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Abstract: Quartz tuning forks (QTFs) are self-sensing and possess a high quality factor, allowing them
to be used as probes for atomic force microscopes (AFMs) for which they offer nano-scale resolution
of sample images. Since recent work has revealed that utilizing higher-order modes of QTFs can offer
better resolution of AFM images and more information on samples, it is necessary to understand the
relationship between the vibration characteristics of the first two symmetric eigenmodes of quartz-
based probes. In this paper, a model that combines the mechanical and electrical characteristics of
the first two symmetric eigenmodes of a QTF is presented. Firstly, the relationships between the
resonant frequency, amplitude, and quality factor between the first two symmetric eigenmodes are
theoretically derived. Then, a finite element analysis is conducted to estimate the dynamic behaviors
of the analyzed QTF. Finally, experimental tests are executed to verify the validity of the proposed
model. The results indicate that the proposed model can accurately describe the dynamic properties
of a QTF in the first two symmetric eigenmodes either under electrical or mechanical excitation, which
will provide a reference for the description of the relationship between the electrical and mechanical
responses of the QTF probe in the first two symmetric eigenmodes as well as the optimization of
higher modal responses of the QTF sensor.

Keywords: atomic force microscope; quartz tuning fork; higher eigenmode; electromechanical model

1. Introduction

Cantilevers have been the most frequently used sensors since the invention of atomic
force microscope (AFM) [1]. Generally, an AFM’s tip is integrated with a cantilever. When
the tip approaches the surface of the sample, the tip–sample interaction causes the deflection
of the cantilever, which can be detected and translated into the surface information of the
sample. With the development of AFM sensing technology, a quartz tuning fork (QTF)
was first used as an AFM probe in 1989 due to its self-sensing properties and high quality
factor (Q-factor) value [2]. Since then, quartz-based probes have been regarded as highly
promising in the fields of atomic force microscopy [3–5], quartz-enhanced photoacoustic
spectroscopy (QEPAS) [6,7], etc.

By simultaneously exciting the first two eigenmodes of the probe, bimodal atomic
force microscopy offers an optimal method with which to obtain more information, such
as the mechanical or electrical properties of samples, with just one scan [8]. With the
development of bimodal atomic force microscopy, many multi-frequency methods, such
as band excitation [9], frequency intermodulation [10], mode synthesizing [11], and dual
resonance frequency tracking [12], have been presented and implemented in the highly
sensitive nano-detection of samples [13]. In this case, it is necessary to understand the
vibration properties of the QTF in the first two eigenmodes, which will help improve the
detection sensitivity or resolution in bimodal atomic force microscopy.
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Unlike a cantilever probe, which has only one arm, a QTF has two arms that are highly
symmetrical. A quartz-based probe generally consists of a QTF and tip(s) glued to one or
both QTF arms. When only one tip is glued to one arm of the QTF, the symmetry of the QTF
probe is nullified, which will reduce the Q-factor. In the qPlus configuration, one arm of
the QTF is bonded to a block, while the other is attached to the tip [14]. This configuration
is similar to that of a cantilever probe, so the vibration theory is similar to the cantilever
beam theory [15]. On the contrary, when both arms of the QTF are glued with the same
tips, the high symmetry of the QTF can be maintained, and the Q-factor can be improved
via comparison with the qPlus configuration.

Due to a QTF’s two-arm structure and piezoelectric properties, its vibration has
a greater degree of complexity, e.g., the coupling between the two arms and the relation-
ship between the electrical and mechanical characteristics. To investigate the complex
electromechanical response of the QTF probe, Oria et al. developed a finite element model
of a QTF that is excited electrically [16,17]. Chen et al. introduced a QTF probe with a much
slighter glass tip attached, which maintained a high Q-factor by minimizing the effect of
asymmetry [4]. The effects of certain parameters on the resonant performance of a QTF
probe were investigated by finite element analysis and experimental tests in [18]. Lee et al.
presented a comprehensive electromechanical model for a QTF to analyze and compare the
dynamic responses of an electrically driven QTF and qPlus sensor [19].

However, regarding higher eigenmodes of QTF, understanding the dynamic charac-
teristics and detection sensitivity of the QTF at higher modes is vital. Kim et al. analyzed
the first seven eigenmodes of a QTF through finite element method (FEM) simulations and
experiments and proposed a modified single-beam theory [20]. Tung et al. established
a theoretical model of a quartz sensor and tested its vibration properties through laser
Doppler vibrometry to study the higher modes of a qPlus sensor and found that the geom-
etry of the tips has a great influence on the vibration properties of the quartz sensor [15].
Zhang et al. investigated the sensing performance of a QTF at the second eigenmode based
on FEM and experimentation [21]. Chen et al. presented a numerical analysis method for
analyzing the vibration behavior of a qPlus sensor with a long tip [22].

This paper focuses on the transformation relationship between the electrical and
mechanical behaviors of the first two eigenmodes of a currently used QTF. Section 2
introduces a comprehensive electromechanical model of the QTF that can describe the
vibration properties of its first two eigenmodes. Section 3 presents the FEM simulation
on the frequency response to the first two eigenmodes of the QTF. Then, the experimental
tests and discussions are addressed in Section 4. Finally, our conclusions are presented
in Section 5.

2. Electromechanical Model of QTF

A QTF has piezoelectric and inverse piezoelectric properties. As a consequence, it can
be treated as an equivalent RLC oscillating circuit. It can be found that the linear motion
of a QTF can be described by an RLC circuit, and recent research has indicated that the
nonlinearity of a QTF sensor cannot be neglected [23]. Therefore, the equivalent circuit
model of a QTF can be regarded as an RLC connected with parallel capacitance, C0, as
shown in Figure 1.

The total signal, I, can be expressed as follows:

I = Im + Ic =

(
1

R + jωL− j 1
ωC
− 1

j 1
ωC0

)
V0 (1)

where Im represents the current of the RLC circuit, which describes the vibration motion
of the QTF, and Ic represents the stray current induced by the parallel capacitance C0. j
represents an imaginary unit in the RLC circuit in the same way as i operates in mathematics,
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where j2 = i2 = −1. Based on the equivalent circuit model, the resonance curve function can
be derived as follows:

Ae =

∣∣∣∣∣∣ A0ω

Q1ω1

 1

1− ω2

ω2
1
+ j ω

ω1Q1

+ C0

∣∣∣∣∣∣ (2)

A0 = Rout(V0/R) (3)

ω1 = 1/
√

LC (4)

Q1 = Lω1/R (5)

C0 = C0/C (6)

where Ae represents the oscillation amplitude and Rout represents the resistance that adjusts
the output signal. ω1 and Q1 represent the resonant angular frequency and the Q-factor of
the first symmetric eigenmode, respectively.
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Figure 1. Equivalent circuit model of QTF.

As for mechanical model of the QTF, numerous models with base damping and
mass have been proposed [24,25] since Naber et al. proposed a two-masses-three-springs
model [26]. A mechanical model called the four-springs-three-point-masses system was
also proposed [27], as shown in Figure 2. Accordingly, in this study, the applied force is
expressed as F0eiωt, and the damping coefficient is denoted by ζ.
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Figure 2. Equivalent mechanical model of QTF, where ke and me represent the equivalent stiffness
and equivalent mass of the QTF base, respectively. k and m are the equivalent stiffness and mass of
each QTF arm, respectively. kc represents the coupled stiffness between the two arms.

Based on the mechanical model, the motion equation of QTF can be derived as

m
..
x1 + ζ

.
x1 + k(x1 − x0) = F0eiωt (7)
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m
..
x2 + ζ

.
x2 + k(x2 − x0) = F0eiωt (8)

Assuming that the vibration of the QTF is highly symmetric, then x0 = 0, and x1 = x2.
Thus, the resonant frequency and Q-factor of the first two symmetric eigenmodes of QTF
can be derived as

ωn =
√

kn/m (9)

Qn = kn/(ζωn), n = 1, 2, (10)

since both eigenmodes exhibit symmetric mode shapes.
By solving Equations (7) and (8), we obtained

x1 = x2 =
1

k−mω2 + iζω
F0eiωt =

1

1− ω2

ω2
n
+ i ω

ωnQn

F0eiωt

kn
(11)

By combining the equivalent circuit model and the mechanical model, an equivalent
electromechanical model of the QTF was obtained, as shown in Figure 3.
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In this model, two coefficients, α and β, are introduced. The factor α is the coefficient
that converts excitation voltage into the mechanical force applied to the QTF, which can
be expressed as F0eiωt = αV0iωeiωt. β is the coefficient that converts the geometrical
displacements of the two arms into electrical current, which can be described as Im = βx.

Considering the symmetric eigenmodes of a QTF, the displacements of the QTF base
and two arms can be expressed as x0 = 0 and x1 = x2. Consequently, the electrical signal
induced by the QTF motion is Im = 2βx1. The total current signal can be derived as

I = Im + Ic = 2βx1 + jωC0V0eiωt (12)

while the amplitude of output voltage signal can be derived as

An =

∣∣∣∣∣∣∣

 1

1−
(

ω
ωn

)2
+ i
(

ω
ωnQn

) +
C0kn

2αβ

2αβωV0Rout

kn


∣∣∣∣∣∣∣, n = 1, 2 (13)

It can be seen from Equation (13) that when the excitation frequency is equal to the
resonant frequency, i.e., ω = ωn, (n = 1, 2), the amplitude reaches its peak value. For the
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mechanical peak amplitude Am,n, it can be described as the first term of Equation (13),
given that ω = ωn, (n = 1, 2):

Am,n =
2αβωnQnV0Rout

kn
, n = 1, 2. (14)

The second term of Equation (13) reflects the normalized capacitance:

C0 =
C0k
2αβ

(15)

Moreover, an intrinsic constant can be derived from Equation (13), which is defined
as follows:

N =
αβRout

k
=

An

2ωnQnV0
(16)

The proposed electromechanical model includes both mechanical and electrical param-
eters, which can be used to explain the relationship between the mechanical and electrical
vibration characteristics of QTFs under different excitation methods. Moreover, the changes
in dynamic characteristics such as the peak amplitude and Q-factor following the changes
in the eigenmodes can also be explained by the model, which will be of great importance to
multi-mode measurements of QTFs [28].

Furthermore, finite element analysis and experimental tests of the QTF were carried
out to verify the validity of the proposed model.

3. Finite Element Analysis

The analyzed QTF’s motions and eigenfrequencies were analyzed via FEM using the
SolidWorks module and the ANSYS Workbench 18.2 software package. The geometry of
the QTF is depicted in Figure 4. The structure of the QTF consists of one base and two arms,
whose geometric parameters are listed in Table 1. The density of the quartz is 2730 kg/m3.
The QTF’s Young’s modulus is 79.7 GPa and its Poisson’s ratio is 0.33.
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Figure 4. Geometry and dimensions of QTF.

Firstly, modal analysis was carried out to find the first two in-plane symmetric bending
modes of the QTF, for which the bottom of the QTF’s base was fixed and its two arms
were set as free ends. The first 12 eigenmodes of the QTF determined via modal analysis
are shown in Figure 5, and the corresponding resonant frequencies are shown in Table 2.
It was found that the fundamental in-plane symmetric bending mode is depicted as the
fourth eigenmode, which has a resonant frequency of 31.380 kHz, whereas the eleventh
eigenmode exhibits a second in-plane symmetric bending mode, with a resonant frequency
of 183.39 kHz. According to the given geometric and physical parameters, we can obtain
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the mass of each arm for the QTF, i.e., m = 1.7 × 10−6 kg. From Equations (9) and (10),
the equivalent stiffness can be calculated as k1 = 66 kN/m and k2 = 2257 kN/m, and the
Q-factors can be calculated as Q1 = 7839 and Q2 = 11,520. Therefore, the peak amplitude
ratio between the first two symmetric eigenmodes can be calculated from Equation (13),
yielding A1/A2 = 11.95.

Table 1. Geometric parameters of QTF.

Parameters Value (Unit: mm)

lb 2.18

b 1.40

t 0.31

l 3.59

w 0.56
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Table 2. Resonant frequencies of the first 12 eigenmodes of QTF.

Mode No. Frequency/kHz Mode No. Frequency/kHz

1 8.939 7 117.55

2 16.443 8 137.50

3 26.796 9 137.81

4 31.380 10 162.53

5 51.122 11 183.39

6 82.308 12 215.76

In addition, a harmonic response simulation was executed to analyze the amplitude–
frequency responses to the first two in-plane symmetric bending modes. The simulation
results are shown in Figure 6.
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Figure 6. Harmonic response simulation of the (a) first and (b) second symmetric bending modes
of QTF.

As shown in Figure 6, it was found that the resonant frequencies of the first two symmetric
bending modes are 31.38 kHz and 183.40 kHz, respectively, which are close to the simu-
lation results of the modal analysis. The normalized amplitudes of the first two modes
are 2.84 a.u. and 0.249 a.u., respectively. Thus, we can determine that the ratio of the
amplitude between the first two modes is approximately 11.41. Moreover, the Q-factors
can be obtained from the resonant curve, corresponding to Q1 = 7550 and Q2 = 12,694.
A comparison between the calculation and harmonic simulation results is shown in Table 3.

Table 3. Comparison between calculation and harmonic simulation results of resonant characteristics.

Parameters Calculation Harmonic Simulation

f 1/kHz 31.38 31.38

f 2/kHz 183.39 183.40

Q1 7839 7550

Q2 11,520 12,694

A1/A2 11.95 11.41

In Table 3, it is evident that the resonant parameters of the QTF obtained through the
simulation are consistent with the calculation results. Furthermore, it is necessary to conduct
experimental tests to assess the validity of the proposed model and the simulation results.

4. Experimental Tests
4.1. Setup

The structure of the QTF used for the experimental tests is shown in Figure 7. The
geometric parameters of the tested QTF are given in Table 1.

The experimental setup for measuring the dynamic responses of the QTF is depicted
in Figure 8. The setup consists of a signal generator (Agilent 33250A, Agilent Technologies,
Inc., Beijing, China), a piezoelectric actuator (NAC2024, Harbin Core Tomorrow Science &
Technology Co., Ltd., Harbin, China), a commercial QTF (32.768 K, Shenzhen Jinghong Elec-
tronics Co., Ltd., Shenzhen, China), and a laser Doppler vibrometer (LV-S01, Yuyao Sunny
Optical Intelligent Technology Co., Ltd., Yuyao, China). The QTF can be mechanically
excited using the piezoelectric actuator and electrically excited by applying the excitation
signal directly to the QTF itself, and its displacement is measured by the vibrometer with
a displacement resolution of 0.008 nm.
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Figure 8. Experimental setup of QTF-testing system.

4.2. Dynamic Response Analysis

Firstly, the QTF was mechanically excited using the piezoelectric actuator. The peak-
to-peak value of the applied voltage was 700 mV. The dynamic responses of the QTF are
shown in Figure 9. The response of the first two in-plane symmetric modes of the QTF
are depicted with red and blue curves in Figure 9a,b, respectively. As shown in Figure 9,
we obtained the resonant frequency and amplitude of the first symmetric bending mode,
which were equal to 32.758 kHz and 4.552 nm, respectively. The resonant frequency and
amplitude of the second mode were 189.463 kHz and 0.386 nm, respectively. Moreover, the
Q-factors of the first and second modes were calculated as 8190 and 11,710, respectively.

Additionally, the QTF was actuated electrically by applying voltage with a peak-to-
peak value of 700 mV, and the dynamic responses are shown in Figure 10. As shown
in Figure 10, we found that when directly exciting the QTF electrically, the resonant
frequency and amplitude of the first symmetric bending mode were 32.759 kHz and
6.693 nm, respectively. The resonant frequency and amplitude of the second mode were
equal to 189.404 kHz and 0.556 nm, respectively. The Q-factors of the first and second
modes were calculated as 8120 and 17,376, respectively.
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Figure 10. Frequency responses of the (a) first and (b) second symmetric modes of directly electrically
actuated QTF.

The vibration characteristics of the QTF with the same tips glued to both arms were also
tested. By applying the same voltage (700 mV) to the piezoelectric actuator to mechanically
excite the QTF with tips, we obtained its frequency responses, as shown in Figure 11. The
resonant frequency and amplitude of the first symmetric bending mode were equal to
29.755 kHz and 2.845 nm, respectively. The resonant frequency and amplitude of the second
mode were equal to 169.485 kHz and 0.154 nm, respectively. Moreover, the Q-factors of the
first and second modes were calculated as 5110 and 8527, respectively.

4.3. Discussion

Firstly, we obtained the first 12 eigenmodes of the QTF via simulation through modal
analysis, as shown in Figure 5. Only two of them were detected in the experimental tests,
i.e., the fourth eigenmode and the eleventh eigenmode, which are considered the first two
symmetric bending modes of a QTF. This is because these two modes have a relatively
higher degree of symmetry than the others, which results in a much lower level of energy
dissipation. It can be seen from Figures 9 and 10 that the obtained resonant frequencies
of the two modes induced by electrical actuation are similar to the results obtained by
mechanical excitation, while the obtained amplitudes are slightly larger. One can assume
that the efficiency of the electrical actuation method is higher than that of mechanical
excitation since the electromechanical conversion efficiency of s piezoelectric actuator is
not 100%, which may lead to energy dissipation during mechanical excitation.
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Figure 11. Frequency responses of the (a) first and (b) second symmetric modes of mechanically
excited QTF glued with the same two tips glued on both arms.

We will now discuss the amplitude ratio between the first and the second symmetric
bending modes. When mechanical excitation is applied, it can be found from Figure 9 that,
under the condition of the same actuation magnitude, the amplitude ratio of the first mode
to the second mode is approximately 11.79. Similarly, when electrical actuation is applied,
it can be seen from Figure 10 that the ratio is approximately 12.04. This indicates that given
the same magnitude of actuation, the amplitude ratio between the two modes is close to
12.0 independent of the actuation method.

In addition, we can find that despite the different actuation methods, the Q-factor
of the second mode is higher than that of the first mode, which implies that the QTF is
more sensitive at higher modes and could be more vulnerable to changes in the ambient
environment. When the QTF was actuated using an electrical method, the Q-factor of the
second mode was higher than when actuated by a mechanical method. This may be due to
energy loss when applying mechanical excitation, which is similar to the amplitude issue
mentioned above.

The resonant characteristics of the QTF obtained by calculations, simulation, and
experimental tests are listed in Table 4. Test 1 refers to the experimental test wherein the
QTF was excited mechanically, while Test 2 refers to the test in which it was electrically
excited. Test 3 refers to the experimental test wherein the QTF with the same two tips glued
on both arms was excited mechanically. By comparison, it is evident that the calculation
and simulation results are consistent with the results of Test 1 and Test 2. The deviations
may stem from the difference in the geometric and physical parameters. This indicates the
applicability of the proposed electromechanical model.

Table 4. Resonant characteristics of QTF obtained by calculations, simulation, and experimental tests.

Parameters Calculation Simulation Test 1 Test 2 Test 3

f 1/kHz 31.38 31.38 32.758 32.759 29.755

f 2/kHz 183.39 183.40 189.463 189.404 169.485

Q1 7839 7550 8190 8120 5110

Q2 11,520 12,694 11,710 17,376 8527

A1/A2 11.95 11.41 11.79 12.04 18.47
Test 1: QTF excited mechanically. Test 2: QTF excited electrically. Test 3: QTF with tips excited mechanically.

By comparing the results of Test 3 with the results of Test 1 and Test 2, it is evident
that there is a decrease in the resonant frequencies and Q-factors of both modes. It is not
difficult to understand the cause of the decrease in the resonant frequencies and amplitude
according to the proposed electromechanical model of the QTF since the QTF with the
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same tips glued to both arms can be regarded as the QTF with a larger mass of each arm
(which is indicated as m in Figure 3). By analyzing Equations (13) and (14), it can be derived
that a larger m is associated with lower resonant frequencies and a smaller amplitude.
Moreover, the attached tips affected the vibration symmetry of the QTF to some extent,
which can explain the decrease in the Q-factor value. The increase in mass and the decrease
in the Q-factor make it much more difficult to excite the second symmetric eigenmode of
the QTF, which means the amplitude A2 would become much smaller, while the amplitude
ratio A1/A2 would be larger.

5. Conclusions

In this paper, a model capable of describing both the mechanical and electrical prop-
erties of the first two eigenmodes of a QTF was proposed. By combining the mechanical
motion and the electrical response of the two arms of the QTF, the proposed model can
estimate the changes in the resonant frequencies, amplitude, and Q-factor from the first
mode to the second mode. The applicability of the proposed model has been verified
through simulations and experiments. In addition, the impact of the actuation method on
the amplitude ratio between the two modes has been discussed. The results indicate that
given the same actuation voltage, the amplitude ratio between the two modes is indepen-
dent of the actuation method. The proposed electromechanical model provides a reference
for a description of the relationship between the electrical and mechanical responses of
a QTF probe in the first two symmetric eigenmodes as well as the optimization of the
higher modal responses of quartz-based AFM probes.

The goal of this paper was to investigate the dynamic characteristics of the first
two symmetric eigenmodes of a QTF by establishing its equivalent electromechanical
model. There are still several issues to be considered, such as enhancing the responses
of higher-order modes, improving the detection sensitivity of the QTF, and converting
the displacement of the QTF into a detectable electric signal for atomic force microscopy
imaging. Future work will focus on enhancing the higher-order modal responses of the
QTF and applying them to bimodal atomic force microscopy imaging.
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