one without it, and the NPU running
time increases by only 0.001 s. The floating-point model without FDRL has significant
performance degradation when quantizing uint8, which reaches 0.86 dB on the Set5 dataset.
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The experimental results show that FDRL can deliver more effective information deeper
into the network and increase the usage of shallow features. FDRL can also reduce the loss
of low-frequency information, and improve the model performance while reducing the
degradation of performance during model quantization.

Table 2. Ablation experiment results of constraint activation based on RMBN-M4C16 (×4 SR).

Clipped ReLU Model-Type Set5
PSNR/SSIM

Set14
PSNR/SSIM Running Time (s)

× fp32 31.14/0.8810 27.82/0.7721
0.018uint8 29.96/0.8801 26.23/0.7710

√ fp32 31.14/0.8810 27.82/0.7721
0.020uint8 30.87/0.8808 27.55/0.7717

Table 3. Ablation experiment results of FDRL based on RMBN-M4C16 (×4 SR).

FDRL Model-Type Set5
PSNR/SSIM

Set14
PSNR/SSIM Running Time (s)

× fp32 31.06/0.8808 27.80/0.7716
0.019uint8 30.22/0.8802 26.98/0.7709

√ fp32 31.14/0.8810 27.82/0.7721
0.020uint8 30.87/0.8808 27.55/0.7717

In order to verify the effectiveness of the PSE loss, we run comparison experiments
between training all epochs with L1 or L2 loss only and training all epochs with combined
L1 and PSE losses. As shown in Table 4, without any additional parameters, the PSE loss
can improve the performance of the network. In particular, the SSIM metric increases the
most, which is sensitive to human eyes, reaching 0.0038 on the Urban100 dataset. The
results show that the proposed PSE loss takes the human visual system into account and
significantly increases expression ability and network performance.

Table 4. Ablation experiment results of loss based on RMBN-M4C16 (×4 SR). Bold indicates the
best performance.

Loss Set5
PSNR/SSIM

Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Urban100
PSNR/SSIM

DIV2K
PSNR/SSIM

L1 31.08/0.8807 27.80/0.7704 27.10/0.7286 24.82/0.7431 29.66/0.8200
L2 31.02/0.8801 27.74/0.7698 27.03/0.7277 24.71/0.7428 29.60/0.8196

L1 + LPSE 31.14/0.8810 27.82/0.7721 27.14/0.7295 24.83/0.7469 29.69/0.8222

4.4. Comparison with State-of-the-Art Methods

In this work, we validate the proposed network SR performance on five standard
benchmark datasets with upsampling scales of×2 and×4. The objective evaluation metrics
and subjective visual effects of RMBN and some representative lightweight SISR models
are compared, including bicubic; SRCNN [17]; fast super-resolution CNN (FSRCNN) [46];
ESPCN [19]; VDSR [18]; LapSRN [28]; fast, accurate, and lightweight super-resolution
(FLASR) [47]; CARN-M [5]; IMDN [7]; ECBSR [12]; RFDN [8]; LatticeNet [25]; etc.

4.4.1. Quantitative Results

Tables 5 and 6 summarize the performance comparisons of different SISR networks
on the five benchmark datasets. The implementation of the comparison algorithms is
taken from the authors’ publicly available source code, and the comparison data used
the results of other networks from published papers [16]. In addition to the PSNR/SSIM
metrics, these tables also show the number of parameters and the computation for a more
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comprehensive comparison. The FLOPs are calculated when the images are upsampled to
1280 × 720 pixels.

Table 5. Average performance of the lightweight methods (×2 SR). Best and second-best results are
bolded and underlined.

Method Scale Params
(K)

FLOPs
(G)

Set5
PSNR/SSIM

Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Urban100
PSNR/SSIM

DIV2K
PSNR/SSIM

bicubic

×2

- - 33.68/0.9307 30.24/0.8693 29.56/0.8439 26.88/0.8408 32.45/0.9043
SRCNN [17] 24.00 52.70 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 34.61/0.9334
ESPCN [19] 21.18 4.55 36.83/0.9564 32.40/0.9096 31.29/0.8917 29.48/0.8975 34.63/0.9342

ECBSR-M4C8 [12] 2.80 0.64 36.93/0.9577 32.51/0.9107 31.44/0.8932 29.68/0.9014 34.80/0.9356
RMBN-M4C8 (Ours) 2.80 0.64 37.01/0.9580 32.62/0.9114 31.48/0.8936 29.72/0.9022 34.88/0.9366

FSRCNN [46]

×2

12.46 6.00 36.98/0.9556 32.62/0.9087 31.50/0.8904 29.85/0.9009 34.74/0.9340
SESR-M5 [13] 13.52 3.11 37.39/0.9585 32.84/0.9115 31.70/0.8938 30.33/0.9087 35.24/0.9389

ECBSR-M4C16 [12] 10.20 2.34 37.33/0.9593 32.81/0.9129 31.66/0.8961 30.31/0.9091 35.15/0.9382
RMBN-M4C16 (Ours) 10.20 2.34 37.40/0.9588 32.88/0.9136 31.77/0.8969 30.44/0.9106 35.26/0.9391

IMDN-RTC [7]

×2

19.70 4.57 37.51/0.9600 32.93/0.9144 31.79/0.8980 30.67/0.9140 35.34/0.9398
SESR-M11 [13] 27.34 6.30 37.58/0.9593 33.03/0.9128 31.85/0.8956 30.72/0.9136 35.45/0.9404

ECBSR-M10C16 [12] 24.30 5.60 37.55/0.9602 32.98/0.9144 31.85/0.8985 30.78/0.9149 35.38/0.9402
RMBN-M10C16 (Ours) 24.30 5.60 37.61/0.9609 33.03/0.9146 31.88/0.8989 31.02/0.9156 35.51/0.9406

LapSRN [14]

×2

813.00 29.90 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100 35.31/0.9400
FLASR-C [47] 408.00 93.70 37.66/0.9586 33.26/0.9140 31.96/0.8965 31.24/0.9187 35.57/0.9407
SESR-XL [13] 105.37 24.27 37.77/0.9601 33.24/0.9145 31.99/0.8976 31.16/0.9184 35.67/0.9420

ECBSR-M10C32 [12] 94.70 21.81 37.76/0.9609 33.26/0.9146 32.04/0.8986 31.25/0.9190 35.68/0.9421
LAPAR-C [24] 87.00 35.00 37.65/0.9593 33.20/0.9141 31.95/0.8969 31.10/0.9178 35.54/0.9411

RMBN-M10C32 (Ours) 94.70 21.81 37.80/0.9611 33.31/0.9152 32.10/0.9006 31.34/0.9201 35.73/0.9427

VDSR [18]

×2

665.00 612.60 37.53/0.9587 33.05/0.9127 31.90/0.8960 30.77/0.9141 35.43/0.9410
CARN-M [5] 412.00 91.20 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9193 35.62/0.9420

ECBSR-M16C64 [12] 596.00 137.31 37.90/0.9615 33.34/0.9178 32.10/0.9018 31.71/0.9250 35.79/0.9430
IMDN [7] 694.00 158.80 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 35.87/0.9436

LAPAR-A [24] 548.00 171.00 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 35.89/0.9438
RFDN [8] 534.00 95.00 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 35.80/0.9433

LatticeNet [25] 756.00 169.50 38.06/0.9607 33.70/0.9187 32.20/0.8999 32.25/0.9288 35.88/0.9436
RMBN-M16C64 (Ours) 596.00 137.31 38.16/0.9621 33.74/0.9192 32.27/0.9034 32.29/0.9296 35.94/0.9444

Table 6. Average performance of the lightweight methods (×4 SR). Best and second-best results are
bolded and underlined.

Method Scale Params
(K)

FLOPs
(G)

Set5
PSNR/SSIM

Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Urban100
PSNR/SSIM

DIV2K
PSNR/SSIM

bicubic

×4

- - 28.43/0.8113 26.00/0.7025 25.96/0.6682 23.14/0.6577 28.10/0.7745
SRCNN [17] 57.00 52.70 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 29.25/0.8090
ESPCN [19] 24.90 1.44 30.52/0.8697 27.42/0.7606 26.87/0.7216 24.39/0.7241 29.32/0.8120

ECBSR-M4C8 [12] 3.70 0.21 30.52/0.8698 27.43/0.7608 26.89/0.7220 24.41/0.7263 29.35/0.8133
RMBN-M4C8 (Ours) 3.70 0.21 30.61/0.8706 27.50/0.7614 27.02/0.7223 24.55/0.7289 29.40/0.8141

FSRCNN [46]

×4

12.00 5.00 30.70/0.8657 27.59/0.7535 26.96/0.7128 24.60/0.7258 29.36/0.8110
SESR-M5 [13] 18.32 1.05 30.99/0.8764 27.81/0.7624 27.11/0.7199 24.80/0.7389 29.65/0.8189

ECBSR-M4C16 [12] 11.90 0.69 31.04/0.8805 27.78/0.7693 27.09/0.7283 24.79/0.7422 29.62/0.8197
RMBN-M4C16 (Ours) 11.90 0.69 31.14/0.8810 27.82/0.7721 27.14/0.7295 24.83/0.7469 29.69/0.8222

IMDN-RTC [7]

×4

21.00 1.22 31.22/0.8844 27.92/0.7730 27.18/0.7314 24.98/0.7504 29.76/0.8230
SESR-M11 [13] 32.14 1.85 31.27/0.8810 27.94/0.7660 27.20/0.7225 25.00/0.7466 29.81/0.8221

ECBSR-M10C16 [12] 26.00 1.50 31.37/0.8866 27.99/0.7740 27.22/0.7329 25.08/0.7540 29.80/0.8241
RMBN-M10C16 (Ours) 26.00 1.50 31.41/0.8876 28.10/0.7753 27.29/0.7338 25.09/0.7549 29.92/0.8252

LapSRN [14]

×4

813.00 149.40 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560 29.88/0.8250
SESR-XL [13] 114.97 6.62 31.54/0.8866 28.12/0.7712 27.31/0.7277 25.31/0.7604 29.94/0.8266

ECBSR-M10C32 [12] 98.10 5.65 31.66/0.8911 28.15/0.7776 27.34/0.7363 25.41/0.7653 29.98/0.8281
LAPAR-C [24] 115.00 25.00 31.72/0.8884 28.31/0.7718 27.40/0.7292 25.49/0.7651 30.01/0.8284

RMBN-M10C32 (Ours) 98.10 5.65 31.79/0.8912 28.37/0.7780 27.48/0.7372 25.54/0.7665 30.04/0.8289

VDSR [18]

×4

665.00 612.60 31.35/0.8838 28.02/0.7678 27.29/0.7252 25.18/0.7525 29.82/0.8240
CARN-M [5] 412.00 46.10 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694 30.10/0.8311

ECBSR-M16C64 [12] 602.90 34.73 31.92/0.8946 28.34/0.7817 27.48/0.7393 25.81/0.7773 30.15/0.8315
IMDN [7] 715.00 40.90 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.22/0.8336

LAPAR-A [24] 659.00 94.00 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.24/0.8346
RFDN [8] 550.00 23.90 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.26/0.8344

LatticeNet [25] 777.00 43.60 32.21/0.8943 28.61/0.7812 27.57/0.7355 26.14/0.7844 30.26/0.8348
RMBN-M16C64 (Ours) 602.90 34.73 32.28/0.8957 28.66/0.7829 27.75/0.7408 26.24/0.7886 30.28/0.8350

As shown in Tables 5 and 6, our networks achieve the best objective evaluation metrics
at all scales. RMBN-M4C8 is the smallest network in this work, which achieves better
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performance than SRCNN [17] and ESPCN [19], while reducing the number of parameters
by a factor of 12 and 10, and the FLOPs by a factor of 92 and 9, respectively. RMBN-
M4C8 and ECBSR-M4C8 [12] have the same number of parameters and computational
effort, but we obtain higher objective evaluation metrics. Similarly, RMBN-M4C16, RMBN-
M10C16, and RMBN-M10C32 significantly outperform other comparative networks, and
the balance between the number of model parameters and FLOPs. In this work, we also
compare RMBN extended to M16C64 with some more complex SISR networks, such as
IMDN [7], LAPAR-A [24], and LatticeNet [25]. RMBN-M16C64 significantly reduces the
computational complexity and has better performance. Compared with RFDN [8], RMBN-
M16C64 achieves better performance with an average improvement of 0.1 dB in PSNR over
the five benchmark datasets, which fully exploits the advantages of the reparameteriza-
tion. In particular, the significant improvement on the Urban100 dataset, which contains
richer structural texture information, demonstrates that the proposed network is able to
reconstruct more texture details than other comparison networks. As shown in Figure 5,
the proposed RMBN achieves better tradeoff between the performance of image SR and
model complexity than other advanced lightweight models on the BSD100 dataset.
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Figure 5. PSNR vs. the number of parameters. The comparison is conducted on the BSD100 dataset
with the ×4 scale factor.

4.4.2. Qualitative Results

Considering the effect of the parameter number on performance, we select RMBN-
M16C64 to compare the ×2 and ×4 SR subjective visual effects with other lightweight SISR
networks on the Set14, BSD100, and Urban100 datasets (see Figures 6–9). The compared SR
images are locally cropped and enlarged for observation.

It can be observed that most contrast networks produce blurred and inaccurate edge
and texture details (see board stripes in Figure 7 and railing stripes in Figure 8), while
RMBN can mitigate the ringing phenomenon and recover more accurate and sharper edge
details. Some comparison networks (e.g., IMDN [7], ECBSR-M16C64 [12]) reconstruct
images with the opposite texture orientation of the building as the ground truth, and even
produce severe artifacts (see the book edges in Figure 6 and the target board stripes in
Figure 9). While the RMBN-M16C64 correctly recovers the main structures, especially
for regular structural patterns and text information, more high-frequency texture details
are reconstructed, making the edges and contour features more visible (see the letters in
Figure 6 and the glass window in Figure 9). These observations show that the proposed
network is capable of recovering the edge information. The proposed PSE loss is used to
improve the SR performance by fully considering the high-frequency texture information,
solving the problem of oversmoothed SR images and enhancing the realism of results.



Sensors 2023, 23, 3963 14 of 21Sensors 2023, 23, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 6. Visual qualitative comparisons of the lightweight methods on the Set14 dataset (×4 SR). 

 
Figure 7. Visual qualitative comparisons of the lightweight methods on the BSD100 dataset (×4 
SR). 

Figure 6. Visual qualitative comparisons of the lightweight methods on the Set14 dataset (×4 SR).

Sensors 2023, 23, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 6. Visual qualitative comparisons of the lightweight methods on the Set14 dataset (×4 SR). 

 
Figure 7. Visual qualitative comparisons of the lightweight methods on the BSD100 dataset (×4 
SR). 
Figure 7. Visual qualitative comparisons of the lightweight methods on the BSD100 dataset (×4 SR).



Sensors 2023, 23, 3963 15 of 21Sensors 2023, 23, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 8. Visual qualitative comparisons of the lightweight methods on the Urban100 dataset (×2 
SR). 

 
Figure 9. Visual qualitative comparisons of the lightweight methods on the Urban100 dataset (×4 
SR). 

It can be observed that most contrast networks produce blurred and inaccurate edge 
and texture details (see board stripes in Figure 7 and railing stripes in Figure 8), while 
RMBN can mitigate the ringing phenomenon and recover more accurate and sharper edge 

Figure 8. Visual qualitative comparisons of the lightweight methods on the Urban100 dataset (×2 SR).

Sensors 2023, 23, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 8. Visual qualitative comparisons of the lightweight methods on the Urban100 dataset (×2 
SR). 

 
Figure 9. Visual qualitative comparisons of the lightweight methods on the Urban100 dataset (×4 
SR). 

It can be observed that most contrast networks produce blurred and inaccurate edge 
and texture details (see board stripes in Figure 7 and railing stripes in Figure 8), while 
RMBN can mitigate the ringing phenomenon and recover more accurate and sharper edge 

Figure 9. Visual qualitative comparisons of the lightweight methods on the Urban100 dataset (×4 SR).

4.5. Edge Device Performance

We further test the running time of the network on edge devices since the num-
ber of parameters and FLOPs are unable to reflect the model’s inference speed. We
also compare the performance of several representative lightweight SISR networks af-
ter uint8 quantization on the same device. As can be seen from Table 7 for scaling the
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image ×4 to 1280 × 720 pixels, common lightweight networks such as FSRCNN [46] and
IMDN-RTC [7] fail to realize real-time inference on the edge devices. Furthermore, RMBN-
M10C32 achieves real-time image SR with the lowest guaranteed accuracy loss and the
highest evaluation metrics (running time of 0.032 s) after model quantization. Compared to
RFDN [8], which utilizes an attention mechanism, the proposed network achieves better
performance while reducing the inference time by a factor of five. It demonstrates that
a network containing only 3 × 3 convolutional layers and activation is more suitable for
deployment in edge computing devices. Compared to ECBSR-M10C32 [12] with the same
model size, RMBN-M10C32 only increases the running time slightly, but obtains a 0.97 dB
improvement in PSNR value on the Set14 dataset. These results show that RMBN achieves
good balance between performance, parameters, and computational complexity, which is
more favorable for network deployment.

Table 7. Performance comparisons of the lightweight methods on RKNPU. Bold indicates the
best performance.

Scale Method Set5
PSNR-uint8

Set14
PSNR-uint8 Running Time (s)

×2

bicubic 33.68 30.24 0.025
FSRCNN [46] 34.66 30.17 0.074
IMDN-RTC [7] 36.03 30.89 0.172
SESR-XL [13] 36.14 31.45 0.057
ECBSR-M10C32 [12] 36.22 31.91 0.045
RFDN [8] 37.48 32.56 0.211
RMBN-M10C32 (Ours) 37.56 33.17 0.049

×4

bicubic 28.43 26.00 0.020
FSRCNN [46] 29.01 26.47 0.042
IMDN-RTC [7] 30.04 26.88 0.120
SESR-XL [13] 30.66 27.01 0.038
ECBSR-M10C32 [12] 30.98 27.04 0.027
RFDN [8] 31.12 27.49 0.178
RMBN-M10C32 (Ours) 31.42 28.01 0.032

4.6. Remote Sensing Image Super-Resolution

Since the remote sensing images have complex scenes and massive background in-
formation, more attention to useful information is needed in SR reconstruction [48]. More-
over, remote sensing images are generally high resolution, making SR reconstruction
more difficult.

To demonstrate the effectiveness of the proposed network, we train and test it on public
remote sensing datasets. UC-Merced [49] is a remote sensing image dataset used for land-
use research, with 21 categories, each with 1000 images of 256 × 256 pixels. We randomly
select 40 images from each category, obtain LR images by bicubic downsampling, and
use these 840 pairs of images as the training dataset. The NWPU45 [50] dataset is a large-
scale public dataset for remote sensing image scene classification, containing 45 categories
of scenes, and the sample of each category contains 700 images with 256 × 256 pixels.
AID [51] is an aerial image dataset, which consists of 30 types of aerial scenes, with
10,000 images in each scene. The above datasets have the characteristics of large scale and
rich information. We randomly select 100 remote sensing images from the NWPU45 and
AID datasets, respectively, and also use bicubic downsampling to obtain LR images for
testing the network. We fine-tune our model with the proposed PSE loss based on the
natural image training, which lasts 200 epochs with a learning rate of 5× 10−4 and a batch
size of 64. To ensure fairness, we use the same training strategy to fine-tune the comparison
algorithms for training remote sensing images as their papers.

Table 8 shows the quantitative results of the representative SR methods on remote
sensing datasets. We can notice that the proposed RMBN-M16C64 has the highest PSNR
and SSIM on these two datasets, with an average PSNR improvement of 0.15 dB over
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RFDN [8]. The low-level feature information from the natural image dataset is allowed to
be shared with the remote sensing datasets by employing the pretraining strategy, resulting
in better performance. The results of the experiments reveal that our network is more
general and capable of capturing useful information in complex backgrounds. Using the
PSE loss, the network can effectively extract texture details from remote sensing images
and obtain SR images with higher quantitative metrics.

Table 8. Average performance of lightweight methods on the NWPU45 and AID datasets (×4 SR).
Best and second-best results are bolded and underlined.

Scale Method NWPU45
PSNR/SSIM

AID
PSNR/SSIM

×4

Bicubic 29.12/0.7494 26.09/0.7154
CARN-M [5] 30.25/0.7845 27.32/0.7678
ECBSR-M16C64 [12] 30.20/0.7828 27.31/0.7660
IMDN [7] 30.37/0.7861 27.41/0.7704
LAPAR-A [24] 30.42/0.7877 27.47/0.7726
RFDN [8] 30.46/0.7889 27.51/0.7736
RMBN-M16C64 (Ours) 30.61/0.7900 27.67/0.7754

To fully demonstrate the effectiveness of our network, we also show the ×4 SR visual
results for the NWPU45 and AID datasets in Figures 10 and 11. It can be observed that
our network is more advantageous in recovering remote sensing images with more texture
details, especially for lines and repetitive structures (see the court in Figure 10 and the
top of the building in Figure 11). Other contrast algorithms are prone to produce artifacts
and blending when recovering remote sensing images with complex backgrounds, while
our network can effectively reduce the blur (see the boat in Figure 10 and the house in
Figure 11) and reconstruct more edge details.
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5. Conclusions

In this work, we propose a new lightweight SISR network named RMBN to solve the
problems of high computational complexity and large model size of existing CNN-based
SISR algorithms for edge computing devices. Specifically, we design a reparameterizable
multibranch bottleneck module (RMBM) to separate the training phase from the deploy-
ment phase by using the reparameterization. In the training phase, RMBM can fully utilize
and fuse features of different widths and depths based on the multibranch structure. In the
inference phase, the RMBM is collapsed by reparameterization, which reduces the number
of parameters while increasing the inference speed. In addition, we propose a novel PSE
loss for SISR tasks, making the network focus on recovering high-frequency details while
alleviating the problem of oversmoothed images. Numerous experimental results show
that the proposed network can improve visual perception and enhance high-frequency
information such as edges and textures. By using constrained activation, the network
significantly reduces performance degradation when deployed to edge computing devices.
In comparison to advanced algorithms, RMBN achieves a better balance of reconstruction
performance, model complexity, and inference speed. In the future, we intend to further
reduce the size and calculation complexity of the training model to reduce the training time
of the network.
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