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Abstract: As a low-cost demand-side management application, non-intrusive load monitoring (NILM)
offers feedback on appliance-level electricity usage without extra sensors. NILM is defined as dis-
aggregating loads only from aggregate power measurements through analytical tools. Although
low-rate NILM tasks have been conducted by unsupervised approaches based on graph signal
processing (GSP) concepts, enhancing feature selection can still contribute to performance improve-
ment. Therefore, a novel unsupervised GSP-based NILM approach with power sequence feature
(STS-UGSP) is proposed in this paper. First, state transition sequences (STS) are extracted from power
readings and featured in clustering and matching, instead of power changes and steady-state power
sequences featured in other GSP-based NILM works. When generating graph in clustering, dynamic
time warping distances between STSs are calculated for similarity quantification. After clustering,
a forward-backward power STS matching algorithm is proposed for searching each STS pair of an
operational cycle, utilizing both power and time information. Finally, load disaggregation results
are obtained based on STS clustering and matching results. STS-UGSP is validated on three publicly
accessible datasets from various regions, generally outperforming four benchmarks in two evaluation
metrics. Besides, STS-UGSP estimates closer energy consumption of appliances to the ground truth
than benchmarks.

Keywords: non–intrusive load monitoring; graph signal processing; state transition sequences;
dynamic time warping

1. Introduction

Demand-side management (DSM) is an effective tool to balance electricity supply and
demand [1]. As a popular DSM application, load monitoring can be carried out intrusively
or non-intrusively. Intrusive load monitoring (ILM) requires extra sensor installation at
plug-ends, while non-intrusive load monitoring (NILM) does not. NILM technique aims
to disaggregate power consumed by each appliance and identify their operational states
by only one sensor in mains, via analysing aggregate power readings using software tools.
The concept of NILM was raised by G. W. Hart in 1980s [2], as a low-cost and user-friendly
alternative to load monitoring sensors. By offering fine-grained electricity consumption
feedback, including the categories, operational power ranges and usage habits of major
appliances, NILM enriches smart metering benefits and supports DSM [3].

According to the sampling rates of power readings to be disaggregated, NILM tasks can
be classified as high-rate (above 1 Hz, usually in kHz and MHz) and low-rate (from 1/60 Hz to
1 Hz) [4]. Although high-rate measurements carry more detailed information (e.g., appliance
transition state), the cost of data collection and storage is high. Comparing to high-rate NILM,
NILM methods for low-rate measurements perform competitively in some scenarios, which
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are available to commercial meters deployed worldwide for billing purposes. Therefore, low-
rate NILM approaches are regarded as feasible solutions, capturing more attention recently.
So far low-rate NILM approaches have been developed based on the hidden Markov model
(HMM) and its variants [5], random forest (RF) [6], decision tree (DT) [7], neural networks [8–11],
support vector machines (SVM) [12], k-means [12], fuzzy c-means (FCM) [13], mathematical
programming [14–16] and graph signal processing (GSP) [17,18], etc. Such NILM approaches
can be supervised or unsupervised, depending on whether sub-metering data or appliance
usage labelling is required for training. That is, for making supervised NILM approaches
work, either plug-end sensors or users survey is required [5,8]. For more practical scenarios
where neither sub-metering nor labelling is available, unsupervised methods can still
work [19]. Therefore, unsupervised NILM methods have the potential to disaggregate
loads from the mains of real ‘unseen’ households.

HMM is widely used in pattern recognition and shows its superiority in identifying
loads with strong periodicities. However, HMM suffers from the exponential increase in
computational cost when more appliances are added. For improving disaggregation perfor-
mance and efficiency, sparse Viterbi algorithm is proposed in [5] for efficiently computing
sparse matrices in power disaggregation task. Factorial hidden Markov model (FHMM), as an
HMM extension, can be utilized to identify multi-state appliances. In [20], each appliance is
modelled by a bivariate HMM, where emitted symbols are joint active-reactive power signals.
A hybrid algorithm is proposed in [21], where a two-state FHMM is used to decrease compu-
tational complexity, with subsequence dynamic time warping for performance improvement.
In [22], two multi-observation FHMM variants are proposed, showing extra reactive power
observation and state duration distribution feature help improve performance in industrial
scenarios. A modified FHMM is applied to NILM in [23], where dependency models for
operational states of all appliances can be built based on electricity profile variation. However,
over-estimation may occur in the above-mentioned HMM-based NILM methods when facing
non-periodic loads.

As deep learning (DL) becomes popular in recent years, neural networks with various
architectures have been applied to solve the NILM problem, such as convolutional neural
network (CNN), long short-term memory (LSTM), stacked denoising autoencoder (DAE)
and sequence-to-point (seq2point). In [8], CNN, LSTM and stacked DAE are applied to
NILM, where CNN and DAE outperform LSTM due to their wider range of trainable
parameters. However, for frequently used appliances, the performance of CNN and
DAE drops. A seq2point CNN framework is proposed in [10], generally outperforming
sequence-to-sequence networks in load disaggregation tasks. To avoid sub-metering for the
target houses, transfer learning across houses and datasets is studied in [11]. However, its
performance relies on the similarity in power usage between the source dataset for training
and the data collected from target houses. Moreover, sub-metering for the target houses is
also required for network fine-tuning. For tackling this problem, a self-supervised NILM
approach based on seq2point CNN is proposed in [9], consisting of a unsupervised pre-text
task and a network fine-tuning task. However, as the pre-text task is heuristically set,
explaining its impact on disaggregation performance is hard. Note that the implementation
of most DL-based NILM approaches on commercial end-devices weight calculation and
storage hinder their implementation on commercial end-devices. Therefore, A light-weight
and scalable NILM approach is proposed in [24] to break such limitations, where transient
sequences are segmented based on detected turn-ON events. Then a hybrid of CNN and
k-NN is used to identify loads. However, high-rate measurements sampled at 100 Hz are
required for power sequence extraction. A MobileNet is proposed in [25], where TensorFlow
Lite is employed on a light-weight architecture for further compression, thus reducing
memory and training period requirement. However, performance drop is observable
caused by further compression.
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Machine learning has been applied to identify and disaggregate loads, including SVM [12,26],
k-NN [27], DT [7], RF [6], k-means[12], FCM[13], mean-shift [28], etc. In [26], load state transi-
tion events are detected heuristically and classified by an SVM model, featuring duration,
average power, maximum power and power variance. A low-complexity hybrid NILM
approach is proposed in [12], where k-means is utilized to refine the training dataset for
the following SVM classifier. The results show the k-means-based training data refinement
contributes to both disaggregation accuracy and efficiency. A NILM framework is proposed
in [27], with a local power histogramming descriptor for feature extraction and an improved
k-NN architecture for classification. Ref. [7] identifies loads by a DT-based classifier, with
dynamic time warping (DTW) distance representing similarities between extracted state
transition events. In [6], the Fourier series transformed from the aggregate and weather
information are featured in a RF classifier. However, more costs are required for extra
sensors. In addition to such supervised NILM methods, unsupervised ones have also been
investigated, e.g., the NILM approaches proposed in [12] and [13] are unsupervised, achiev-
ing competitive performance. However, prior knowledge including the number of clusters
is required. For breaking this limitation, Liu et al. apply mean-shift algorithm to group the
transient states detected based on their magnitudes [28]. Note that small bandwidth is set
for guaranteeing NILM performance while increasing convergence duration.

Unlike NILM approaches based on machine learning with multiple disaggregation
tasks for each appliance, optimization-based ones can disaggregate all target loads via a
single task [16]. In [2], combinatorial optimization (CO) is applied to NILM by searching
the optimal combination of appliances’ operational states with total power closest to the
aggregate via heuristic algorithms like genetic algorithm. However, CO is sensitive to
unknown loads, leading to over-estimation. To solve this problem, integer programming
(IP) approaches can be utilized. Bhotto et al. propose a load disaggregation approach based
on aided linear IP in [14], with improvement on feature extraction, constraint selection,
pre- and post-processing. However, when disaggregating a large number of appliances,
global optimization becomes hard. A two-stage NILM scheme is proposed in [15], where
operational state extraction is followed by load disaggregation via a hybrid of mixed-integer
IP and penalized correction matrix. However, its performance is easily affected by noises.
In [16], mixed-integer optimization is utilized to model appliance operational states, and
then IP is used to solve energy disaggregation problem with additional penalty terms and
constraints. However, specialized solvers are required for the measurements collected per
second due to efficiency concern.

GSP, as an emerging signal processing tool to represent stochastic properties of signals
using graphs, has also been employed in the NILM task. In [29], a supervised GSP-
based NILM method is proposed, where the graph total variation is minimized, referring
to generally piece-wise smoothness of the underlying graph signal. For performance
refinement, simulated annealing is applied as post-processing to minimize the difference
between the aggregate and the sum of disaggregated power in [30]. Note that active power
change events are featured in training in both [29] and [30]. To perform GSP-based NILM
in an unsupervised manner, GSP concepts are utilized multiple times in choosing adaptive
thresholds, clustering, and switching events matching in [17]. Since only power change
events are detected and featured, this method can only disaggregate loads with close power
magnitudes of their switching ON and OFF events. Besides, transients lasting longer than
the sampling period may be segmented as consecutive smaller events, ruining matching
procedure. Both drawbacks constrain robustness. Although pre-processing proposed
in [31] can sharpen state transition edges in power signals for performance improvement,
transient information is vanished. Instead of widely-used power change events, steady-
state sequences are segmented and featured by a GSP-based NILM method in [18]. Since
the extracted sequences may differ in length, DTW is utilized for similarity calculation.
However, its performance is sensitive to the simultaneous operation of multiple loads and
measurement noises.
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Driven by the aforementioned shortcomings of current NILM works, an unsupervised
GSP-based NILM approach, STS-UGSP, is proposed in this paper, featuring sequences
adaptively segmented from the aggregate power signals. Alternative to the steady-state
sequence defined in [18], state transition sequence (STS) is defined in this paper, consisting
of ‘rising’ and ‘falling’ power sequences. A ‘rising’ sequence refers to the starting power
transient of an operational state, while its ending power transient can be represented by a
‘falling’ sequence. In this paper, DTW is utilized in graph edge weighting to calculate dis-
tances among extracted STSs for similarity measure as in [18]. Two classic NILM methods,
are selected as baselines, as CO implemented in publicly available NILMTK toolbox [32]
and sparse HMM (SHMM) proposed in [5]. For a more representative comparison, two
GSP-based NILM solutions are also benchmarked, which are proposed in [17] and [18],
respectively. The validation is carried out on three publicly available datasets, AMPds
dataset[33], REFIT dataset [34] and REDD dataset [35]. Our main contributions can be
summarised as:

• an improved STS extraction method is proposed for capturing sequences containing
each complete switching event between operational states of an appliance;

• in the proposed unsupervised GSP-based NILM approach, each graph node maps a
STS, where the adjacency matrix is weighted based on DTW distances between STSs;

• a forward-backward power STS matching algorithm is proposed for matching each
‘rising’ STS to the optimal ‘falling’ one, based on their power ranges and time interval;

• the proposed method is validated on open-access AMPds, REFIT and REDD datasets,
benchmarked with state-of-the-art GSP-based NILM methods using different features
and two classic NILM approaches based on SHMM and CO.

The rest of this paper is organised as follows. In Section 2, we introduce the prelimi-
nary knowledge of DTW and GSP. The details of the proposed method are explained in
Section 3. In Section 4, we clarify the experimental setup and evaluation metrics. The whole
experimental results are demonstrated and discussed in Section 5. Section 6 consists of a
brief conclusion and future work.

2. Preliminary Knowledge
2.1. Dynamic Time Warping

Traditionally, time series similarity is measured by either lock-step measures or elastic
measures. Lock-step measures, such as well-known Euclidean distance, conducting one-to-
one comparisons, are applicable only for the time series with the same length. Alternatively,
DTW, as an elasticity measure allowing one-to-many comparisons, enables similarity
measuring of time series with unequal lengths.

Since proposed in [36], DTW has been applied to NILM problem to calculate the
similarity between sequences extracted from measurements [37] (e.g., active power, reactive
power, etc.). Given two sequences of arbitrary lengths m and n as p = [p1, ..., pm] and
q = [q1, ..., qn], DTW distance aims to find minimal mapping paths between p and q. D
represents cost matrix and the element D(i, j) is the accumulated DTW distance between
points p1 to pm and points q1 to qn, and Dm,n is the final distance between the two vectors.
The DTW distance calculation for p and q is shown in Algorithm 1.

Algorithm 1: DTW distance calculation

1 Input: p;
Output: Dm,n;

2 initialiseDm,0 = 0; D0,m = ∞; D0,0;
3 for i = 1, ..., m do
4 for j = 1, ..., n do
5 di,j = |pi − qj|;
6 Di,j = di,j + min

{
Di−1,j, Di−1,j−1, Di,j−1

}
;

7 return Dm,n
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An example of DTW distance calculation between ‘rising’ power sequences extracted
from AMPds dataset is illustrated in Figure 1.

In Figure 1, the optimal mapping paths between power sequences are shown in red.

Sequence from 2012-04-01 17:06 to 2012-04-01 17:33 

Sequence from 2012-04-04 17:43 to 2012-04-04 18:10 

Mapping paths

Figure 1. Demonstrative mapping paths in DTW distance calculation for two typical power sequences.

2.2. Graph Signal Processing

Let X = {x1, x2, ..., xN} denote a N-length set, where xi can be a vector or set. Then,
an undirect graph for X can be built as G = (V , A), where V = {v1, v2, ..., vN} is a set of
vertices on the graph, with each xi corresponding to vi. The graph adjacent matrix A is a
N × N symmetric matrix and each entry Ai,j represents the weight of edge between graph
nodes vi and vj, representing the similarity or correlation of xi and xj. The value of Ai,j is
usually defined by Gaussian kernel function as in [38]:

Ai,j = exp

{
−
∣∣dist(xi, xj)

∣∣2
ρ2

}
, (1)

where ρ is a scaling factor, and dist(xi, xj) denotes the distance between xi and xj, which
can be calculated as Euclidean distance or DTW distance.

Graph signal s is a mapping from V into real domain R, thus, a relationship can be
built as si = f (vi). Note that if a graph signal is piece-wise smooth, its global smoothness
is generally small. Then, the signal global smoothness can be formulated as [39]:

Sp(s) =
1
p ∑

i∈V

[
∑

j∈Ni

Ai,j(sj − si)
2

] p
2

, (2)

where Ni ∈ V is the set of vertices connected with vi. Let D be a diagonal matrix, defined
by Di,i = ∑j Ai,j, for i = 1, . . . , N, then L = D−A denotes the graph Laplacian matrix. By
setting p = 2, a graph Laplacian quadratic form can be obtained via Equation (3) as [31]:

S2(s) =
1
2 ∑

i,j
Ai,j(sj − si)

2 = sTLs. (3)
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Since sTLs is generally small when graph signal s is piece-wise smooth, by solving
optimization problem arg min

s
‖sTLs‖2

2, a closed form solution can be obtained as:

s∗ = L#
2:N,2:N(−s1)LT

1,2:N , (4)

where (.)# denotes the pseudo-inverse matrix.

3. Methodology

The proposed STS-UGSP consists of three stages: adaptive STS extraction, GSP-based
STS clustering and forward-backward STS matching.

3.1. State Transition Sequence Extraction

Initially, an adaptive method for extracting STSs is proposed. Although a signal seg-
mentation algorithm has been proposed in [18] for capturing steady-state sequences, the
method proposed in this paper is different. We focus on the power sequences containing
complete transients referring to operational states start or end, which are extracted for fur-
ther clustering and matching. The proposed state transition sequence extraction algorithm
is presented in Algorithm 2.

In Algorithm 2, for an N-length aggregate power signal p, two parameters t0 and t1 are
heuristically set for constraining sequence length. T denotes a threshold for distinguishing
power changes due to state transition and measurement noise, and γ is a preset factor.
After initialisation, each power variation sample ∆pi (calculated in Line 3) with magnitude
no less than T and its previously neighbouring samples are assigned to a sequence e, based
on the adaptive rules as Lines 5–12. Otherwise, pi is stored in e, as shown in Lines 13–17.
Since a single ‘rising’ or ‘falling’ STS may contain multiple time-wise close state transitions,
especially for the measurements with low granularity, further segmentation are designed.
In Line 21, the j-th element ei,j is assigned to s as a container for storing sub-sequences.
Then the indices of the maximum or minimum in each sub-sequence, which is segmented
by judging consecutive samples above or below ēi, are stored in l. The STSs satisfying
heuristically set conditions are further segmented. Finally, all STSs are labelled. Note that
for the cases with granularity reduced to 10 min and longer, the target to be disaggregated
tends to be electricity profiles. Thus, state transition detection or STS extraction is no
longer available.

3.2. GSP-Based Power Sequence Clustering

Then GSP-based clustering is carried out for the extracted STSs. Note that the clus-
tering steps for ER and EF are the same and independent, based on two graphs separately
built for them. Therefore, taking clustering for ER as an example, its flow chart is shown as
in Figure 2, the same as in [40].

Given a set ER containing N sequences, its graph is defined as GR. In GR, each
node vi corresponds to a sample si in graph signal s, as a mapping of sequence ei in ER,
for i = 1, ..., N. Note that the sequences in ER may differ in length, DTW distance is an
appropriate tool to similarity measure. Then, let each entry Bi,j in B represent DTW distance
between sequences ei and ej in ER, defined as:

Bi,j = DTWdist(ei, ej), (5)

Since B is diagonal symmetric, its normalization can be conducted for each entry Bi,j by:

Bi,j = Bi,j/median(Bi,1:N); (6)

where median(.) represents the median value. Thus, the adjacency matrix can be defined as:

Ai,j = exp(−B2
i,j/ρ2). (7)
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Algorithm 2: STS extraction algorithm
Input: p; N; T; t0; t1; γ;
Output: ER; E F;

1 Initialise e← [ ]; i← 1; i0 ← 0; i1 ← −t1; F ← ∅; ER ← ∅; EF ← ∅;
2 while i ≤ N − 1 do
3 ∆pi ← pi+1 − pi;
4 if |∆pi| ≥ T then
5 if e = [ ] then
6 if i− i0 ≥ t0 then
7 assign pi−t0+1:i−1 to e;

8 else if i > i0 + 2 then
9 assign pi0+1:i−1 to e;

10 else if i = i0 + 2 then
11 assign pi0+1 to e;

12 assign pi to e; i0 ← i; i1 ← i;

13 else if i− i1 < t1 then
14 assign pi to e;

15 else if i− i1 = t1 then
16 assign pi to e; e← e− emin; F ← F ∪ {e}; e← [ ];

17 i++;

18 foreach ei in F do
19 a← the length of ei; l← [ ]; s← [ ]; k← 1;
20 for j = 1, ..., a− 1 do
21 assign ei,j to s;
22 if (ei,j − ēi)(ei,j+1 − ēi) < 0 then
23 if ei,j − ei,j+1 > 0 then
24 find the maximum value in s and the index lk in ei;
25 else
26 find the minimum value in s and the index lk in ei;

27 k++; s← [ ];

28 b← the length of l;
29 for m = 1, ..., b do
30 if b > 2 and eend − e1 ≤ γē then
31 if m = 1 then
32 e← ei,1:l2 ;

33 else if 1 < m < b then
34 e← ei,lm :lm+1 ;

35 else
36 e← ei,lm :end;

37 else
38 e← ei;

39 if eend ≥ ē then
40 ER ← ER ∪ {e};
41 else
42 EF ← EF ∪ {e};

43 return ER, EF
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Build a graph  ! for "! and 
calculate #$ by Eq. (1) – Eq. (7)

Remove the first STS and 
those with s%

$ & ' from "!

Is "! empty?

Yes

No

Input: "!;  ; 

!" # $

Output: !"

Group the first STS in %" and 
those with s&

' (  into the 
same cluster, stored in !" Merge small clusters into 

larger ones with the closest )*+
"

Calculate )*+
" by Eq. (8) and Eq. 

(9) for each cluster in !"

Figure 2. Flow chart of GSP-based STS clustering, where (.)* denotes the optimized signal.

Since in GSP-based clustering, the clustering target corresponding to s1 ← 1 can be
randomly picked from the input [17], we pick the first STS as the target in this paper. There-
fore, the remaining STSs are to be clustered, with corresponding samples in s initialised as
zeros. Then, the optimized graph signal s∗ can be calculated by Equations (2)–(4), Since
each sj corresponds to a sequence to be clustered, a fixed threshold q is used to select
candidates. Thus, we group the first STS (with s1 = 1) and those with s∗j ≥ q into the same

cluster, stored in CR as a sub-set. After removing such clustered STSs from ER, the above-
mentioned process is repeated for the updated ER until no STS is left. Like in [17], small
clusters are merged with larger ones for simplifying further cluster matching. Assuming
that the n-th cluster cR,n in CR contains J STSs, thus for selecting mergeable clusters, we
define the magnitude of cR,n and each cR,n,j in it as Equations (8) and (9):

P̃R,n,j = |cR,n,j
end − cR,n,j

1 |, (8)

P̃R,n =
1
J

J

∑
j=1

P̃R
n,j, (9)

where cR,n,j
1 and cR,n,j

end denote the first and last elements in the j-th sequence of cR,n. Then, the
time instance of the largest power increase in cR,n,j is called operation time and represented
by tR,n,j, which is the j-th element of tR,n. Then, each small cluster in CR with J ≤ J0 is
merged to the larger one with the closest magnitude. Eventually, a set CR is obtained as the
clustering result of ‘rising’ STSs. Similarly, by performing such clustering on the extracted
‘falling’ STS set EF, CF can be obtained.

3.3. Forward-Backward Power STS Matching

In order to match the clusters of ‘rising’ STSs with those of ‘falling’ STSs, a forward-
backward power STS matching algorithm is proposed, calling a sub-algorithm for pairing
each STS from a ‘rising’ cluster to one in a ‘falling’ cluster, as in Algorithm 3.

In Algorithm 3, α and β are two heuristically set trade-off factors, where α + β = 1, for
balancing the magnitude of two STSs and their time intervals; τ is a general constraint of
maximum operation time for each appliance; tR,n and tF,m are corresponding operation time
of the n-th ‘rising’ cluster cR,n and m-th ‘falling’ cluster cF,m. The function of Algorithm 3 is,
given an arbitrary ‘falling’ STS in cluster cF,m, to find its pair from candidates in a ‘rising’
STS cluster. One pairing criterion is that the time interval between two paired STSs is
within τ. The other is that they are both close in magnitude and operation time via computing
di, where the minimum di is stored in v. The proposed forward-backward power STS
matching algorithm is shown in Algorithm 4 calling Algorithm 3 for pairing STSs from
clusters. After initialisation in Line 2, ‘rising’ and ‘falling’ clusters are sorted in Line 4 based
on their magnitude calculated in Line 3. Then forward steps are to look for all ‘rising’ STSs
with paired ‘falling’ STSs based on Algorithm 3. After calling Algorithm 3, the minimum v̄
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is stored as f with corresponding index m stored as b. Then, all paired STSs detected by
Algorithm 3 are stored inRR,m andRF,n and removed from original clusters. Otherwise,
we break the loops. Lines 6–16 are repeated for the next ‘rising’ STS cluster until they are
all traversed once. After forward steps, similar backward steps are conducted in Lines
17–27, where ‘rising’ clusters and ‘falling’ ones are swapped. Namely, backward steps act
as looking for all ‘falling’ STSs with paired ‘rising’ STSs. Finally, all matched ‘rising’ and
‘falling’ STS pairs stored inRR andRF are obtained.

Algorithm 3: STS pairing algorithm
1 Input: α; β; τ; cR,n and cF,m with corresponding operation time tR,n and tF,m;

Output: v; UR,n; UF,n;
2 InitialiseH ← ∅; K ← ∅; k← 1; q← 1; j← 1; s← +∞; b← +∞; v← ∅; UR,n ← ∅; UF,n ← ∅;
3 foreach cF,m,l in cF,m do
4 store all ‘rising’ STSs in cR,n with time interval (tF,m,l − τ, tF,m,l) inH and their corresponding

operation time in K; dj ← +∞;
5 ifH 6= ∅ then
6 foreach ei inH do
7 s← α(P̃R,n,i − P̃F,m,l) + β(tF,m,l − tR,n,i);
8 if s < di then
9 di ← s; uR,n,m ← ei ; uF,n,m ← cF,m,l ;

10 v← v ∪ dj; UR,n ← UR,n ∪ uR,n,m; UF,n ← UF,n ∪ uF,n,m; j ++;

11 return v; UR,n; UF,n.

Algorithm 4: Forward-backward power STS matching algorithm
1 Input: α; β; τ;CR containing N clusters cR,n and corresponding operation time tR,n; CF containing M

clusters cF,m and corresponding operation time tF,m;
Output: SR;SF;

2 InitialiseRR ← ∅;RF ← ∅;
3 calculate P̃R

n ∀ cR,n in CR and P̃F
m ∀ cF,m in CF by Equations (8) and (9);

4 sort the clusters in CR in descending order and the clusters in CF in ascending order;
5 for n = 1, ..., N do
6 RR,n ← ∅;RF,n ← ∅;
7 while cR,n 6= ∅ do
8 f ← +∞;
9 foreach cF,m in CF do

10 generate v, UR,n and UF,n by calling Algorithm 3 with inputs α, β, τ, cR,n, cF,m, tR,n and
tF,m;

11 if v 6= [ ] and v < f then
12 f ← v; b← m;

13 if f 6= +∞ then
14 store UR,b inRR,n and UF,b inRF,n, and remove them from cR,n and cF,m, respectively;
15 else
16 break;

17 for m = 1, ..., M do
18 while cF,m 6= ∅ do
19 f ← +∞;
20 foreach cR,n in CR do
21 generate v, UR,n and UF,n by calling Algorithm 3 with inputs α, β, τ, cR,n, cF,m, tR,n and

tF,m;
22 if v 6= [ ] and v < f then
23 f ← v; b← m;

24 if f 6= +∞ then
25 store UR,b inRR,n and UF,b inRF,n, and remove them from cR,n and cF,m, respectively;
26 else
27 break;

28 returnRR;RF.
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4. Experiment Setup
4.1. Dataset

To verify the effectiveness of the proposed method, a comparison against four bench-
marks is conducted based on both three publicly accessible datasets, containing power data
collected from real-world households. AMPds [33] dataset is collected from Canada and
sampled at 1min resolution, REFIT [34] dataset is from the U.K., sampled at 8 s resolution
and REDD [35] dataset is from U.S. houses at 1Hz resolution. Widely-used REDD dataset
has neither fluctuant loads nor those with long-transient states, and its unknown loads are
fewer than the other two datasets. AMPds dataset contains more multi-state appliances and
various load types [33]. REFIT dataset is more challenging, due to non-negligible unknown
appliances and measurement noise.

The loads to be disaggregated are abbreviated as follows: BP&L for basement plugs
and lights; WD for washer dryer/clothes dryer; WM for washing machine/clothes washer;
DW for dishwasher; F for fridge; HP for heat pump; WO for wall oven; B for bathroom
GFI; KO for kitchen outlet; M for microwave; O for oven; S for stove; FFZ for fridge-freezer;
K for kettle; T for toaster and FZ for freezer.

4.2. Parameter Selection

The parameter settings in the experiments are shown in Table 1.

Table 1. Parameter settings.

Parameters T t0 t1 τ γ α β ρ j0 q

AMPds 50 1 1 500 0.2 0.5 0.5 0.01 50 0.5

REFIT 50 2 2 1000 0.2 0.9 0.1 0.01 50 0.5

REDD 50 3 3 2000 0.2 0.5 0.5 0.01 50 0.5

The threshold T is set as 50 W for detecting both power changes and STSs in various
methods. Since STSs extracted from different datasets differ in length due to inequivalent
sampling rates, t0, t1 and τ are set heuristically. γ is set 0.2 for all datasets to distinguish
the starting spike or multi-state. Comparing to operation time for the appliances in AMPds
and REDD datasets, those for REFIT datasets are more distinguishable . Thus, a higher
α is set for REFIT to facilitate feature representation. Since the adjacent matrix has been
normalized, scaling factor ρ is set to 0.01 for all datasets. In GSP-based clustering, both J0
and q are set to reduce falsely clustered STSs as in [40].

4.3. Evaluation Metrics

A metric is introduced for evaluating the proportion of unknown loads of datasets,
followed by two metrics for NILM performance.

4.3.1. Percent-Noisy Measure

Percent-noisy measure (%-NM) is a metric to quantify unknown loads in experimental
datasets, defined as:

%− NM =
∑N

j=1 |pj −∑n
i=1 Pi

j |

∑N
j=1 pj

, (10)

where Pi
j is the actual power consumed at time j by device i. N is the signal length and n is

the number of known appliances.

4.3.2. F-Measure

Precision (PR), Recall (RE) and F-measure (Fm) are adopted as metrics to evaluate NILM
performance and defined as in [23,31]:

PR = TP/(TP + FP), (11)
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RE = TP/(TP + FN), (12)

Fm = 2 · TP · FP/(TP + FP). (13)

TP is the number of correctly identified events. FP is the number of events wrongly
identified as the target. FN is the number of target events which are misidentified. Thus,
for an arbitrary appliance, PR is the identification accuracy in all identified events, while
RE is that in all actual events. Fm is the harmonic mean of PR and RE, reflecting the correct
identification level for per operational state per appliance.

4.3.3. Disaggregation Accuracy

Besides, we use disaggregation accuracy Acc. as in [41] to evaluate how close the
power estimation for an appliance is to what it is actually consumed. Acc. is defined as:

Acc. = 1−
∑N

j=1 |P̂i
j − Pi

j |
2 ∑N

j=1 Pi
j

, (14)

where P̂i
j is the estimated power consumed at time j by device i. The factor of 2 is added in

the denominator due to absolute values ‘double count’ errors. Noted that an Acc. close to 1
means accurate power estimation comparing to ground truth, while the one far away from
1 means poor performance.

5. Experimental Results and Discussion

In this section, experiments are conducted for the proposed STS-UGSP and four
benchmarks under fair conditions as clarified before. For simplification, the benchmarks
are represented as SS-UGSP [18], UGSP [17], SHMM [5] and CO [32].

5.1. NILM Results on AMPds Dataset

Both Fm and Acc. results are demonstrated as in Figure 3 for reflecting identification
and disaggregation performance, separately. Note that for better visualization, colour bars
are embedded in the blanks according to the results, i.e., the fully coloured blank means
scoring 1 in its metric.

App. PR RE Acc. PR RE Acc. PR RE Acc. PR RE Acc. PR RE Acc.

BP&L 0.74 0.52 0.61 0.66 0.64 0.42 0.51 0.64 0.61 0.38 0.47 0.61 0.68 0.59 0.63 0.64 0.26 0.19 0.22 /

WD 0.88 0.71 0.78 0.86 0.92 0.61 0.73 0.82 0.89 0.64 0.74 0.79 0.67 0.42 0.52 0.52 0.65 0.36 0.46 0.52

WM 0.47 0.30 0.37 0.52 0.30 0.21 0.25 0.52 0.32 0.11 0.17 0.51 0.06 0.06 0.06 0.30 0.07 0.05 0.06 /

DW 0.76 0.72 0.74 0.78 0.94 0.47 0.62 0.76 0.92 0.60 0.72 0.72 0.15 0.15 0.15 0.05 0.25 0.36 0.30 0.39

F 0.81 0.95 0.87 0.90 0.78 0.84 0.81 0.79 0.69 0.82 0.75 0.80 0.61 0.57 0.59 0.59 0.71 0.69 0.70 0.60

HP 0.89 0.90 0.90 0.91 0.84 0.85 0.84 0.84 0.91 0.75 0.82 0.79 0.93 0.76 0.84 0.78 0.77 0.80 0.78 0.74

WO 0.58 0.71 0.64 0.69 0.74 0.43 0.55 0.62 0.63 0.38 0.47 0.61 0.01 0.03 0.02 / 0.33 0.27 0.30 /

STS-UGSP SS-UGSP UGSP SHMM CO

Fm Fm FmF FmF Fm

Figure 3. NILM Performance comparison on AMPds dataset.

Overall, GSP-based NILM approaches outperform the baseline methods based on
SHMM and CO, which is as expected and in line with the results shown in [31].

Comparing to SS-UGSP and UGSP, STS-UGSP performs better overall Fm, reaching
0.84. Take DW as an example, it takes 2 to 3 min from being turned ON to steady operation.
Since such switching-ON transients last longer than the sampling period (1 min), multiple
incomplete state transition events with lower power changes are detected. Thus, it’s hard
to correctly pair such broken turn-ON events of DW to the corresponding turn-OFF ones
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based on power changes as in UGSP. Even worse, such events may be misidentified as
other low-power loads, confusing event pairing. Furthermore, the steady-state events of
DW are usually short and difficult to be captured in SS-UGSP. However, in STS-UGSP,
extracted STSs contain the whole state transition processes. That is, the power transient
characteristics of DW can be fully utilized when matching STSs. The other note-worthy
appliance is F, which operates around 110 W, close to the power of low operational states of
unknown multi-state appliances. Thus, high FP leads to low Fm results for UGSP. However,
STS-UGSP features DTW distance between STSs, which is more useful for solving the
NILM problem, leading to improvement by 0.12 in Fm and 0.1 in Acc. SHMM performs
competitively in disaggregating HP with periodic operational cycles comparing to GSP-
based methods, which is a general advantage of HMM-based approaches. Besides, SHMM
slightly outperforms GSP-based methods in identifying multiple states of BP&L, as event
matching is a complex task for the NILM approaches featuring power changes. Close
results to SHMM can be observed for CO.

In addition to Fm and Acc. results, pie charts are drawn for illustrating energy shares
disaggregated by various methods as in Figure 4. From Figure 4, STS-UGSP performs better
than benchmarks for most appliances, consistent with the results shown in Figure 3, owing
to HP which is the most power consumption appliance. It can be observed that HP has
high disaggregation accuracy with STS-UGSP for its unique transient state. That is, HP
can have high Fm in DTW-based transient state clustering process and Acc. in matching
step. From Figure 4, BP&L seems to be the most challenging load for energy estimation. Its
long operation duration, usually lasting for 2 to 3 h, confuses matching in both STS-UGSP
and UGSP. On the other hand, its large power fluctuations while operation makes the
disaggregation task more complex.

BM&L WD WM DW F HP WO Others

(a) STS-UGSP (b) SS-UGSP (c) UGSP

(d) SHMM (e) CO (f) Ground truth

Figure 4. Pie charts of disaggregated energy shares on AMPds dataset.

Taking the experiment on one-week measurements from AMPds dataset as an example,
500 STSs can be extracted within 2 s. Then, for mapping all extracted STSs, a graph
containing 500 nodes can be build, where clustering is carried out costing 7 s, mainly due to
pseudo-inverse matrix calculation. Since the computational time of pseudo-inverse matrix
depends on matrix size, the efficiency is analyzed under various graph size settings here.
The execution time for setting graph size from 100 to 2000 and the corresponding Fm results
are demonstrated in Figure 5.
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(a) execution time of GSP-based clustering

(b) Fm results

Figure 5. Execution time of GSP-based clustering and Fm results for various graph sizes.

In Figure 5a, the longer the graph size is, the larger the graph Laplacian matrix is,
leading to time increase in an exponential rate. However, stable NILM performance when
graph size is large enough can be observed from Figure 5b.

It takes around 4 ms to extract an STS under our experimental settings shown in
Section 4.2. Besides, only 500-byte memory is required for calculating and storing an
STS. That is, for typical one-week data, 500 STSs can be extracted and stored in around
250 kb memory. However, a 500 × 500 matrix in GSP requires more than 10 mb memory.
Thus, we prefer implementing STS extraction algorithm on edge devices for requiring less
transmission and memory resources. Further STS clustering and matching process can be
carried out on the cloud for larger capability and faster matrix computation.

5.2. NILM Results on REFIT Dataset

Since REFIT dataset contains 20 houses, two typical houses are picked for validation,
as House 2 and House 6. Both Fm and Acc. results for House 2 are shown in Figure 6.

App. PR RE Acc. PR RE Acc. PR RE Acc. PR RE Acc. PR RE Acc.

FFZ 0.77 0.88 0.82 0.72 0.76 0.89 0.82 0.71 0.64 0.82 0.72 0.58 0.66 0.77 0.71 0.64 0.65 0.53 0.55 0.15

WM 0.63 0.64 0.64 0.53 0.62 0.63 0.62 0.55 0.78 0.44 0.56 0.48 0.21 0.18 0.19 0.49 0.10 0.55 0.19 /

DW 0.92 0.73 0.81 0.75 0.66 0.77 0.71 0.67 0.50 0.69 0.58 0.65 0.30 0.44 0.35 0.58 0.07 0.55 0.13 0.12

M 0.77 0.64 0.70 0.76 0.67 0.77 0.72 0.69 0.73 0.53 0.62 0.65 0.14 0.35 0.16 / 0.01 0.50 0.02 /

T 0.68 0.78 0.73 0.79 0.62 0.63 0.62 0.72 0.73 0.56 0.63 0.61 0.04 0.26 0.07 / 0.01 0.60 0.01 /

K 0.85 0.94 0.89 0.88 0.90 0.88 0.89 0.89 0.85 0.82 0.83 0.78 0.78 0.41 0.54 0.65 0.04 0.50 0.08 /

STS-UGSP SS-UGSP UGSP SHMM CO

Fm Fm FmF FmF Fm

Figure 6. NILM Performance comparison for REFIT House 2.
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The results shown in Figure 6 is similar to those for AMPds dataset. We can observe
that it’s hard for the benchmarks based SHMM and CO to correctly disaggregate any target
appliance in House 2. Such inferior results can be explained as numerous unknown loads
rise the probability of simultaneous operation of multiple appliances, thus, assigning such
states to each appliance becomes more complex. For GSP-based NILM approaches, the
results are close to those for AMPds dataset before, i.e., 0.82, 0.78 and 0.69 on overall Fm,
and 0.75, 0.71 and 0.63 on overall Acc., for STS-UGSP, SS-UGSP and UGSP, respectively.
Therefore, STS-UGSP succeeds in NILM performance improvement.

It’s worth mentioning that DW and WM operate at similar power ranges, around
2200 W and 2250 W, respectively. Thus, the separation task for DW and WM is beyond the
performance boundaries of UGSP. However, DW and WM differ in operation duration,
namely, the length of steady-state sequences featured in SS-UGSP, leading to better per-
formance of SS-UGSP against UGSP. Furthermore, the period that DW requires to reach
a stable power range after being switched ON is longer than that of WM. Therefore, cal-
culating DTW distance between ‘rising’ STSs in STS-UGSP contributes to distinguishing
DW and WM, which leads to disaggregation results refinement. Similar Acc. results are
obtained from Figure 6 for most appliances, except WM. The low Acc. results for WM
achieved by all NILM methods are due to mismatching with frequent operational cycles
of unknown appliances with close power. However, since its power range is almost con-
stant, steady-state power sequences featured in SS-UGSP help improve NILM performance.
Benefited from pre-processing, SS-UGSP achieves slightly higher Acc. for K than STS-UGSP.

The experimental results for House 6 from REFIT dataset are demonstrated in Figure 7.
Since House 6 has more unknown loads than House 2, NILM performance of all methods
drops. In House 6, Fm results of T are the lowest in all appliances for SS-UGSP and UGSP.
Note that the operational power of T is near 1100 W, close to the peak of FZ loads, above
1000 W while the motor starting to work. Besides, unknown loads with close power ranges
to T also exist. Therefore, STS-UGSP is superior to the other methods as state transition
details on the power signal are utilized for identification loads.

App. PR RE Acc. PR RE Acc. PR RE Acc. PR RE Acc. PR RE Acc.

FZ 0.86 0.81 0.83 0.79 0.83 0.81 0.82 0.76 0.68 0.59 0.63 0.58 0.41 0.26 0.32 0.44 0.27 0.46 0.37 0.15

DW 0.75 0.73 0.74 0.71 0.65 0.71 0.68 0.67 0.62 0.38 0.47 0.52 0.16 0.11 0.13 / 0.02 0.09 0.03 0.12

M 0.77 0.62 0.69 0.61 0.71 0.68 0.69 0.59 0.63 0.53 0.58 0.55 0.14 0.19 0.16 0.54 0.01 0.03 0.02 /

T 0.68 0.56 0.61 0.74 0.52 0.53 0.53 0.52 0.52 0.31 0.39 0.48 0.36 0.21 0.28 0.19 0.01 0.01 0.01 /

K 0.65 0.59 0.59 0.62 0.81 0.63 0.71 0.62 0.82 0.69 0.75 0.61 0.64 0.63 0.63 0.55 0.04 0.09 0.05 /

STS-UGSP SS-UGSP UGSP SHMM CO

Fm Fm FmF FmF FmFm

Figure 7. NILM Performance comparison for REFIT House 6.

The energy disaggregated from total power consumption for both House 2 and House
6 are illustrated in Figure 8 and Figure 9, respectively. As mentioned before, target loads
account for only a small share of total energy consumption, while other loads account
for 63% and 88%, respectively. Thus, disaggregation tasks for such two houses are more
difficult than that on AMPds dataset. Comparing to CO, GSP is less sensitive when being
applied to such complex NILM tasks. To be specific, over-estimation is observable for CO.
e.g., K in House 2 and FZ in House 6 are both over-estimated due to misidentification of
other magnitude-wise similar loads. Although SHMM shows more robustness to noisy
settings than CO, it performs poor for non-periodic loads like M in both House 2 and
House 6.

5.3. NILM Results on REDD Dataset

The Fm and Acc. results of STS-UGSP and benchmarking methods for REDD House 1
are presented in Figure 10.
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Since REDD House 1 has fewer multi-state loads than in REFIT houses, the overall
Fm results reach 0.85 for STS-UGSP, 0.78 for UGSP, 0.81 for SS-UGSP, 0.65 for SHMM and
0.48 for CO. For the only multi-state appliance DW (around 200 W, 400 W, 1100 W), worse
results comparing to those for other appliances are as expected. The close power ranges of
B and M have been claimed in [31], in line with the obtained results for B is affected. The
results for REDD House 2 are shown in Figure 11, which are close to the above.

FFZ WM DW M K T Others

(a) STS-UGSP (b) SS-UGSP (c) UGSP

(d) SHMM (e) CO (f) Ground truth

Figure 8. Pie charts of disaggregated energy shares for REFIT House 2.

3%2%
FZ DW M T K Others

(a) STS-UGSP (b) SS-UGSP (c) UGSP

(d) SHMM (e) CO (f) Ground truth

Figure 9. Pie charts of disaggregated energy shares for REFIT House 6.
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Note that SHMM performs competitively against the others in disaggregating KO in
REDD House 1 and F in REDD House 2, while the explanations differ. The active working
power of KO is higher than the others in House 1, thus overlapping with low-power loads
brings limited impact on disaggregation results. Although F has low working power
ranges, its operational cycles are periodic. Besides, the proportions of unknown loads
for REDD houses are less than those in the other two datasets, leading to a reduction in
misidentification of F, as illustrated in Figures 12 and 13.

App. PR RE Acc. PR RE Acc. PR RE Acc. PR RE Acc. PR RE Acc.

O 0.72 0.79 0.75 0.85 0.63 0.70 0.67 0.72 0.78 0.70 0.70 0.80 0.43 0.07 0.12 0.49 0.05 0.64 0.09 /

F 0.89 0.85 0.87 0.82 0.88 0.90 0.89 0.81 0.88 0.84 0.84 0.75 0.78 0.70 0.74 0.70 0.52 0.41 0.46 0.58

DW 0.53 0.59 0.56 0.57 0.58 0.66 0.62 0.55 0.51 0.54 0.54 0.55 0.09 0.30 0.14 0.01 0.11 0.59 0.19 0.24

M 0.84 0.83 0.84 0.79 0.63 0.89 0.74 0.77 0.58 0.71 0.71 0.72 0.30 0.45 0.36 0.60 0.25 0.64 0.36 0.12

B 0.71 0.69 0.70 0.59 0.56 0.76 0.65 0.56 0.60 0.66 0.66 0.57 0.58 0.57 0.57 0.53 0.28 0.39 0.38 /

KO 0.77 0.80 0.78 0.88 0.73 0.71 0.72 0.85 0.58 0.61 0.61 0.71 0.82 0.79 0.80 0.89 0.75 0.82 0.78 0.70

WD 0.78 0.80 0.79 0.72 0.78 0.75 0.77 0.70 0.81 0.75 0.75 0.67 0.62 0.49 0.55 0.62 0.11 0.60 0.19 0.41

STS-UGSP SS-UGSP UGSP SHMM CO

Fm Fm FmF FmF Fm

Figure 10. NILM Performance comparison on REDD House 1.

App. PR RE Acc. PR RE Acc. PR RE Acc. PR RE Acc. PR RE Acc.

KO 0.91 0.92 0.91 0.85 0.87 0.88 0.88 0.84 0.86 0.88 0.87 0.80 0.75 0.58 0.65 0.62 0.39 0.36 0.37 0.41

S 0.66 0.76 0.72 0.79 0.77 0.85 0.81 0.75 0.63 0.63 0.63 0.71 0.40 0.19 0.26 0.53 0.02 0.01 0.01 /

M 0.93 0.97 0.95 0.71 0.89 0.95 0.92 0.68 0.93 0.93 0.93 0.62 0.76 0.73 0.75 0.66 0.24 0.21 0.22 0.26

F 0.86 0.96 0.92 0.86 0.86 0.89 0.88 0.84 0.82 0.83 0.83 0.81 0.88 0.92 0.90 0.85 0.79 0.88 0.83 0.78

DW 0.72 0.85 0.78 0.63 0.68 0.87 0.76 0.60 0.67 0.56 0.56 0.61 0.24 0.42 0.31 0.04 0.00 0.02 0.00 /

STS-UGSP SS-UGSP UGSP SHMM CO

Fm Fm FmF FmF Fm

Figure 11. NILM Performance comparison for REDD House 2.

From Figure 14, higher %− NM results for REFIT houses reflect more noises com-
paring to AMPds dataset and two REDD houses. Higher unknown load shares make
disaggregation tasks for REFIT houses more challenging. Therefore, for each NILM ap-
proach, its overall Fm performance for REFIT houses is generally worse. However, SHMM
and CO are more sensitive to unknown loads, leading to sharper drops in Fm results.

We can conclude that both SHMM and CO are more sensitive to measurement noise
than GSP-based approaches. Since UGSP features power variation, separating loads with
close power ranges and identifying loads with long-term power transients become hard.
Although SS-UGSP benefits from the steady-state sequence feature, outperforming UGSP
in disaggregation for most appliances, it performs poor for short-lasting loads. With respect
to STS-UGSP, its better NILM performance against others in various metrics is benefited
from the proposed STS feature with a forward-backward matching process.

5.4. Noise Measurement For all Experimental Cases

%− NM is calculated for all cases and shown in Figure 14, with corresponding overall
Fm results of all methods.
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O F DW M B KO WD Others

(a) STS-UGSP (b) SS-UGSP (c) UGSP

(d) SHMM (e) CO (f) Ground truth

Figure 12. Pie charts of disaggregated energy shares for REDD House 1.

KO S M F DW Others

(a) STS-UGSP (b) SS-UGSP (c) UGSP

(d) SHMM (e) CO (f) Ground truth

Figure 13. Pie charts of disaggregated energy shares for REDD House 2.
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2 6 1 2

0.63 0.88 0.18 0.19

STS-UGSP 0.82 0.77 0.85 0.88

SS-UGSP 0.78 0.72 0.81 0.85

UGSP 0.70 0.69 0.61 0.78 0.81

SHMM 0.62 0.48 0.27 0.65 0.72

CO 0.58 0.32 0.16 0.48 0.62

REFIT REDDDatasets

House

%—NM

0.76

0.84

/

0.33

AMPds

mF

Figure 14. %− NM for various cases and their overall Fm across experimental methods.

6. Conclusions

In this paper, an unsupervised GSP-based approach to disaggregate loads on low-rate
power measurements is proposed. Driven by the features utilized in the existing GSP-based
methods carry limited information thus limiting NILM performance, in the proposed
STS-UGSP, power STSs containing complete operational state transients are extracted for
calculating DTW distances. By mapping such STSs to graph nodes and weighting edges
based on their DTW distances, they can be grouped into various clusters. Then, a forward-
backward STS matching algorithm is proposed to search optimal STS pairs based on power
and temporal information. Experiments are carried out on open-access AMPds, REFIT and
REDD datasets. The results show GSP performs more robust than classic SHMM and CO
in the scenarios with high proportion of unknown loads. Besides, STS features and their
further matching help improve NILM performance, especially for the loads with a spike in
power signal due to motor activation and those with turn-ON transients longer than the
sampling period. Future work includes refining STS matching via further mining temporal
connection among state transitions of multi-state loads; adding matching between STSs
and steady-state power sequences for improving power signal reconstruction; utilizing
DTW distance to calculate magnitude similarity between STSs when matching and applying
the proposed method on the measurements with various low frequencies.
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