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Simple Summary: Glycerin is an organic substance used as an ingredient for many industries, in‑
cluding pharmaceuticals and cosmetics, but also, glycerin is an important product during biodiesel
refining. Accurate and real‑time sensors are needed to improve the industrial process; therefore,
we proposed a workflow to measure concentrations of glycerin using a microwave sensor enhanced
by machine learning models. We tested this methodology with complex electronic instrumentation
and a designed low‑cost portable electronic reader. As a result, we found that both devices achieved
excellent and similar performance. These findings are valuable since monitoring the glycerin concen‑
tration may help to increase efficiency and reduce costs in the industry. In addition, the methodology
proposed in this study could be applied to any sensor, making it a valuable contribution to liquid
analysis with microwave sensors.

Abstract: Glycerin is a versatile organic molecule widely used in the pharmaceutical, food, and cos‑
metic industries, but it also has a central role in biodiesel refining. This research proposes a dielectric
resonator (DR) sensor with a small cavity to classify glycerin solutions. A commercial VNA and a
novel low‑cost portable electronic reader were tested and compared to evaluate the sensor perfor‑
mance. Within a relative permittivity range of 1 to 78.3, measurements of air and nine distinct glyc‑
erin concentrations were taken. Both devices achieved excellent accuracy (98–100%) using Principal
Component Analysis (PCA) and Support Vector Machine (SVM). In addition, permittivity estimation
using Support Vector Regressor (SVR) achieved low RMSE values, around 0.6 for the VNA dataset
and between 1.2 for the electronic reader. These findings prove that low‑cost electronics can match
the results of commercial instrumentation using machine learning techniques.

Keywords: dielectric resonator; microwave sensor; machine learning; dielectric characterization;
glycerin purification; low‑cost electronics; arduino

1. Introduction
Pure glycerol, a colorless, odorless, viscous liquid with unique physical and chemi‑

cal characteristics, is one of the most versatile organic molecules [1]. Glycerol can work
as a humectant, sweetener, or even a solvent, and consequently, it is widely used in the
pharmaceutical, food, and cosmetic industries. Moreover, glycerol is commonly used as
a constituent or reactive element in synthesis reactions for the chemical industry [2,3]. In
addition, glycerol is a crucial part of the structure of organic matter as the molecular base
of fats or triglycerides, the main energy reservoir for animals and vegetables. However,
pure glycerol is hard to extract and is usually diluted in water in a solution called glyc‑
erin, which is also soluble in alcohols. In contrast, it is insoluble in hydrocarbons and only
partially soluble in many organic solvents.
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On the other hand, crude glycerin (80%) is a primary by‑product of biodiesel produc‑
tion from refined vegetable oils. Indeed, nowadays, this process is the principal source
of pure glycerin (95–99%). However, the glycerin extracted must be separated and pu‑
rified before being used for industrial applications [4]. Similarly, low‑quality biodiesel
due to inadequate purification involves some risk of critical engine issues, such as filter
clogging or injector coking [5]. In conclusion, products with glycerin and biodiesel de‑
mand accurate and real‑time sensing tools to characterize glycerin purity during refining.
This paper aims to present a system for measuring glycerin solution permittivity with a
Dielectric Resonator (DR) sensor excited by microwave signals created with off‑the‑shelf
electronic components.

Microwave (MW) sensors are a cost‑effective and adaptable solution for identifying
and measuring substances. From an electronic point of view, MW sensors can be mod‑
eled as an RLC high‑frequency circuit that functions as a notch filter with a high Q factor.
These sensors are sensitive to changes in capacitance, leading to a shift in the resonance
frequency [6]. The effective permittivity of the medium surrounding the DR is intimately
related to the resonator capacitance. In sum, the DR is an indirect detector for substances
with permittivity values greater than air, which is usually the reference medium [7]. This
study aimed to detect changes in glycerin concentration by observing the effect on the DR
resonance frequency, as each solution has a distinct complex permittivity value.

One of the main advantages of DR sensors is their straightforward fabrication, as
they are usually made of a bulk dielectric material with a regular geometry, most com‑
monly cylindrical. The material’s physical dimensions and relative permittivity tune its
resonance behavior over a narrow frequency range [8]. In addition, a DR is an ideal MW
radiating device with minimum conduction losses and high radiation efficiency on a 3D
surface [9]. Moreover, DR sensors are an attractive choice for developing low‑cost detec‑
tion devices since they could be fully passive, avoiding the requirement of batteries to feed
the sensor [10]. Other resonant technologies have been proposed for sensing liquids in the
microwave region. In particular, split‑ring resonators are the most popular sensors, as
reported in several reviews in the last few years [7,11,12]. However, these technologies
are primarily planar designs generally oriented for microfluidic or submersion applica‑
tions since managing fluids demands a specific configuration. Therefore, a cylindrical DR
with a small cavity for drop measurements could be a solid and practical alternative for
liquid analysis.

Sensor calibration is crucial for obtaining accurate and valuable results. This pro‑
cess establishes a correlation between the DR sensor signal and the expected measurement
value. Conventional calibration, which involves compiling a measurement dataset, select‑
ing relevant variables, and performing statistical analysis [13], presents challenges and
drawbacks that machine learning (ML) can address [14]. ML, a subfield of artificial in‑
telligence, focuses on identifying complex patterns within data and then applying that
knowledge to make predictions. The power of ML models to detect correlations inside
these data has the potential to enhance sensor performance, especially in cases with a non‑
linear relationship between the analyzed process and the signal acquired [15]. For example,
in this research study, the permittivity of binary mixtures follows a double Debye model
since each solution component has a unique dielectric relaxation [16]. In addition, the cal‑
ibration based on fixed parameters, such as resonance frequency, is less optimal and may
introduce bias or variance, reducing the sensor’s performance since these parameters are
not the complete signal information. In contrast, machine learning models pursue a bal‑
anced trade‑off between variance and bias by considering the complete signal information.
Our objective is to improve the sensitivity of DR sensors by applying ML techniques. We
also aim to create a real‑time sensing system capable of automatically detecting slight vari‑
ations in permittivity, enabling us to determine the composition of the glycerin solution.

However, all the advantages of DR sensors are strongly reduced due to the electronic
instrumentation systems for high‑frequency measurements. For example, a Vector Net‑
work Analyzer (VNA) requires a high economic investment but also demands qualified
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personnel and complex calibration, and its bulky size hinders its use for automatic real‑
time measurements in industrial environments. In addition, the cost and complexity of
high‑end equipment diminish the market penetration of on‑site analytical devices in other
fields, such as environmental research [17] or diagnostic devices for point‑of‑care strate‑
gies [18], where DR sensors could be the base of numerous applications. It must be noted
that these limitations have a more severe impact on low‑income countries, where the need
for low‑cost sensors is more acute [19]. Therefore, it is necessary to reduce the cost and
increase the portability of the electronic equipment to interface with DR sensors. In re‑
cent years, the development of the Internet of Things and the enthusiasm for open‑source
hardware and software have opened many possibilities for developing low‑cost electron‑
ics using microcontrollers or microcomputers such as Arduino or Raspberry Pi [20]. These
boards allow I/O control of signals within an embedded system. While commercial de‑
vices give strict specifications, open‑hardware designs have the inherent advantage of cus‑
tomization, allowing the device to adapt to the needs of the analytical objective. We pro‑
pose using an Arduino microcontroller and economic MW components to replace the VNA
measurements at a more reasonable price but with comparable performance.

2. Materials and Methods
This section provides a comprehensive description of each step of the DR sensor work‑

flow (Figure 1). First, the DR overview and the experimental setup are presented, with
a specific subsection explaining our novel electronic reader components and their func‑
tioning. Afterward, the data collection is described, including the measurement protocol
and sample selection process. Finally, this section briefly introduces the ML learning tech‑
niques employed, with their respective parameters.
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Figure 1. Summary of the experimental workflow.

2.1. DR Sensor Overview
The authors presented the DR sensor used in these experiments in a previous study

involving the liquid characterization of water‑ethanol binary mixtures [6]. As depicted in
Figure 2, the DR design has a cylindrical structure with a radius ddr = 34 mm and height
h = 8 mm, fabricated using zirconia, a ceramic material with high relative permittivity,
εr = 29, and minimal conduction losses. A small cylindrical analysis chamber is placed on
the DR top for drop measurements. The sensor is fed through a microstrip transmission
line (TL) adjusted to 50 Ω and connected to an SMA port. An optimized rectangular slot
was etched on the ground plane to maximize energy transmission and achieve excellent
coupling efficiency.
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Figure 2. DR sensor scheme showing the sensor placement on the ground to achieve the coupling
between the DR and the Microstrip TL.

Additionally, a polycarbonate frame was used to fix the DR to the FR4 fiberglass sub‑
strate (εr = 4.4, t = 1.55 mm) to enable coupling stability and measurement reproducibility
(Figure 3). The fundamental HEM110 mode is excited inside the DR with a theoretical reso‑
nance frequency related to the physical dimensions and material permittivity (1) [6]. Simu‑
lation results and experimental observations determined that the DR resonance frequency
on air is 2.473 GHz. The frequency shift is due to the interaction between the electromag‑
netic fields inside the DR and the liquid sample inside the analysis chamber, as defined by
the perturbation theory [21].

( fr)110 =
c

2rdrπ
√

ϵr

(
1.71 +

rdr
h

+ 1.578
( rdr

2h

)2
)

(1)
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connection to the VNA port.

2.2. Electronic Instrumentation: From Vector Network Analyzer to Low‑Cost Detection Devices
The main objective of this research study was to compare the DR sensor performance

of an electronic instrumentation device and a novel electronic reader made with low‑cost
components. First, the spectra were obtained using the Anritsu MS46122B VNA calibrated
in the frequency range of 2.25–2.55 GHz and with a sampling buffer of 5000 points. The
1‑port mode configuration was employed to obtain the reflection coefficient |s11| and fre‑
quency values for the ML analysis. The VNA measures established a results baseline to
compare with our designed portable electronic reader and validate its performance. The
electronic reader is an improved design from previous research [22]. Figure 4 shows the
electric circuit with the control, conditioning, and MW sensing modules. An Arduino MKR
WiFi 1010 is the base for the control module for signal generation and acquisition.
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Figure 4. Electric circuit diagram of the electronic reader with all the components involved in the
signal acquisition. This design is divided into three parts: control, conditioning, and MW sensing.

The Arduino DAC generates a sweeping triangular signal (v1 in Figure 5), which is
transmitted to the VCO (Minicircuits ZX95‑2536C‑S+) through a reconditioning circuit to
adapt the input voltage for tuning the output MW signal within the 2.25–2.55 GHz range
(v2 in Figure 5). The VCO is connected to a circulator (UiY CC2528A2400T2500SF) to man‑
age the signal direction. Afterward, the MW signal is transmitted to the DR sensor by the
SMA port. Similar to the VNA acquisition, the DR sensor works in reflection: the circu‑
lator receives back the reflected MW signal (v3 in Figure 5) and then transmits the signal
to the amplification circuit to increase voltage resolution. Finally, the measured signal is
transmitted to the power detector and then to the Arduino, which digitalizes the signal
converting the power values into voltage units by timestamp (v4 in Figure 5). It must
be noted that the VNA acquires a unique frequency sweep, while the electronic reader
records a signal with several sweeps in the time domain. In addition, each electronic
reader signal for the same glycerine concentration will be desynchronized, adding variance
to the dataset.
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Figure 5. Signal transformation along the electronic reader workflow: v1 triangular signal from the
DAC, v2 frequency sweep from the VCO, v3 reflected signal by the MW sensor, v4 acquired signal
by the Arduino ADC.

2.3. Measurement Protocol
The experiments were performed with air and glycerin solutions that varied from 0%

to 80% in 10% intervals (Table 1). Higher concentrations, such as 90% or pure glycerin
(99%), were not included in the dataset as they were too viscous to ensure the accurate
volume with a micropipette. The measurements were obtained by filling the resonator
cavity with a 150 µL volume sample. The resulting VNA dataset includes 100 spectra
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acquired for each solution, while the electronic reader dataset contains 180 signals for every
solution obtained from 35 drop samples with five‑six repetitions each, with six seconds of
delay in between. All signals acquired are available in a GitHub public repository (https:
//github.com/MigMH/VNA_ER_GlycerinSolutions accessed on 3 April 2023).

Table 1. List of glycerin solutions tested with their relative permittivity values at 20–21 ◦C.

εr Maxwell–Garnett Mixing Rule εr Literature

Air 1 1
Gly80% 11.17 17.00
Gly70% 13.72 27.45
Gly60% 16.83 39.00
Gly50% 20.72 51.55
Gly40% 25.71 58.78
Gly30% 32.34 65.25
Gly20% 41.61 69.23
Gly10% 55.43 74.32
Water 78.30 78.30

The relative permittivity values for the selected glycerin concentration were extracted
from [23] in the 2.25–2.55 GHz frequency range at 21 ◦C, varying from 17 to 74.32. In
contrast, the permittivity value for pure water is 78.3 at 20 ◦C [24]. In order to validate these
experimental results, the permittivity of each solution was estimated using the Maxwell–
Garnett Mixing Rule (2), where εsol and εwat are the dielectric constants of solvent and water,
respectively, and |m| is the volumetric fraction of the solvent solution in water [25]. Both
permittivity values are drastically different (Table 1); a priori, it is not feasible to determine
if the formula fits these experimental data or if this data is accurate. Unfortunately, to
the author’s knowledge, there are no more references for this glycerin concentration in the
frequency working range. Moreover, other authors [26] measured the same concentrations
with a differential microwave sensor using the same reference permittivity values but at
1.56 GHz. Therefore, as a side objective, this article aims to use the VNA and our low‑cost
electronic reader to test which permittivity values fit better with the ML models.

ϵe f f = ϵsol + 3|m|ϵsol
ϵwat − ϵsol

ϵwat + 2ϵsol − |m|(ϵwat − ϵsol)
→ |m| = Vsol

Vwat
(2)

2.4. Analysis Techniques
Implementing ML models demands feature reduction methods due to the high di‑

mensionality of the obtained spectral data. For this reason, Principal Component Anal‑
ysis (PCA) is employed, a statistical algorithm that identifies the directions of maximum
variability within the data structure and generates a new mathematical space where each
spectrum is projected while retaining essential information [27]. Each spectrum is defined
by a vector in the principal components obtained from PCA [28], and this vector serves
as the input feature for an ML model. The next step was labeling these data with their
corresponding class to perform supervised learning; several models were tested in a pre‑
liminary study, such as Random Forest or XGBoost, but Support Vector Machine (SVM)
achieved slightly better performance. This algorithm traces a hyperplane in the data space
to classify each sample, and it is calculated to maximize the separation between classes [29].
The support vectors are the closest data points of each class to the decision boundary, and
since SVM only requires a small number of support vectors to define the hyperplane, it
is a reliable method for working with small datasets [30]. This is a considerable advan‑
tage since acquiring a huge dataset is significantly time‑consuming. In addition, SVM is a
versatile model, and it can be used for regression as well as classification; in this case, the
model prediction is an estimate of permittivity. The SVM hyperparameters were chosen
using Bayesian optimization: C, which defines the hyperplane exclusion margin, and γ,
which regulates the influence distance of a single training point (Table 2). Finally, in or‑

https://github.com/MigMH/VNA_ER_GlycerinSolutions
https://github.com/MigMH/VNA_ER_GlycerinSolutions
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der to prevent overfitting, the dataset was divided into a training set (70%) and a test set
(30%). The K‑fold Cross‑Validation method was applied during the model training with
k = 5 folds [31].

Table 2. ML models hyperparameters for the VNA and the electronic reader (ER).

Model C γ

VNA Classification 2620 0.00087
VNA Regression glycerin (%) 4000 0.01224

VNA Regression mixing rule values 4000 0.01362
VNA Regression literature values 4540 0.01243

ER Classification 4197 0.00100
ER Regression glycerin (%) 10,000 0.00323

ER Regression mixing rule values 9357 0.00623
ER Regression literature values 8247 0.00288

3. Results and Discussion
The main purpose of this section is to compare the ML performance comparison be‑

tween the datasets acquired by the VNA and by our low‑cost electronic reader. Firstly, we
analyze the signal characterization of each device, with different glycerin solutions. Sec‑
ondly, we show how the information within these signals is condensed and projected using
PCA to improve the interpretation. Thirdly, we evaluate and compare the performance of
ML models for the automatic classification of each glycerin concentration. Finally, we es‑
timate the solution permittivity and validate the results with two different sources: the
experimental data from [23] and the Maxwell–Garnett mixing rule.

3.1. Signal Characterization
The average spectra of each solution in Figure 6 indicate drastic resonance frequency

changes. Lower glycerin concentrations result in a reduction in the resonance frequency
since the higher volume of water increases the solution permittivity. As glycerin concen‑
tration increases, the maximum |s11| amplitude rises until Gly40%, which approaches the
value of air. Beyond this concentration, the |s11| amplitude gradually decreases. This
change could be related to the complex interaction between the dielectric relaxation of
glycerol and water. Given that the loss factor affects the resonance amplitude, the DR sen‑
sor might actually be measuring complex permittivity. Further research using alternative
dielectric characterization methods would help to acquire a reliable reference to compare
with our sensor results.
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The resonance peak distribution was analyzed with a boxplot, where the average
value and the dispersion for each concentration can be easily compared. Figure 6 shows a
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minor overlap between the low glycerin concentrations, which diminishes as the water vol‑
ume fraction decreases. Indeed, with concentrations of 40% glycerin and above, each class
peak distribution is entirely isolated. Compared to the previous study of this DR design
with water‑ethanol solutions [6], the variance in the concentration has been drastically re‑
duced thanks to improvements in the setup and the measurement protocol. According to
these findings, neither the solution permittivity nor the frequency shift (Figure 7) evolves
linearly, in accordance with both the Maxwell–Garnett Mixing Rule and the data extracted
from [23] (Table 1). The resonance behavior of the sensor itself is another factor that helps to
explain this resonance peak distribution; since the resonance frequency shift is a non‑linear
function of permittivity. As shown in Figure 7, the frequency shift is more pronounced
when the solution permittivity is closer to the reference (εr = 1); in other words, the shift
increment reduces as the glycerin concentration rises. Both factors seem to impact the
frequency shift significantly and must be considered for future research, especially with
low glycerin concentrations. These effects are far less significant in high concentrations,
such as crude glycerin from biodiesel refining. Other authors in [26] propose a differential
microwave sensor for the same glycerin concentrations, but their results are hardly com‑
parable since the sensor design is entirely different and relies on a microfluidic channel
with a pumping system. Although they achieve good sensitivity, their measurements are
based solely on one parameter, the amplitude change in differential signal |sDC

11|. The
purpose of this paper is not to limit the sensor sensitivity analysis to a single parameter,
the resonance peak shift, but to apply ML to study how the whole signal is affected. Given
that the sensitivity is not a constant since it depends on the resonators’ non‑linear behavior,
the accuracy of the ML models would represent a more useful indicator of the DR sensing
capability.
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Figure 7. Frequency shift variation with respect to the air reference value (purple) and with respect
to the previous glycerin concentration (green). The trend is non‑linear since the frequency shift is
more significant for values close to air and more uniform for values close to water.

The periodic signal by the electronic reader resembles a rectified sum of two sinu‑
soidal waves. It shows clear differences when the glycerin concentration changes
(Figure 8), but the interpretation is less intuitive than the case of VNA spectra, where the
concentration can be guessed by looking at the peak frequency shift. Nevertheless, it is
possible to spot a pattern; one of the waves has practically vanished in the air signal but
is increasing with the glycerin concentration, reaching the maximum for water. Therefore,
this wave corresponds to lower frequencies closer to the 2.25 GHz margin detected by the
reader (Figure 6). The second wave diminishes from its maximum in the air until remain‑
ing steady around Gly 40%; thus, this wave corresponds to higher frequencies around the
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2.55 GHz margin. However, all the voltage amplitude changes are particularly subtle be‑
tween glycerin solutions with similar concentrations. Consequently, the electronic reader
signals would be less helpful in analyzing glycerin solutions without applying PCA or ML.
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3.2. Principal Component Analysis (PCA)
Only two principal components were required for the PCA to condense 99% of the

information within the VNA spectra data. Since the PCA projects the signals into an ab‑
stract space, its explainability is typically low. However, in this case, the PCA plot for
the VNA reveals discrete and separate clusters in what seems to be a concentration curve
(Figure 9). When using PCA, the whole signal is considered rather than just the resonance
peak. Therefore, it is simple to distinguish between each glycerin solution without the mi‑
nor overlap mentioned before in the boxplot analysis (Figure 6). In conclusion, the PCA
increases the class separability of these spectral data by reducing data dimensions.
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Because the electronic reader generates desynchronized periodic signals, the PCA de‑
mands seven principal components to reach 97% of the explained variance, as opposed to
the PC required by the VNA. VNA projections show clear and distinct clusters (Figure 9),
while the electronic reader projects circular patterns (Figure 10). In particular, the PC1‑PC2
plot shows a projection grouped in concentric circles, each corresponding to a glycerin con‑
centration, in what appears to be a graduation of permittivity. It must be noted that the
class separability reaches its maximum when considering all the dimensions at once. For
example, the PC1‑PC7 plot extends the graduation in another dimension where the solu‑
tion differences are incremented. In summary, both acquisition methods show good class
separability in the PCA plots that anticipate positive results in the ML models. For this
reason, the lack of synchronization is very useful to add variability in the model learning
since it reduces bias, but at the cost of increasing the complexity of the SVM model.
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3.3. Glycerin Classification
The SVM classification model achieved excellent accuracy (around 97–99%) for both

the VNA and the electronic reader (Table 3), in accordance with the insights from the PCA.
The confusion matrixes in Figure 11 show barely any contamination between classes. In
contrast, the regression models show some performance differences between both acqui‑
sition methods; the Root Mean Squared Error (RMSE) for the electronic reader is between
two and three times bigger than the VNA (Table 3). To the author’s knowledge, there
are no similar experiments measuring glycerin concentration with dielectric resonators or
automatic classification of substances with microwave sensors. However, recent ML appli‑
cations for electrochemical and optical biosensors using PCA and SVM have shown results
in accordance with this research [14]. Therefore, these findings reinforce the value of DR
sensors and ML models for classifying glycerin solutions.

3.4. Permittivity Estimation
The glycerin concentrations are labeled as discrete values for the SVM classification

model. However, the Support Vector Regressor (SVR) can be employed to estimate the
glycerin as a continuous variable after relabeling the training dataset and removing the air
samples. The model performance is almost perfect for the VNA with an RMSE of 0.70%
and highly favorable for the electronic reader with an RMSE of 1.93% (Table 3). The box‑
plot comparison between both devices in Figure 12 shows that the VNA permittivity es‑



Sensors 2023, 23, 3940 11 of 15

timations fit the real concentration almost perfectly: the box is almost a flat line, and the
primary source of RMSE is some outliers. In contrast, the electronic reader estimations
are more scattered around the original value since the variance is greater, especially with
glycerin concentrations from 10% to 40%. This result concurs with the PCA plots from the
electronic reader (Figures 9 and 10), where the distance between these concentrations is
minimal. As previously stated, the DR sensor’s non‑linear response could reduce sensitiv‑
ity when the permittivity sample is significantly higher than air permittivity, as occurs with
low glycerin concentrations. However, for concentrations greater than 40%, the electronic
reader performance is more precise and similar to the VNA performance.

Table 3. ML performance results.

Models VNA Accuracy ER Accuracy

SVM 99.33% 97.41%
VNA RMSE ER RMSE

SVR Glycerin (%) 0.70% 1.93%
SVR mixing rule values 0.629 2.091
SVR literature values 0.599 1.119
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Additionally, two further SVR models were trained to estimate solution permittivity
rather than glycerin concentration. Each model was trained with two permittivity sources:
the Maxwell–Garnett Mixing Rule [25] and the values acquired by dielectric spectroscopy
from the literature [23] (Table 1). The VNA achieved excellent and identical performance
with an RMSE close to 0.60 (Table 3) for both permittivity sources (Figures 13 and 14). How‑
ever, the VNA dataset hinders the evaluation of the reliability of both permittivity sources
since the excellent class separability helps the SVR models estimate the solution permittiv‑
ity independently of the value distribution.

On the other hand, the electronic reader is less precise and more sensitive to perturba‑
tions; therefore, both SVR models show distinct estimation patterns. First, the estimations
based on the Maxwell–Garnett mixing rule are almost perfect for low permittivity values,
while for high permittivity, the error is drastically increased (Figure 13). This contrasts
clearly with the SVR model trained with the permittivity values from [23] since these esti‑
mations have a more uniform error distribution by class (Figure 14), which are comparable
to the VNAs in all the permittivity ranges. This difference is reflected in the RMSE, 1.119
for the literature SVR model and 2.091 for the Maxwell–Garnett mixing rule SVR model.
In sum, the experimental values seem correct but may be affected by minor experimental
errors. In contrast, the Maxwell–Garnett mixing rule, which is commonly used to estimate
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the permittivity of composite materials with inclusions [32], is probably not optimal for liq‑
uid mixtures. This result indicates that the combination of the electronic reader and SVR
models is a good method to evaluate the reliability of mixing formulas or experimental
dielectric characterization.
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4. Conclusions
This study proposed using a dielectric resonator (DR) sensor to determine glycerin so‑

lution concentration. A commercial VNA was used to establish a benchmark for the sensor
performance and, thus, validate our designed electronic device. Measurements of air and
nine different glycerin concentrations were taken within a relative permittivity range of
1 to 78.3. Using Support Vector Machine (SVM) and Principal Component Analysis (PCA),
both devices obtained outstanding accuracy (98–100%). Additionally, permittivity estima‑
tion using the Support Vector Regressor (SVR) accomplished low RMSE values between
0.6 and 1.2. These results prove that by applying ML with the proposed workflow
(Figure 1), low‑cost portable electronics can achieve comparable results to complex elec‑
tronic instrumentation equipment. This significant contribution opens many opportuni‑
ties for future developments since this workflow is not limited to our DR design and could
be applied to any sensor. These findings also emphasize the DR sensor’s capacity to gener‑
ate accurate permittivity estimations. Consequently, if the SVM model is trained with the
correct permittivity data, it could estimate the permittivity of any liquid inside its cavity
chamber. Moreover, this methodology is able to validate any permittivity characterization,
including mixing formulas, which we consider critical since there is a lack of dielectric char‑
acterization data for many sensing applications, especially if the sensor work in a narrow
frequency range. In conclusion, the designed DR sensor and the workflow proposed is a
promising combination for crude glycerin analysis in all sectors where glycerin is required.
ML models offer a precise method for analyzing the sensor inputs, making them the ideal
support technology for the DR sensor. In future works, this methodology will be adapted
to new analytical targets and expanded to reach the full potential of this technology.
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