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Abstract: The development of chemosensors able to detect analytes in a variety of sample matrices
through a low-cost, fast, and direct approach is of current interest in food, health, industrial, and
environmental fields. This contribution presents a simple approach for the selective and sensitive
detection of Cu2+ ions in aqueous solution based on a transmetalation process of a fluorescent
substituted Zn(salmal) complex. Transmetalation is accompanied by relevant optical absorption
changes and quenching of the fluorescence emission, leading to high selectivity and sensitivity of
the chemosensor, with the advantage of not requiring any sample pretreatment or pH adjustment.
Competitive experiments demonstrate a high selectivity of the chemosensor towards Cu2+ with
respect to the most common metal cations as potential interferents. A limit of detection down to
0.20 µM and a dynamic linear range up to 40 µM are achieved from fluorometric data. By exploiting
the fluorescence quenching upon formation of the copper(II) complex, simple paper-based sensor
strips, visible to naked eyes under UV light, are used for the rapid, qualitative, and quantitative in
situ detection of Cu2+ ions in aqueous solution over a wide concentration range, up to 10.0 mM, in
specific environments, such as in industrial wastewater, where higher concentrations of Cu2+ ions
can occur.

Keywords: Zn(salen-type) complexes; fluorescent chemosensor; paper-based sensor strips;
transmetalation; Cu2+ detection

1. Introduction

Fluorescent chemosensors are widely employed to detect ions and neutral species [1].
Due to their high sensitivity, they allow the detection of trace amounts of the analyte of interest.
Metal cations [2–13], in particular the Cu2+ ion [2–15], are among the most investigated.

Copper plays an important role as essential trace element in various biological pro-
cesses [16]. Both a deficiency or an excessive copper intake cause harmful health ef-
fects [17,18]. Copper is widely used in various manufactures as well as in agriculture.
Sources for copper contamination include agriculture, industrial waste, mining, and pho-
tovoltaics; therefore, copper pollution represents an issue for environmental and human
health [19,20].

Zn(salen)-type complexes are characterized by varied photophysical properties strongly
related to the structure of the diimine bridge [21,22], substituents on the salicylidene rings,
and non-coordinating or coordinating nature of the solvent [23–25]. Among them, colorful
complexes derived from 2,3-diaminomaleonitrile, Zn(salmal), are the most interesting also
for their fluorescent properties [26–35].

We recently demonstrated that the Zn(salmal) complex (1, Scheme 1), substituted with
5,5′-t-butyl groups in the salicylidene rings to improve its solubility in a variety of solvents,
in acetonitrile solution exhibits transmetalation with divalent ions of the first transition
series [36]. Transmetalation is strongly influenced from the Lewis basicity of the solvent, i.e.,
from the stability of the starting 1 solvent adduct, and nature of the counteranion. In any
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case, transmetalation with Cu2+ ions is faster than that with the other cations. Therefore,
complex 1 in acetonitrile solution is a useful colorimetric chemodosimeter for the selective
detection of Cu2+ ions in aqueous solution [37]. As the formation of the paramagnetic
Cu(salmal) complex upon transmetalation of 1 involves a quenching of the fluorescence,
complex 1 has also been involved for the fluorometric detection of Cu2+. However, although
the 5,5′-t-butyl substitution in Zn(salmal) enhances its solubility, on the other hand it
leads to a very poor fluorescence, presumably for the specific substitution pattern in the
5,5′-positions of the salicylidene rings [38]. In fact, the resulting fluorometric sensitivity of
1 towards Cu2+ is slightly lower than that obtained from the colorimetric detection [37]. It
is therefore expected that starting from a complex having a higher fluorescence, a parallel
significantly higher sensitivity can be achieved. To this end, the Zn(salmal) complex
(2, Scheme 1), substituted with 4,4′-alkoxy groups in the salicylidene rings, ensures a
suitable solubility and a sizable fluorescence emission to be a good candidate for the
fluorescent detection of Cu2+ ions in aqueous solution by transmetalation.
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In this contribution we report a simple, straightforward approach for the selective and
sensitive fluorescent detection of Cu2+ ions in aqueous solution by transmetalation, either
in solution or as a test kit employing filter paper as a portable and displayable photonic
device for the in situ detection.

2. Materials and Methods
2.1. Materials and General Procedures

Complexes 1 and 2 were synthesized, purified, and characterized as previously re-
ported [36,39]. All the chemicals used were purchased from Sigma-Aldrich (Merck, Darm-
stadt, Germany) and used as received. Zinc perchlorate hexahydrate was used for the
template synthesis of complex 3. Caution: Perchlorate salts of metal compounds in the presence
of organics are potentially explosive. Only small amounts of material should be cautiously han-
dled. Aqueous solutions of metal cations (as nitrate or perchlorate salts) were obtained by
dissolving salts in distilled water and used as prepared. Stock solutions of complexes 1–3
in MeCN and THF were prepared by dissolving a known amount of the complex in the
solvent using a volumetric flask. The solutions of complexes 1–3 used for spectrophotomet-
ric/spectrofluorometric measurements were prepared by diluting the stock solutions. The
excitation wavelength for spectrofluorometric measurements was chosen in an isosbestic
point. The fluorescence quantum yields for 3 in MeCN and THF were determined with
respect to that of 2 in THF (φ = 0.24) [39]. Transmetalation experiments were performed
as previously described [36]. The spectra for spectrophotometric and spectrofluorometric
titrations were recorded after 10 min from the addition of Cu2+.

2.2. Physical Measurements

ESI-MS spectra were recorded on a Thermo Fisher API 2000 mass spectrometer. ESI-
MS spectra for complex 3 were recorded using MeOH/THF (2:1) solutions. ESI-MS spec-
tra of complex 2 upon transmetalation with Cu2+ were achieved using MeCN solutions
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of 2 (40 µM) recorded immediately after the addition of 2 equiv. of an aqueous solu-
tion of Cu(NO3)2. 1H NMR, optical absorption, and fluorescence measurements were
recorded with a Varian Unity S 500 (499.88 MHz for 1H) spectrometer, an Agilent Cary
60 spectrophotometer, and JASCO FP-8200 spectrofluorometer (JASCO Europe, Cremella,
Italy), respectively.

2.3. Synthesis of Complex 3

Complex 3 was synthesized using the same procedure adopted for the synthesis of
complex 1 [36]. 2,3-diaminomaleonitrile (0.0541 g, 0.500 mmol) in methanol (10.0 mL),
5-methoxy-2-hydroxybenzaldehyde (125 µL, 1.00 mmol), zinc(II) perchlorate hexahydrate
(0.223 g, 0.600 mmol), and triethylamine (0.500 mL). Dark-grey powder (0.198 g, 90%).
ESI-MS: m/z = 439 [M+H+]. 1H NMR (500 MHz, DMSO-d6): δ = 8.58 (s, 2H, CH = N), 7.10
(dd, 3JHH = 9.00 Hz, 4JHH = 3.00 Hz, 2H; ArH), 7.00 (d, 3JHH = 9.00 Hz, 1H; ArH), 6.74
(d, 3JHH = 9.00 Hz, 2H; ArH), and 3.71 (s, 6H, OCH3).

2.4. Fabrication of Paper-Based Sensors and Sensing Experiments

Paper-based sensors (PBSs) were fabricated from filter paper, cut in 2.5 cm × 2.5 cm
squares, using the dipping technique. Paper strips were dipped for 10 s into a THF solution
of 2 (10 µM) and dried by solvent evaporation at room temperature in air. No change in
the PBS performance was observed in paper strips prepared from solutions of 2 in MeCN;
therefore, solutions of the more volatile THF solvent were used. Sensing experiments were
performed by dipping PBS into aqueous solutions of various metal cations (as nitrate or
perchlorate salts) at known concentration for 10 s and dried at room temperature for 30 min.
Fluorescence changes were monitored under an UV lamp (λexc = 365 nm).

3. Results and Discussion
3.1. Photophysical Properties of Substituted Zn(salmal) Complexes

To find suitable fluorescent Zn(salmal) complexes for sensing metal cations via trans-
metalation, the new 5,5′-methoxy substituted complex 3 was synthesized and characterized,
of which the photophysical properties in acetonitrile (MeCN) (Figure S1) and tetrahydrofu-
ran (THF) (Figure S2) are compared with those of 1. Although substitution of 5,5′-t-butyls
with 5,5′-methoxy groups in the salicylidene rings of Zn(salmal) leads to an appreciable
color change in the solutions, from violet (MeCN), blue-violet (THF) for 1 to indigo-blue for
3, a very low fluorescence emission is observed for the latter complex (Table S1). Therefore,
it can be inferred that the substitution pattern in 5,5′-positions of the salicylidene rings, and
not the kind of the substituents (alkyl or alkoxy), is responsible for the low fluorescence
emission of both complexes.

On the basis of these results, we decided to explore the complex 2 for the following
transmetalation studies (Section 3.2). In both MeCN and THF solvents, solutions of 2 are
characterized by an intense optical absorption band centered at λmax = 542 nm in MeCN
and λmax = 551 nm in THF, responsible for their fuchsia color, and by a strong orange
fluorescence emission, λmax = 593 nm in MeCN (φ = 0.07) and λmax = 594 nm in THF
(φ = 0.24) [39].

3.2. Transmetalation Studies

Transmetalation, or metal exchange, is usually defined as the exchange of metal cations
between an organometallic or coordination complex and a free metal cation, or metal ex-
change between two organometallic or coordination complexes [40]. This allows exploiting
transmetalation to synthesize new molecular or supramolecular architectures and to de-
velop new chemosensors and catalysts [12,41–45]. Despite his pivotal role in organometallic
and coordination chemistry, transmetalation involving Zn(salen)-type complexes is almost
unexplored [46–48].

Recently, we studied the transmetalation properties of the Zn(salmal) complex 1
in MeCN and N,N-dimethylformamide (DMF) solutions with divalent ions of the first



Sensors 2023, 23, 3925 4 of 11

transition series, in order to elucidate the role of stability of the (1·solvent) adduct and the
nature of the counteranion on the transmetalation process [36].

In this work, the transmetalation properties of 2 towards some common divalent metal
cations, in two solvents with a different Lewis basicity, were first explored in order to find
the best way to use 2 as a fluorescent probe for the detection of metal ions in aqueous solu-
tion. In particular, the transmetalation properties of 2 in MeCN and THF were investigated.
Both are coordinating solvents, but with different stability of the related 2·MeCN and
2·THF adducts [49]. Thus, the binding constant, K, of the 2·MeCN adduct (log K = 1.32) is
more than an order of magnitude lower than that of 2·THF adduct (log K = 2.46) therefore,
2·THF is thermodynamically more stable than 2·MeCN, and this is expected to be reflected
on the transmetalation properties of 2 in these two solvents.

The transmetalation properties of 2 in MeCN solution (40 µM) immediately after
the addition of 2 equiv. of aqueous solutions of nitrate salts of Na+, Mg2+, Mn2+, Fe2+,
Co2+, Ni2+, Cu2+, Cd2+, Hg2+, and Pb2+ are investigated through optical absorption and
fluorescence measurements (Figure 1). Remarkable optical absorption changes are observed
only in the case of the addition of Cu2+. In particular, the appearance of a new band centered
at λmax = 522 nm, having a shoulder at λmax = 453 nm, is observed in the optical absorption
spectrum, accompanied by a color change in the solution, from fuchsia to orange, and by a
complete quenching of the fluorescence emission (Figure 1).
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before and after the addition of 2.0 equiv. of various metal cations. Photographs under natural light
(c) and under 365 nm light (d) after the addition of 2.0 equiv. of various metal cations.

These optical absorption changes are analogous to those observed for 2 upon the
addition of Cu2+ ions, and are consistent with a transmetalation process with formation of
the paramagnetic substituted Cu(salmal) complex. This is corroborated by the fluorescence
quenching, a distinctive phenomenon observed upon formation paramagnetic species [50]
and by the presence of the protonated molecular ion in the ESI-mass spectrum (Figure S3).
On the other hand, the addition of all the other cations involves small or negligible changes
in the optical absorption and fluorescence spectra of 2.

To monitor the transmetalation behavior of MeCN solutions of 2 upon the addition
of 2 equiv. of the involved metal cations, the optical absorption and fluorescence spectra
were recorded over time. Spectroscopic variations, consistent with a transmetalation, were
observed only in the case of the addition of Mn2+, Co2+, and Ni2+ (Figure S4). In particular,
after 30 h from the addition of Mn2+ and Co2+ ions, a hypochromism (and broadening only
for Co2+) of the absorption band centered at λmax = 522 nm were observed; whereas for
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the Ni2+ cation the appearance of a new band at λmax = 508 nm, was found. Moreover, a
turn-off of the fluorescence emission of 2 after 30 h from the addition of Co2+ and Ni2+ ions
was found, while for the Mn2+ ion only a partial quenching of fluorescence was observed.
Moreover, for the latter cation, no further fluorescence quenching was observed even after
a longer time.

The transmetalation study of 2 in THF shows substantial differences with respect to
the behavior observed in MeCN. In particular, no optical absorption changes and negligible
fluorescence variations are found immediately after the addition of 2 equiv. of aqueous
solutions of the metal cations sensitive to transmetalation (Mn2+, Co2+, Ni2+, and Cu2+)
(Figure S5). After 30 h from the addition of the metal cations to THF solutions of 2,
only for Cu2+ a complete transmetalation is observed, as supported by the turn-off of
the fluorescence (Figure S6). These results are consistent with the higher stability of the
2·THF adduct with respect to 1·MeCN adduct, which in turn, is reflected in a slower
transmetalation process.

All these data together suggest that MeCN solutions of the complex 2 are suitable
for the selective and sensitive fluorescent detection of Cu2+ ions in aqueous solution
by transmetalation.

3.3. Detection of Cu2+ Ions: Studies in Solution

The remarkable optical absorption variations and the turn-off of the fluorescence
emission of MeCN solutions of 2 upon the addition of aqueous solutions of Cu2+, as a
consequence of the fast transmetalation of 2 with this metal cation respect to the others
investigated, allow the selective and sensitive detection of Cu2+ ions in aqueous solution.
The sensing mechanism is sketched in Scheme 2.
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Scheme 2. Mechanism of sensing of Cu2+ by transmetalation.

In order to quantify the sensitivity of 2 towards Cu2+, in terms of binding constant
and limit of detection (LOD), spectrophotometric and spectrofluorometric titrations were
achieved (Figure 2).
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Figure 2. Optical absorption (a) and fluorescence (b) titration curves of 2 (40 µM solution in MeCN;
λexc = 397 nm) with the addition an of aqueous solution of Cu(NO3)2. The concentration of Cu2+ added
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varied from 0 to 63 µM. Arrows indicate optical absorption and fluorescence changes upon addition
of Cu2+. Insets: Variation in the absorbance at λmax = 540 nm and fluorescence at λem = 590 nm as a
function of the concentration of Cu2+ added.

The progressive addition of Cu2+ to MeCN solutions of 2 involves a parallel decreasing
of the absorption band at 540 nm and the formation of a new band at 520 nm. These optical
absorption variations and the presence of multiple isosbestic points are consistent with
the transmetalation of 2 with formation of the substituted Cu(salmal) complex. This is
corroborated by the progressive quenching of fluorescence upon the addition of Cu2+. The
saturation was reached after the addition of 1.4 equiv. of Cu2+ and both binding isotherms,
obtained using optical absorption and fluorescence data, show a wide linear dynamic range
in the titration range 0–40 µM of the Cu2+ added (Figure 2).

The binding constant for the formation of the Cu(salmal) complex upon transmet-
alation was achieved via Benesi–Hildebrand plots [51] (Figure S7). The linearity of the
Benesi–Hildebrand plots is consistent with a 1:1 stoichiometry of the transmetalation
process, as demonstrated by the Job’s plot analysis (Figure S8) [52,53].

The log K values for the transmetalation of complexes 1 and 2 with Cu2+ are compa-
rable (Table S2) and this indicates a negligible influence of the substitution pattern in the
positions of the salicylidene rings on the thermodynamics of the transmetalation process.

According to the IUPAC definition [54,55], the LOD of 2 towards Cu2+ was determined
to be 0.20 µM using fluorometric data (Figure S9). This LOD value, lower than the limit
of Cu2+ recommended by the World Health Organization (WHO) guidelines for water
quality (30 µM) [56–58], is comparable to LOD values reported in the literature for efficient
fluorescent chemosensors for detection of Cu2+ in aqueous solution [2,14,15], including
more relevant recent contributions [59–63], with the advantage of not requiring any sample
pretreatment or pH adjustment.

To assess the selectivity of 2 towards Cu2+, competitive experiments were performed.
In particular, the variation in the fluorescence of 2 upon the addition of 1 equiv. of Cu2+ in
the presence of 10 equiv. of Mn2+, Co2+, and Ni2+ as potential interferents, was investigated
(Figure 3).
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Figure 3. Fluorescence emission intensity of 2 at 590 nm (40 µM solution in MeCN, λexc = 397 nm;
fuchsia bars); upon the addition of 1 equiv. of Cu2+ (light orange bars); upon the addition of 1 equiv.
of Cu2+ in the presence of 10 equiv. of the interferent (lilac bars). The fluorescence emission intensity
of 2 at 590 nm upon the addition of 10 equiv. of the interferent is represented with bright yellow bars.

The fluorescence variation of 2 upon the addition of 1 equiv. of Cu2+ is almost identical
to that observed upon the addition of 1 equiv. of Cu2+ in the presence of 10 equiv. of the
interferent metal cations. Although the addition of these metal cations to 2 (1:10 equiv.
ratio) leads to some fluorescence variation, these changes remain much lower compared
with those achieved in the presence of Cu2+ (1:1 equiv. ratio). The addition (up to 103 equiv.
excess) of the other above-investigated metal cations (Na+, Mg2+, Fe2+, Cd2+, Hg2+, and
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Pb2+, not included in Figure 3 for simplicity) does not affect either the fluorescence of 2 or
the fluorescence variation of 2 upon the addition of 1 equiv. of Cu2+, therefore, these results
highlight the remarkable high selectivity 2 towards Cu2+, even compared with that found
for 1 [37].

3.4. Detection of Cu2+ Ions: Paper-Based Sensors

The very good sensing characteristics of 2 for Cu2+ ions prompted us to explore simple
solutions for its application in disposable sensors. Paper is a low-cost substrate that can be
useful for fabricating disposable and portable devices for rapid in situ detection of various
analytes, including metal cations [64–66].

PBSs were fabricated by dipping paper strips in a THF solution of 2. After drying,
PBS strips show an orange fluorescence under the UV lamp (λexc = 365 nm) that can be
seen by naked eyes (Figure S10). PBS strips were then dipped in an aqueous solution of
Cu(NO3)2 (5.0 × 10−3 M) and dried at room temperature. After this treatment, a complete
quenching of the fluorescence of PBS is observed (Figure S10). This result is in agreement
with the transmetalation process, analogous to that observed in solution, with formation of
the Cu(salmal) complex.

To investigate the selectivity of PBS towards Cu2+, PBS strips were dipped into solu-
tions of the various cations (Na+, Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Cd2+, and Pb2+) and
air-dried at room temperature. In all cases, negligible or no change in the fluorescence emis-
sion is observed, except for the Cu2+ ions (Figure S11), demonstrating that the selectivity of
2 towards Cu2+ is also reflected in sensing experiments using PBS. Therefore, PBS can be
used as disposable test strips for the rapid detection of Cu2+ in aqueous solutions with an
on–off fluorescence mechanism.

The quantitative detection of Cu2+ was also investigated by dipping PBS strips into
aqueous solutions of different concentrations of Cu2+. As shown in Figure 4, on increas-
ing the concentration of Cu2+ the fluorescence of PBS strips gradually turn-off, with a
fluorescent color change from orange to dark blue, thus demonstrating that PBS strips
can be used for the quantitative detection of Cu2+ ions in aqueous solution over a wide
concentration range, up to 10.0 mM, compared with dynamic linear range found in solution.
Therefore, PBS strips can be applied as a test for the detection of Cu2+ ions in aqueous
solutions in specific environments, e.g., in industrial wastewater [19,67,68], where higher
concentrations of Cu2+ ions can occur.
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Figure 4. Photographs under 365 nm light of PBS strips after dipping in aqueous solution of different
concentration of Cu2+ (range 0–10.0 × 10−3 M).

4. Conclusions

The availability of simple, low-cost, fast, and direct detection, without any treatment
of the sample, is needed for real-time monitoring of analytes in specific environments. Here
we present a straightforward approach for the selective and sensitive fluorescent detection
of Cu2+ ions in aqueous solution, either in solution or using paper-based sensor strips as
disposable tests for the in situ detection.

The sensing mechanism involves a fast transmetalation of a fluorescent substituted
Zn(salmal) complex with Cu2+ ions, with formation of the paramagnetic substituted
Cu(salmal) complex. The process is accompanied by relevant optical absorption changes
and quenching of the fluorescence emission, leading to high selectivity and sensitivity, with
the advantage of not requiring any sample pretreatment or pH adjustment. The fluores-
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cence quenching upon formation of the copper(II) complex allowed the development of
disposable paper-based sensor strips for the rapid, qualitative, and quantitative in situ
detection of Cu2+ ions in aqueous solution over a wide concentration range, even in specific
environments, for example in industrial wastewater, where higher concentrations of Cu2+

ions can occur.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23083925/s1, Figure S1: Optical absorption and fluorescence
emission spectra of complexes 1–3 in MeCN; Figure S2: Optical absorption and fluorescence emis-
sion spectra of complexes 1–3 in THF; Table S1: Absorption and emission data for complexes 1–3;
Figure S3: ESI-MS spectrum of 2 recorded after the addition of Cu2+; Figure S4: Optical absorption
and fluorescence emission spectra of 2 in MeCN recorded after 30 h the addition of 2.0 equiv. of
various metal cations; Figure S5: Optical absorption and fluorescence emission spectra of 2 in THF
recorded after the addition of 2.0 equiv. of various metal cations; Figure S6: Optical absorption and
fluorescence emission spectra of 2 in THF recorded after 30 h the addition of 2.0 equiv. of various
metal cations; Figure S7: Benesi–Hildebrand plots from optical absorption and fluorescence emission
data for the calculation of the binding constant of 2; Figure S8: Job’s plot for the transmetalation
of 2 with Cu2+ in MeCN; Table S2: Binding constants of complexes 1 and 2 for the transmetalation
process with Cu2+; Figure S9: Linear best fit for the fluorometric titration of 2 in MeCN as a func-
tion of the concentration of Cu2+ added for the determination of LOD; Figure S10: Photographs
under natural and UV light of PBS strips before and after dipping in an aqueous solution of Cu2+;
Figure S11: Photographs under 365 nm light of PBS strips after dipping in aqueous solutions of various
metal cations.
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