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Abstract: The advent of simultaneous wireless information and power (SWIPT) has been regarded as
a promising technique to provide power supplies for an energy sustainable Internet of Things (IoT),
which is of paramount importance due to the proliferation of high data communication demands of
low-power network devices. In such networks, a multi-antenna base station (BS) in each cell can be
utilized to concurrently transmit messages and energies to its intended IoT user equipment (IoT-UE)
with a single antenna under a common broadcast frequency band, resulting in a multi-cell multi-input
single-output (MISO) interference channel (IC). In this work, we aim to find the trade-off between the
spectrum efficiency (SE) and energy harvesting (EH) in SWIPT-enabled networks with MISO ICs. For
this, we derive a multi-objective optimization (MOO) formulation to obtain the optimal beamforming
pattern (BP) and power splitting ratio (PR), and we propose a fractional programming (FP) model to
find the solution. To tackle the nonconvexity of FP, an evolutionary algorithm (EA)-aided quadratic
transform technique is proposed, which recasts the nonconvex problem as a sequence of convex
problems to be solved iteratively. To further reduce the communication overhead and computational
complexity, a distributed multi-agent learning-based approach is proposed that requires only partial
observations of the channel state information (CSI). In this approach, each BS is equipped with a
double deep Q network (DDQN) to determine the BP and PR for its UE with lower computational
complexity based on the observations through a limited information exchange process. Finally, with
the simulation experiments, we verify the trade-off between SE and EH, and we demonstrate that,
apart from the FP algorithm introduced to provide superior solutions, the proposed DDQN algorithm
also shows its performance gain in terms of utility to be up to 1.23-, 1.87-, and 3.45-times larger than
the Advantage Actor Critic (A2C), greedy, and random algorithms, respectively, in comparison in the
simulated environment.

Keywords: IoT; SWIPT; joint optimization; beamforming; power control; energy harvesting; trans-
mission coordination; deep reinforcement learning

1. Introduction

Given the explosive growth of smart phones and other new applications that result in
huge amounts of data transmission apart from the conventional telephone voice service, the
massive Internet of Things (IoT) is currently facing significant challenges, such as achieving
intelligent implementations [1] and ensuring secure and trustworthy operations [2]. To ad-
dress these challenges, technologies, such as semi-federated learning [1] and blockchain [2],
can be employed. Cellular-based mobile networks will continue to play a crucial role in the
development of fifth-generation (5G) and beyond 5G (B5G) wireless communications for
IoT, enabling innovative solutions to these challenges.
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In such networks, frequency bands are usually reused to mitigate inter-cell interference.
Herein, a frequency band shared by all cells is usually considered to have a harmful impact
on communication. However, owing to the excessive increase of data traffic, such sharing
becomes a possible solution to the problem of scarce radio resources to be used in ultra-
dense cellular networks. For this, coordinated multi-point (CoMP) [3] is a promising
concept to manage the resulting interference. Specifically, if each BS in the cellular network
can perform downlink beamforming [4] for transmitting to its UE appropriately, the intra-
cell and inter-cell interference would be mitigated. Given the significant advantage, CoMP
is included in the specifications of long term evolution-advanced (LTE-A) [5].

Apart from the interference issue, user equipment (UE) in 5G or B5G is still energy-
constrained due to its battery with limited capacity, which is especially true for low-power
IoT devices acting as femto UEs within these networks. Despite the slow progress of the
battery capacity in recent decades, energy harvesting techniques have emerged to address
the crucial issue. As expected, various renewable energy resources could be adopted to
refill batteries, such as wind and solar, but their usability is restricted to weather, position,
and many other conditions.

In view of these problems, the radio frequency (RF)-based wireless energy transfer
(WET) technique would be an alternative that can charge low-power devices over the
air, simplify the maintenance procedure, and significantly contribute to the realization of
scalable wireless networks [6]. As an extension, WET combined with the wireless network
for transmitting information by default results in simultaneous wireless information and
power transfer (SWIPT), which enables a UE to harvest energy from the electromagnetic
waves in RF from its surroundings while it simultaneously performs information decoding
(ID) for the data transmitted from its source [7,8].

1.1. Related Work

Based on SWIPT, many related works have been performed. Among them, a pioneer-
ing work [9] with a multi-antenna BS transmitting to its UE in downlink was proposed that
provides the rate-energy trade-offs for the broadcast SWIPT system involved. In addition,
it is shown that each UE can perform ID and EH at the same time with a power splitting
(PS) scheme or at different time slots with a time switching (TS) scheme. As an extension
of TS, the authors in [10] proposed two new time-splitting schemes, namely time-division
mode switching (TDMS) and time-division multiple access (TDMA) for a multi-input
single-output (MISO) interference channel (IC). With the possibility of simplifying the
receiver design, TS, however, does not actually perform ID and EH simultaneously and
would only provide limited exploitation of radio resources [11,12], which motivates the use
of PS in this work.

As an example adopting PS, the work [13] resolves a throughput maximization prob-
lem subject to energy and temperature constraints at transmitting and receiving nodes,
respectively, for a hybrid SWIPT relay system. Extending its viewpoint beyond throughput,
the work [14] addresses a fundamental problem to characterize the trade-offs for maxi-
mizing energy efficiency (EE) vs. spectrum efficiency (SE) under a point-to-point additive
white Gaussian noise (AWGN) channel.

In addition, with respect to orthogonal frequency division multiple access (OFDMA)
systems, the related work [15] considered a resource-allocation problem to maximize EE in
SWIPT with a PS scheme, and developed fractional programming models and sub-optimal
iterative resource allocation algorithms to tackle the nonconvex problems encountered.
In [16], with the assumption of using zero-forcing (ZF) beamforming patterns (BPs), the
authors aimed to maximize EE under a PS-based MISO downlink system. In [17], a multi-
user MISO SWIPT system was considered, and an iterative algorithm was proposed, which
is guaranteed to achieve a Karush–Kuhn–Tucker solution for maximizing the EE of this
system. Similarly, by focusing on wireless sensor networks, the authors in [18] tackled
nonconvex EE optimization problems and proposed sub-optimal iterative algorithms
through nonlinear fractional programming and Lagrangian dual decomposition.
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Apart from the above, different EH-enabled frameworks can be also found in the
literature. For example, the authors in [19] proposed a MOO formulation for a multi-pair
two-way relay network to maximize the achievable rates of all K UE pairs involved. In
that work, by using zero-forcing to null the multi-user interference, the achievable rate of a
UE pair can only depend on their own PRs, and the MOO problem can be converted to K
independent single objective optimization problems. Thus, the trade-off on data rate can
be made between UE pairs. However, in our MOO formulation, the inter-cell interference
would be involved, and the trade-off between SE and EH in the system is mainly considered
rather than the trade-off for the rate between UE pairs in [19].

As another example, a wirelessly powered IoT system was also investigated in [20],
wherein sensors harvested energies from the distributed access points (APs) and then
transmitted data to the APs with the harvested energies. Although this is different from
the SWIPT scenario considered here, how to extend the current work based on the results
in [20] giving a higher WET efficiency could be an interesting future work. To see more
related works on SWIPT, WET, or both, one may refer to survey papers, such as [21,22].

Despite the various mathematical approaches adopted in the related works that we
mentioned, the computational complexity of mobile wireless network has made it impossi-
ble to decide all the system parameters required in time. To meet the time constraint, deep
learning is a promising data-driven approach that adopts a deep neural network (DNN) to
resolve complex nonlinear problems without explicitly formulating complicated mathemat-
ical models [23]. Recently, DNN-based learning algorithms have also been developed to
resolve different problems in SWIPT-enabled networks as another way to find the solutions
in time apart from the analytical-based methods under consideration, which may be not
sufficiently time-efficient in usual cases.

As a method based on learning with DNN, the work in [24] proposed a long short-
term memory (LSTM) recurrent neural network (RNN)-based mode-switching algorithm
to maximize the achievable rate under the energy-causality constraint for its dual mode
SWIPT system. In [25], the authors determine the subchannel allocation, power splitting
ratio (PR), and transmit power for the SWIPT-based device-to-device (D2D) networks
through the deep-reinforcement-learning (DRL)-based algorithm developed therein. For
similar D2D SWIPT-based networks, an EE optimization problem was formulated in [26],
and the authors adopted exhaustive search (ES) and gradient search (GS), respectively, to
obtain the global optimum and local optimum for the formulated nonconvex optimization
problem.

In [27], by clustering the antennas into two multiple-input multiple-output (MIMO)
subsystems, the authors developed a sub-optimal method and a hybrid DRL method to
resolve the combinatorial problem for the full-duplex MIMO system involved, which jointly
optimized the antenna clusters and pre-coding matrices for ID and EH so that the weighted
sum of their performance metrics can be maximized. In [28], with the multi-user MISO
SWIPT-enabled heterogeneous wireless networks as the target, the authors maximized the
achievable sum information rate of the femtocells by jointly optimizing BP and PR under
the achievable data rate requirements through a multi-agent DDQN algorithm.

1.2. The Motivations and Characteristics of This Work

Taking both ID and EH into account, the previous works on SWIPT usually focused on
throughput maximization [10,13], EE optimization [15,16,18], or both [14]. As a complement
to the above, our work concerns the trade-off between SE and EH in the SWIPT-enabled
networks with MISO channels, which is similar to the objective given in [29] for D2D
networks without BP decision.

However, the objective considered here is to decide both BP and PR, and our work
further reveals that, in addition to the interference management concerned by CoMP, the
decisions on BP and PR in SWIPT lead to an overall system utility reflecting both SE and EH
with weights to achieve the optimal trade-off subject to the transmit power constraint and
the feasible PR constraint. As we know, such a trade-off for the coordinated beamforming
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in the MISO downlink SWIPT-enabled networks with FP and DRL under the logarithmic
nonliner EH model [30,31] is not explicitly explored in the previous works. Specifically, the
contributions of this work can be summarized as follows.

• We derive a multi-objective optimization (MOO) formulation to obtain the optimal
BP and PR for the MISO downlink SWIPT-enabled wireless networks under the loga-
rithmic nonliner EH model. Then, with a weighted sum approach, we transform this
formulation to obtain an objective function for the resulting multiple-ratio FP problem.

• To solve the non-convex FP problem, instead of using the Dinkelbach’s transformation
that is usually considered, we develop an evolutionary algorithm (EA)-aided quadratic
transform technique that can obtain the desired PR with EA first, and then feed it to
an effective iterative algorithm for near-optimal solutions.

• To further reduce the computational complexity while avoiding the collection of global
channel state information (CSI), we propose a distributed multi-agent learning-based
approach that requires only partial observations of CSI. Specifically, we develop a
multi-agent double DQN (DDQN) algorithm for each BS to decide its BP and PR based
only on local observations with lower overheads of communication and computation.

• Instead of centralized operations, such as centralized training centralized executing
(CTCE) and centralized training distributed executing (CTDE), we adopt a distributed
training distributed executing (DTDE) scheme, which makes the offline training and
online decision making performed by each single agent or BS distributive and indepen-
dent and limits the amount of information to be exchanged between neighboring BSs.

• We verify the trade-off between SE and EH with simulations and show that our
proposal can outperform the state-of-the-art centralized learning-based algorithm,
Advantage Actor Critic (A2C), and baseline approaches, such as greedy and random
algorithms. More specifically, it can be seen that, in addition to the introduced FP
algorithm to provide superior solutions, the proposed DDQN algorithm can also show
its performance gain in terms of utility up to 1.23-, 1.87-, and 3.45-times larger than
the A2C, greedy, and random algorithms, respectively, in comparison.

The rest of this paper is structured as follows. In Section 2, we introduce the network,
channel model, and problem formulation for this work. Next, we present the EA-aided
quadratic transform technique and the FP-based iterative algorithm in Section 3. Then,
the limited channel information exchange mechanism is summarized in Section 4, and
the distributed multi-agent learning-based DDQN approach is introduced in Section 5.
After that, the proposed algorithms are numerically examined in Section 6 to show the
trade-offs between SE and EH and their performance differences when compared with
other DRL-based algorithms and baseline approaches. Finally, our conclusions are drawn
in Section 7.

2. System Model and Problem Formulation
2.1. Network and Channel Models

As an example shown in Figure 1, the downlink wireless network in question is
composed of L cells, and, in each cell, there is a BS equipped with Nt antennas to transmit
to a single-antenna IoT-UE (or UE for short in the sequel). In fact, each cell can support
multiple UEs by using orthogonal frequency bands; thus, no intra-cell interference is
considered here. However, as noted previously, a frequency band shared by all the cells
involved is possible, and inter-cell interference would be concerned. Consequently, when
focusing on a frequency band adopted, we can model the channel of this system as multi-
cell MISO-IC, in which the received signal at the UE associated with i-th BS (or say, direct
link i) at time t can be formulated as

yi(t) = h†
i,i(t)ωi(t)xi(t) + ∑

j 6=i
h†

i,jωj(t)xj(t) + ni(t) (1)
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where xi and xj are the transmitted signals from BS i and BS j, and their transmit powers
Pi and Pj would satisfy the power constraints E{|xi|} = Pi and E{|xj|} = Pj, respectively.
In addition, hi,i(t) and ωi(t) ∈ CNt×1 denote, respectively, the downlink channel vector
and BP of BS i toward its UE during time slot t, while hi,j(t) and ωj(t) ∈ CNt×1 represent
the cross-link channel between UE i and BS j, and BP of BS j, respectively. Finally, ni ∈
CN (0, σ2) is the overall noise at UE i.

Figure 1. An example of a MISO SWIPT-enabled wireless IoT network model.

In the above, we assume that Nt antennas of each BS are arranged as a uniform linear
array (ULA). In addition, similar to [9,11,25,26], we consider that each UE i with PS on
the received signal yi(t) can simultaneously perform ID and EH as shown in Figure 1.
Specifically, with θi(t) ∈ (0, 1) to denote the PR adopted by UE i at time t, the instantaneous
signal to interference and noise ratio (SINR) for ID can be formulated as [32]:

Υi(t) = (1− θi(t))
|h†

i,i(t)ωi(t)|2

∑j 6=i |h†
i,jωj(t)|2 + σ2

(2)

Consequently, the achievable data rate of UE i would be

Cd
i (t) = log

(
1 + Υi(t)

)
(3)

On the other hand, the signal split for EH can be denoted by

yEH
i (t)=

√
θi(t)

(
h†

i,i(t)ωi(t)xi(t) + ∑
j 6=i

h†
i,jωj(t)xj(t) + ni(t)

)
(4)

Given this, the conventional works, such as [9,11,25,33,34], usually convert the received
signal yEH

i (t) into the DC power with a linear function. However, a nonlinear function for
the energy conversion would be more practical, and the previous works, such as [30,31],
adopted the logarithmic nonliner EH model for the ith IoT device on the jth sub-carrier
as follows:

eh
i (t) = ai log

(
1 + bi|hi,j|2 pi,j

)
(5)

where ai and bi are the nonlinear model parameters, and pi,j is the transmission power
for the ith device on the jth sub-carrier with the assumption that the noise power is
negligible [30,31]. Following the model without its assumption, this work considers hi,j as
the channel between UE i and BS j on the same frequency band as shown previously, and
in terms of these notations, the energy harvested through the split part for EH would be
denoted by

E h
i (t) = θi(t)

(
ai log

(
1 + bi(∑

∀j
|h†

i,jωj(t)|2 + σ2)
))

(6)

2.2. Multi-Objective Optimization

Based on the model with SWIPT, our aim is to jointly optimize BP and PR to obtain
the maximal SE and EH simultaneously subject to the transmit power constraint and the
feasible PR constraint in the MISO downlink network, which can be classified as a MOO
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problem. As noted in [35], MOO refers to as a type of optimization that involves multiple
objective functions to be optimized simultaneously. In general, a nontrivial MOO problem
does not have a single solution to concurrently optimize each of the objective functions
involved. In such a general case known as conflicting, a Pareto optimization solution
is usually pursued wherein none of the objective functions can be improved without
degrading some of the other objectives in value. More specifically, it can be defined as a
maximization problem as follows [35]:

Definition 1. Given fi ∈ C → R, 1 ≤ i ≤ I, and X being the feasible set of constraints, a
multi-objective optimization problem can be represented by

maximize
x f (x) = ( f1(x), . . . , f I(x))

subject to x ∈ X (7)

For such an optimization problem, there may be feasible solutions to be obtained,
which are denoted by Y = f (x). In particular, these solutions are considered efficient if
they satisfy the following definition (as Definition 2.1 of [35]):

Definition 2. A point x ∈ X is called Pareto optimal if there does not exist other x′ ∈ X such
that f (x′) � f (x), where � denotes the component-wise inequality.

In some cases, it would be easier to find the solutions that are called weakly Pareto
optimal for the problems to be relaxed. Consequently, the following definition (as in
Definition 2.24 of [35]) could be considered more often:

Definition 3. A point x ∈ X is called weakly Pareto optimal if there does not exist other x′ ∈ X
such that f (x′) � f (x), where � denotes the strict component-wise inequality.

Given these definitions, relevant works could aim to find (weakly) Pareto optimal
points or solutions of their MOO problems. Similarly, for our problem, the weighted sum
method exemplifying a simple scalarization technique as typically adopted is considered
here and can collapse the vector objective into a single-objective sum as

maximize
x∈X ∑I

i=1 Wi fi(x) (8)

where each Wi, 1 ≤ i ≤ I denotes a non-negative real-valued weight for function fi. In
particular, as noted in Proposition 3.9 of [35], the optimal solution of problem (8) and the
Pareto optimal points of problem (7) have the following relationship:

Proposition 1. If x∗ is an optimal solution of problem (8), then x∗ is weakly efficient for the MOO
problem (7).

2.3. Problem Formulation

As shown above, the MOO problem in question is to simultaneously maximize SE
and EH from L cells in the MISO downlink network by jointly optimizing BP {ωi} and PR
{θi}, ∀i, subject to the transmit power constraint, and the feasible constraint for PR. Specif-
ically, to simplify our representation in the following, this MOO problem is formulated
without the time index t as follows:

max
ωi ,θi∀i

(
Cd(Ω, θ), Eh(Ω, θ)

)
(a)

subject to Pmin ≤ ||ωi||2 ≤ Pmax, ∀i (b)
0 ≤ θi ≤ 1, ∀i (c)

(9)

where the sum of the data rates and that of the harvested energies, i.e., Cd(Ω, θ) = ∑∀i Cd
i

and Eh(Ω, θ) = ∑∀i E h
i in (9a), are the two objective functions to be maximized with
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Ω = {ω1, ω2, . . . , ωL} and θ = {θ1, θ2, . . . , θL}. Apart from the above, it is worth noting
that, due to the MOO formulation to maximize the metrics concurrently, no minimum
data rate and harvested power are required to be the constraints for each cell involved.
Instead, it applies (9b) to enforce that the transmit power Pi should be given within the
range between the minimum transmit power Pmin and the maximum transmit power Pmax
and uses (9c) to ensure θi is a nonnegative real number that is no larger than 1.

By means of the weighted sum approach (8) introduced in Section 2.2, which can pro-
duce a single-objective sum for the vector objective, the objective of this MOO problem (9)
is represented here by

U(Ω, θ) = W
Cd(Ω, θ)

Cd
+ (1−W)

Eh(Ω, θ)

Eh
(10)

where W = Wi ∈ (0, 1], ∀i represents the weight for all the cells or BSs. Clearly, it determines
the importance between SE and EH in the system objective. In addition, Cd and Eh denote
the estimated maximal values of Cd(Ω, θ) and Eh(Ω, θ), respectively, which could be
obtained from the initial phase with random Ω and θ, which is performed many times in
our simulation. These values are utilized here to normalize the two metrics (the data rate
and the harvested energy) lying in very different numerical scales. Thus, even with only
their estimations, the resulting utility could still be fine-tuned by adjusting W and 1−W
in (10) to meet the specific balance requirements from users on these metrics if required.

3. Fractional Programming-Based Approach

In this work, instead of using the classic Dinkelbach’s transformation [36] that is
typically adopted for single-ratio FP problems, we adopt the quadratic transform tech-
nique developed in [37] for multi-ratio FP problems. Specifically, for the first objective
in (10) aiming at SE, which involves SINR with fractional terms in the logarithm func-
tion, we adopt a Lagrangian dual reformulation with a set of dual or auxiliary variables
γ = {γ1, γ2, . . . , γL}. According to Proposition 2 of [37], the SE objective can be reformu-
lated as

USE(Ω, θ)=∑
i

(
W1 log(1+(1− θi)γi)−W1(1− θi)γi +

W1(1 + (1− θi)γi)|h†
i,iωi|2

∑j |h†
i,jωj|2 + σ2

)
(11)

where W1 = W/Cd, and this ignores the time index t as noted previously. Then, by taking
partial differentiation with respect to γi and leading the result to zero, i.e., ∂USE

∂γi
= 0, we

can obtain the optimal dual variable for SE as

γi =

( |h†
i,iωi|2

∑j 6=i |h†
i,jωj|2 + σ2

)/
(1− θi) (12)

On the other hand, the EH objective in (10) can be also denoted by W2
(

log
(
1 +

bi(∑∀j |h†
i,jωj(t)|2 + σ2)

))
with W2 = (1−W)aiθi/Eh. Then, as the SE counterpart, we can

conduct a set of dual variables α = {α1, α2, . . . , αL}, and apply the transform similar to that
in Proposition 2 of [37] to reformulate the EH objective as

Ueh(Ω, θ)=∑
i

(
W2 log(1 + αi)−W2αi +

W2(1 + αi)bi(∑j |h†
i,jωj|2 + σ2)

bi(∑j |h†
i,jωj|2 + σ2) + 1

)
(13)

Similarly, by ∂Ueh

∂αi
= 0, the optimal dual variable for EH with respect to i can be

given by
αi = bi(∑

j
|h†

i,jωj|2 + σ2) (14)
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However, for the consistency with USE, we adopt UEH ≈ Ueh to have the same
denominator in the last term of USE as follows:

UEH(Ω, θ)=∑
i

(
W2 log(1 + αi)−W2αi +

W2(1 + αi)bi(∑j |h†
i,jωj|2 + σ2)− 1

bi(∑j |h†
i,jωj|2 + σ2)

)
(15)

Finally, (11) and (15) can be combined, leading to the new overall utility as

Ū(Ω, θ) =

(
W1(1 + (1− θi)γi) + W2(1 + αi)

)
|h†

iiωi|2

∑j |h†
i,jωj|2 + σ2

+ C (16)

where C = C1 + C2 + C3 is the independent part that does not directly relate to the transmit
signal h†

i,iωi in the numerator of (20), including

C1 = W1 log(1 + (1− θi)γi)−W1(1− θi)γi (17)

C2 = Ŵ2 log(1 + αi)−W ′2αi (18)

C3 =
W2(1 + αi)

(
∑j 6=i |h†

i,jωj|2 + σ2 − 1/b
)

∑j |h†
i,jωj|2 + σ2

(19)

where Ŵ2 = W2/b, and b = bi, ∀i. However, with the signal from BS i to its receiver,
i.e., h†

i,iωi, as the major part to be optimized, this formulation would lead to a BP focusing
on the data rate to its receiver while ignoring the interference powers from the others to
be harvested. To resolve this problem, the numerator part of C3 is modified to account
for the powers transmitted from BS i to the others as W2(1 + αi)

(
∑j 6=i |h†

j,iωi|2 + σ2 − 1
)

rather than the powers received from the others that cannot be controlled by BS i itself in
the original form. Consequently, the overall utility function is modified as

Û(Ω, θ) =
W1(1 + (1− θi)γi)|ht

iiωi|2 + W2(1 + αi)
(

∑j 6=i |h†
j,iωi|2 + σ2 − 1

)
∑j |h†

i,jωj|2 + σ2
+ Ĉ (20)

where Ĉ = C1 + C2 − Ŵ2(1 + αi)
/
(∑j |h†

i,jωj|2 + σ2) is not directly related to the transmit

signals, h†
j,iωi, ∀j, of BS i. Then, by using the quadratic transform in the multidimensional

and complex case in Theorem 2 of [37] on the UE part and the SE part of (20) without Ĉ,
respectively, we have the system objective as

Q̂(Ω, θ) =
L

∑
i=1

(
2
(√

W1(1 + (1− θi)γi)Re
{

ω†
i h†

i,iyi

}
+

√
W2(1 + αi)∑

j
Re
{

ω†
i h†

j,iyi

})
− y†

i

(
σ2 I + ∑

j 6=i
hi,jωjω

†
j h†

i,j

)
yi

)
(21)

where yi is the dual variable in this case. Essentially, the objective is developed to facilitate
solving this problem iteratively. That is, when Ω and the other variables are fixed, the

optimal yi can be found by solving the first-order optimality, i.e., ∂Q̂
∂yi

= 0, and the result is

yi=

(
σ2Î + ∑

j
hi,jωjω

†
j h†

i,j

)−1(√
W1(1 + (1− θi)γi)hi,iωi +

√
W2(1 + αi)∑

j
hj,iωi

)
(22)

Similarly, the optimal ωi can be obtained by

ωi =

(
ηi Î + ∑

j
h†

j,iyjy†
j hj,i

)−1(√
W1(1 + (1− θi)γi)h

†
i,iyi +

√
W2(1 + αi)∑

j
h†

j,iyi

)
(23)
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In the above, ηi is the dual variable introduced for the power constraint, and its optimal
value can be denoted by

ηi = min
{

ηi ≥ 0 : Pmin ≤ ||ωi(ηi)||2 ≤ Pmax

}
(24)

which can be efficiently determined by means of a bisection search algorithm.
Apart from the above, it can also be seen that the formulations for γi, αi, yi, and

ωi explored so far all involve θi. In fact, θi is highly coupled among these formulas,
and could not be easily resolved through them. For the resulting non-convexity, we
resort to evolutionary algorithms (EAs) to find its value to approach the overall optimal
solution. Specifically, we develop a simulated annealing (SA) algorithm for this aim as
was implemented in [38]. Given this, the FP algorithm to maximize the objective (21) is
summarized in Algorithm 1.

Algorithm 1 EA-aided FP algorithm.

1: Provide `m, `η , δ, Pmin, and Pmax;
2: Initialize θ, γ, α, y, ω, ηmin, ηmax, and set c1 = 0;
3: repeat
4: Obtain θ with SA;
5: Update yi, ∀i, with (22) while fixing γ, α, ω, and θ;
6: for each BS or direct link i do
7: Set c2 = 0, Pmin = Pmin, and Pmax = Pmax;
8: while |Pmax − Pmin| > δ and c2 ≤ `η do
9: Obtain ωmin and ωmax with ηmin and ηmax, respectively, through (23) while fixing γ, α, y,

and θ;
10: Let Pmin = ||ωmin||2 and Pmax = ||ωmax||2;
11: Let ηmid =

ηmin+ηmax
2 ;

12: Obtain ωmid with ηmid through (23) while fixing γ, α, y, and θ;
13: Let Pmid = ||ωmid||2;
14: if Pmid > Pmax then
15: Let ηmin = ηmid;
16: else
17: Let ηmax = ηmid;
18: end if
19: c2 = c2 + 1;
20: end while
21: Update ωi as ωmid;
22: end for
23: Update γi and αi, ∀i, with (12) and (14), respectively, while fixing ω and θ;
24: c1 = c1 + 1;
25: until convergence or c1 > `m

Note that, although SA is well defined in the literature, our work still requires the
FP iterative update procedure with certain modifications to be the fitness function for SA.
Specifically, by regarding θi as the variable to be updated by the SA algorithm with the same
FP iterative update process on the others (i.e., γi, αi, yi, and ωi), the resulting iterative-based
fitness function, for example, the SA-Fitness function, can output the desired θi with a very
limited number of iterations. More explicitly, let ˆ̀m be the iteration number of the outer
loop and ˆ̀

η be that of the inner loop in the SA-Fitness function.
Through our experiments, ˆ̀m = 1 and ˆ̀

η = 100 can be found to quickly estimate θi,
and we can then input the obtained θi into the EA-aided FP algorithm. Given this, our
simulations in Section 6.2 confirm the effectiveness of the FP algorithm to provide the
system performance metrics outperforming those from the learning-based algorithms and
the baseline approaches in comparison.

In summary, the FP-based approach is developed to be an iterative algorithm, which
involves (1) obtaining θi through SA, (2) updating yi with (22), (3) updating ωi with (23),
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(4) updating γi with (12), (5) updating αi with (14), and (6) finding ηi with the bisection
search under the limit of `η iterations, while fixing the other variables in each step within
the total number of `m iterations. In the iterative updates, the inverse operation is required
to find, e.g., ωi, with the time complexity O(LN3

t ), and the number of `η bisection-search
iterations is also required to find η. Further, to obtain θi, SA implemented in [38] would
expand O(IcNg) steps to perform the cost evaluation, where Ic is the number of individuals
to evaluate in a chain for every generation of SA, and Ng is the number of generations to
evolve. Given this, its total time complexity would be O(`m IcNg`η LN3

t ).

4. Limited Channel Information Exchange

In the networks with MISO downlink channels, a practical approach that is frequently
adopted is using BSs to collect the channel information. That is, a BS will obtain the channel
measurement through the feedback from UE. To this end, there would exist a backhaul
network to carry the global instantaneous CSI collected and transmit it to the central
controller for global optimization. However, the signal overhead can be huge, which makes
a centralized optimization approach infeasible in a highly dynamic environment.

To alleviate the problem in a practical way, our distributed learning-based approach
will utilize only the basic operations of BS to exchange information with other BSs through
predefined interfaces, such as X2 in LTE, resulting in a considerably lower signal overhead
than that of the backhaul network for centralized optimization. Given this, we consider
that each direct link k has two limited sets, namely interferers and interfered neighbors,
similar to those in [39,40]. Specifically, we limit the number of neighbor U of link k with
the dynamic thresholds ϕIk and ϕOk in the following two limited sets:

Ik =
{

j 6= k : |h†
k,jωj|2 ≥ ϕIk

}
Ok =

{
i 6= k : |h†

i,kωk|2 ≥ ϕOk

}
(25)

where the two thresholds lead to |Ik| = U and |Ok| = U, respectively.
Now, with a control channel to return the feedback, BS k at current time t can obtain the

channel gain |h†
k,k(t)ωk(t− 1)|2 and the interference-plus-noise ∑j 6=k |h†

k,j(t)ωj(t− 1)|2 + σ2

through ωj(t− 1), ∀j, measured by UE k at the previous time t− 1 as well as the current
channel vector hk,j(t), ∀j. Similarly, BS k can send its own measurements to its interferers
j ∈ Ik and interfered neighbors i ∈ Ok and receive the measurements from the two sets of
neighbors as conducted in the previous works. The information for these measurements
locally exchanged among the neighbors would then be utilized in the following multi-agent
DDQN algorithm, which details the measurements to be adopted therein.

5. Learning-Based Approach

In addition to the indicated signal overhead, an optimization-based approach could also
have a computational complexity for solving the MOO problem that is non-deterministic
polynomial time (NP) in general. Although the FP-based algorithm could be computationally-
efficient with the iterative update procedure proposed, to further reduce the signal overhead
as well as the computational complexity, we develop a deep-reinforcement-learning-based
algorithm to track the fast time-varying channels involved and provide its solutions in a
time that could hardly be achieved by using the traditional optimization methods. Specifi-
cally, a multi-agent DDQN algorithm is introduced next to make each single agent or BS
share only limited information exchanged among its neighbors, effectively reducing the
overhead and complexity as mentioned.

5.1. Overview of DDQN

In principle, a reinforcement-learning (RL) algorithm has one or more agents to
interact with the environment and to take actions based on certain strategies so that the
accumulated reward can be maximized in the long term. The interaction between agent(s)
and the environment is usually modeled as a Markov decision process (MDP). The well-
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known Q-learning algorithm is a MDP-based approach, represented here by a four-tuple
structure <S ,A,R,P>, where S is the set of states, A is the set of discrete actions,R is the
reward, and P is the transition probability. Specifically, given r as the instant reward and
ν ∈ [0, 1) as the discount factor, the cumulative discounted reward can be obtained by

Rt =
∞

∑
τ=0

ντr(t + τ + 1) (26)

Given this, the Q-function associated with a policy π is the expected reward defined by

Qπ(s, a) = Eπ{Rt|st = s, at = a} (27)

where a ∈ A is an action taken in state s ∈ S in time t, and the optimal policy π∗(a|s)
is a mapping from states to actions that maximizes the long-term cumulative discount
reward. Then, through the concept of a one-step Markov process, it considers R(s, a) =
Eπ{rt+1|st = s, at = a} as the expected instant reward resulting from taking action a in
state s and the transition probability P a

ss′ = Pr(st+1 = s′|st = s, at = a). Given this, the
Q-function can be iteratively obtained by using the Bellman Equation [41]

Qπ(s, a) = R(s, a) + ν ∑
s′∈S
P a

ss′

(
∑

a′∈A
π(s′, a′)Qπ(s′, a′)

)
(28)

Accordingly, to find the optimal policy π∗, the Q-learning algorithm is conducted
to find the optimal action a in state s.Through the Bellman equation shown in above, the
optimal Q-function associated with the optimal policy π∗(a|s) can be represented by

Qπ∗(s, a) = R(s, a) + ν ∑
s′∈S
P a

ss′ max
a′

Qπ∗(s′, a′) (29)

Clearly, to obtain the optimal results, all state–action pairs should be stored in a place,
namely the Q-table, in this algorithm, whose dimensions are |S| × |A|, and this could be
huge for a general application. Thus, the primitive Q-learning algorithm may be useful
only when the state–action space is relatively small, which seriously limits its applicability.
Fortunately, by replacing the Q-table with a neural network to find the optimum, the
deep-learning algorithm that results, namely DQN, can significantly reduce the overhead,
where the Q-function is denoted by Q(s, a|φ) with φ to denote the weight of DNN. Now,
with the learning rate α ∈ (0, 1], the Q-value can be updated by

Q(s, a|φ) = (1− α)Q(s, a|φ) + α(r + ν max
a′

Q(s′, a′|φ)) (30)

The weights of DNN, however, can diverge due to a high correlation between the
actions and states that exist, and the algorithm is not guaranteed to converge on the optimal
value function. To resolve this problem, apart from the introduced DNN, Qtrain, another
DNN, Qtarget, is added to keep a copy of DNN and use it for the Q-value update in the
Bellman equation. The two different DNNs have different Q-functions, Q(s, a|φ1) and
Q(s, a|φ2). The loss between them can then be defined by

L = ∑
〈s,a,r,s′〉

(
QDQN

target −Q(s, a|φ1)
)

(31)

where QDQN
target = r′+ ν maxa′ Q(s′, a′|φ2), and minimizing this loss would lead to the optimal

solution. Now, even given the loss function, the DQN algorithm may still significantly
diverge by overestimating the value of Qtarget. The overestimating problem with respect
to the deep deterministic policy gradient (DDPG) algorithm was also indicated in [42,43].
Additionally, DDPG has the potential to become unstable, and its performance may rely on
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finding the appropriate hyperparameters for a given problem [42]. Therefore, it is currently
not being considered in this work.

Instead, a variant approach, namely double DQN (DDQN) as proposed in [44], is
considered to select the actions and evaluate the Q-values separately. In particular, unlike
DQN directly using the maximum Q-value for the target network, DDQN selects the ac-
tion from the train network that yields the maximum Q-value, i.e., arg maxa′ Q(s′, a′|φ1)
and then identifies the Q-value in the target network by means of the selected action,
i.e., Q(s′, arg maxa′ Q(s′, a′|φ1)|φ2). Finally, the Q-value for Qtarget in DDQN can be ob-
tained by

QDDQN
target = r′ + νQ

(
s′, arg max

a′
Q(s′, a′|φ1)|φ2

)
(32)

Apart from the potential to resolve the overestimating problem, DDQN was also
shown to obtain the best results through certain datasets for training [45] and the lowest
cost for the dynamic context delivery when compared with the others [46]. In addition, as
shown in [44], the lower bound on the absolute error of DDQN estimate is zero. Given these
good properties, we develop, in the sequel, a distributed multi-agent DDQN algorithm to
resolve the MOO problem (9) with the objective (10).

5.2. Distributed Multi-Agent DDQN Algorithm

In Section 3, the FP-based algorithm is introduced to represent a baseline to be ob-
tained by an optimization-based algorithm. Given its merits on the centralized process,
a distributed approach with lower time complexity is still considered better if each BS
can independently determine its BP and PR with only limited information shared among
their neighbors.

To this end, the proposed DDQN algorithm is conducted to follow the concept of DTDE
as shown in Figure 2, wherein each agent k takes its action ak based on its current state sk
obtained from the information exchanged among its neighbors, representing the concept of
distributed executing (DE). In addition, each agent k trains its own DNNs, Qtrain and Qtarget,
by using the experiences 〈sk, ak, rk, s′k〉 stored in its replay buffer Dk, representing distributed
training (DT) in this algorithm. Specifically, the main MDP components for the proposed
DDQN algorithm are summarized as follows:

(1) Action: In this algorithm, each action of agent k or ak is composed of BP {ωk} and PR
{θk}. As the action space of value-based DRL algorithm must be finite, the feasible
actions should be taken from a set of discrete values of {ωk} and {θk}, respectively.
Here, as each BP is a complex vector, it should be discretized with real values. To this
end, it is first decomposed into two parts as

ωk =
√

Pkωk (33)

wherein the first part, Pk = ||ωk||2, is the transmit power of BS k, and the second part,
ωk, represents the beam direction of BS k. On the one hand, the transmit power can be
discretized linearly to constitute a set of values, such as {Pmin, Pmin +

Pmax−Pmin
Np−1 , Pmin +

2(Pmax−Pmin)
Np−1 , . . . , Pmax } of Np equal-spacing values.

On the other hand, ωk could be discretized by using a codebook C =
{

c0, . . . , cNcode−1
}

composed of Ncode code vectors ck ∈ CNt×1, each specifying a beam direction in [0, 2π).
Providing a sufficient number of code Ncode ≥ Nt to be adopted and a number of S
available phase values for each antenna element, we can consider a codebook matrix
C similar to that in [47]. Specifically, for the nt-th antenna element in the q-th code, its
value can be given by

C[nt, q] =
exp

(
j 2π

S b
nt mod (q+ Ncode

2 ,Ncode)
Nnode/S c

)
√

Nt
(34)
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Apart from BP, we can similarly discretize each PR θk into Neh levels with a set
E =

{
0, 1

Neh−1 , 2
Neh−1 , . . . , 1

}
, representing its values to be selected. Finally, by taking

all the discrete-value sets into account, we have the action space for each agent as

A = {(p, c, e)|p ∈ P , c ∈ C, e ∈ E} (35)

from which an agent k can choose its action ak(t) at time t.
(2) Reward: Apart from the above to select PR within [0, 1] from E to comply with the

feasible PR constraint, for the MOO problem, which is also required to meet the trans-
mit power constraint, we conduct a dual form of this optimization by conceptually
lifting the power constraint as the penalty term added in the objective to represent a
reward to be obtained by the distributed multi-agent DDQN algorithm. Specifically,
the reward function is denoted by

r = W
Cd(Ω, θ)

Cd
+ (1−W)

Eh(Ω, θ)

Eh
−WcPsum (36)

where Wc is the penalty weight, and Psum = ∑∀i ||ωi||2 is the total transmit power
consumption in the network. Given this, the reward of agent k at time t can be denoted

by rk(t) = W Cd
k (t−1)

Cd
+ (1−W)

Eh
k (t−1)

Eh
−WcPsum(t− 1).

(3) State: Conventionally, a state in MDP for RL-based algorithms is designed to represent
the environmental information perceived by an agent. Given the same aim to represent
as much available information as possible in the environment, the different problems
involved, however, could realize their state spaces differently in the different related
works, such as [39,40,48]. Here, to construct a state for this algorithm, an agent
or BS k at time t will provide its local information about the direct link k at the
previous time slot t− 1 to its interferers j ∈ Ik(t), ∀j, including (1) the interference
power received from j, |h†

k,j(t− 1)ωj(t− 1)|2; (2) the interference-plus-noise power,

∑l 6=k |h†
k,l(t− 1)ωl(t− 1)|2 + σ2; (3) the achievable data rate, Cd

k (t− 1); and (4) the
channel gain, h†

k,k(t)ωk(t− 1). At the same time, it will also send the information
to its interfered neighbors i ∈ Ok(t), ∀i, including the index `k(t− 1) for the beam
direction ωk(t− 1) adopted and the achievable data rate Cd

k (t− 1).

Figure 2. Structure of the proposed distributed DDQN algorithm in the multi-agent system.

In parallel, each interferer j ∈ Ik(t) will send the index `j(t− 1) for the beam direction
ωj(t− 1) and the achievable data rate Cd

j (t− 1) to agent k. Similarly, each interfered neighbor
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i ∈ Ok(t) will send its measurements to agent k, including (1) the interference power, |h†
i,k(t−

1)ωk(t− 1)|2; (2) the interference-plus-noise power, ∑l 6=i |h†
i,l(t− 1)ωl(t− 1)|2 + σ2; (3) the

achievable data rate, Cd
i (t− 1); and (4) the channel gain, h†

i,i(t− 1)ωi(t− 1).
Given this, each agent k includes the following as the local information of its state,

denoted by sl
k(t), as

• the normalized identity of BS, k/Nl
b;

• the normalized channel gain, (|h†
k,k(t)ωk(t− 1)|2)/Nl

c;
• the normalized interference-plus-noise power,

(∑l 6=k |h†
k,l(t)ωl(t− 1)|2 + σ2)/Nl

i ;

• the normalized reward, (W Cd
k (t−1)

Cd
+ (1−W)

Eh
k (t−1)

Eh
−WcPsum(t− 1))/Nl

r ,

where Nl
b, Nl

c, Nl
i , and Nl

r denote the normalization factors corresponding to the above
four items, respectively. These factors (as well as the others to be introduced) for state
normalization actually play a key role on preprocessing the training sample sets to lead to
a much easier and faster training process as noted in [49,50]. Apart from that, the state of
agent k also includes a set of information from its interferers, denoted by si

k(t). Specifically,
for each interferer j ∈ Ik(t), it involves

• the normalized identity of the interferer BS, j/Ni
b;

• the normalized beam direction index adopted by the interferer BS, `j(t− 1)/Ni
i ;

• the normalized interference power, (|h†
k,j(t− 1)ωj(t− 1)|2)/Ni

c;

• the normalized utility, (W
Cd

j (t−1)

Cd
+ (1−W)

Eh
j (t−1)

Eh
)/Ni

u,

where Ni
b, Ni

i , Nl
c, and Nl

u denote the corresponding normalization factors. In addition, a set
of information from the interfered neighbors, denoted by sd

k(t), is also included in the state
to completely describe the interference-limited environment for the MISO transmission.
Specifically, the information for each interfered neighbor i ∈ Ok(t) is represented by

• the normalized channel gain, (|h†
i,i(t− 1)ωi(t− 1)|2)/Nn

c ;

• the normalized utility, (W Cd
i (t−1)

Cd
+ (1−W)

Eh
i (t−1)

Eh
)/Nn

u ;

• the normalized SINR with respect to k,
|h†

i,k(t−1)ωk(t−1)|2

∑l 6=i |h†
i,l(t−1)ωl(t−1)|2+σ2 /Nn

s ;

• the normalized totally-received power,
(∑∀l |h†

i,l(t− 1)ωl(t− 1)|2 + σ2)/Nn
e ,

where Nn
c , Nn

u , Nn
s , and Nn

e are the normalization factors for the above four items, respec-
tively. Note that, if agent k is not active in tim t− 1, the numerator |h†

i,k(t− 1)ωk(t− 1)|2
as well as the whole SINR shown in the above are zero and will be excluded from the total
received power as well.

Concatenating all three parts, we now have the state sk(t) =
{

sl
k(t), si

k(t), sd
k(t)

}
for

each agent k. Here, |sk| = |sl
k|+ |s

i
k|+ |s

d
k | = 4 + 4U + 4U is the state size for each agent k

to include the information from its U neighbors. Given this, the system state at time t can
be denoted by {s1(t), s2(t), . . . , sL(t)}. Then, following the principle of MDP, each agent
k at time t will observe its own state sk(t) and choose its action ak(t) with the transition
probability Pak

sk ,s′k
determined by its DNN to move to the next state s′k.

(4) Selection policy and experience replay: Apart from MDP, the DDQN algorithm also
adopts the same mechanisms usually found in DQN, such as ε-greedy selection
policy and experience replay. First, by using the ε-greedy selection policy, each
agent can explore the environment with the probability ε and can exploit with the
probability 1− ε, where ε is a hyperparameter for the trade-off between exploration
and exploitation and decays with a rate of λε to its minimum value εmin, similar
to that in [51]. Further, by means of experience replay, each agent k can store its
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transactions (sk(t), ak(t), rk(t), s′k) in a buffer memory Dk, and then randomly sample
Dk to construct a mini-batch for training its DNNs through, e.g., a stochastic gradient
descent (SGD) algorithm to update the weights φ1 and φ2 for Qtrain and Qtarget,
respectively. As a summary, the proposed multi-agent DDQN algorithm is is shown
in Algorithm 2 for reference.

Algorithm 2 Multi-agent DDQN algorithm.

1: (Input) Simulated SWIPT MISO network and hyperparameters for the DDQN algorithm;
2: (Output) Learned DDQN to decide Pk, ωk, θk, ∀k, for MOO in (9) with objective in (10);
3: Initialize a pair of Qtrain and Qtarget with φk

1 and φk
2 for each agent/BS k ∈ {1, . . . , L}

4: Initialize state sk(0), action ak(0) and replay buffer Dk = ∅ for each agent k;
5: for each time slot t do
6: for each agent/BS k do
7: Observe current state sk(t) in time slot t;
8: generate a random number nr;
9: if nr < ε then

10: Randomly select ak(t) from the action space A;
11: else
12: Select ak(t) = arg maxa∈A Q(sk, a|φk

1);
13: end if
14: Observe next state s′k, and obtain reward rk(t);
15: Store the new transition (sk(t), ak(t), rk(t), s′k) in Dk;
16: Randomly sample a mini-batch (sk(j), ak(j) , rk(j), s′k(j)) with j ∈ J ⊂ Dk for experience;
17: Compute the Q-value for DDQN with (32)
18: Perform SGD to minimize the loss in (31), finding the optimal weights φk

1 and φk
2 of agent k;

19: Update weight φk
1 (for Qtrain);

20: Update weight φk
2 (for Qtarget) with φk

1 every Tstep time slots;
21: end for
22: end for

Now, to evaluate its time complexity, we can assume that the neural network involved
has J fully connected layers at most, in which nj denotes the number of neural units at the

j layer, and n0 is the input state size, leading to the complexity O(∑
j=J−1
j=0 njnj+1) for its

operations as noted in [49]. In addition, the DDQN algorithm is assumed to have Tm time
slots to learn, and, in each time slot, there are L distributed agents/BSs to train their own
neural networks. Given this, the total complexity would be O(TmL ∑

j=J−1
j=0 njnj+1).

Apart from the time complexity, each agent or BS requires at most four U messages
from its neighbors with the limited channel information exchange. Otherwise, if a central-
ized approach in convention is adopted, the signal overhead would include the collection
of L2 Nt-dimension complex vectors. In general, the number of neighbors for an agent or
BS (i.e., U) is much less than the number of cells or BSs (i.e., L); thus, our approach can pay
a lower signal overhead than can the centralized counterpart.

6. Numerical Experiments

In this section, we conduct simulation experiments to evaluate the proposed EA-aided
FP algorithm (denoted by “FP”) and distributed multi-agent DDQN algorithm (denoted by
“dis-DDQN”). To validate the proposed algorithms, we include a greedy-based algorithm
and a random-based algorithm (denoted by “greedy” and “random”, respectively) as the
comparison baselines. In addition, to verify the effectiveness of the DDQN algorithm based
on DTDE, we introduce a CTDE variant (denoted by “glo-DDQN”), which uses the global
state s = {s1, s2, . . . , sL} introduced in Section 5.2, to be the state for training each BS k
instead of using only its local state sk. Furthermore, to show the effectiveness of distributed
computing, we also compare the Advantage Actor Critic (denoted by “A2C”) algorithm,
which represents the state-of-the-art centralized RL algorithm to resolve this problem.
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6.1. Simulation Setup

With the network and channel models introduced in Section 2, we set a simulation
environment with 19 hexagonal cells with BS 0 located at the center, BSs 1–6 located in
the first tier, and BSs 7–18 located in the second tier as shown in Figure 3, similar to the
environment in [40]. However, unlike the previous, the cell radius was limited to 20 m for
SWIPT to resemble that in a small cell, wherein the harvested energy would be significant
enough in addition to the data transmitted.

Figure 3. Simulation topology.

Each UE is randomly located in each cell, and the path loss between BS k and UE j is
similarly given by β j,k = 120.9 + 37.6 log10 dj,k dB, where the distance between them, dj,k, is
denoted in kilometers. Apart from the path loss, the signal was also generated with the
log-normal shadowing effect, which had a standard deviation of 8 dB and AWGN noise
power of −114 dBm. In addition, the number of multi-path was set to 4, and the difference
between the maximum angle and the minimum angle, i.e., the angular spread, was 3◦.
Further, as UEs are located with random positions initially, the azimuth angle of UE to its
BS serves as the direction of departure (DoD) of the wireless channel.

Apart from that, each channel had a time slot duration of 20 ms and a correlation coef-
ficient of 0.64 for the successive time slots. As a summary, the important radio parameters
with respect to the environment are tabulated in Table 1, and the import parameters and
hyperparameters for DDQN are summarized in Table 2. Finally, along with W = 0.5 for
fairly weighting SE and EH in the first set of experiments and Wc = 10−4 for the penalty of
power consumption, the DDQN algorithms were conducted by a DNN with two hidden
layers composed of 128 and 64 neurons, respectively.

Table 1. Radio parameters.

Parameter Value

Number of neighboring cells (U) 5

Noise power (σ2) −114 dBm

Standard deviation 8 dB

Number of multi-paths 4

Time slot duration 20 ms

Angular spread 3◦

Channel correlation coefficient 0.64

Cell radius 20 m

Maximum transmit power (Pmax) 38 dBm
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Table 1. Cont.

Parameter Value

Minimum transmit power (Pmin) 0

Number of transmit antennas in BS (Nt) 4

Number of transmit power levels (Np) 4, 8, 16

Number of energy harvesting ratios (Neh) 4, 8, 16

Number of beam directions (Ncode) 4, 8, 16

Table 2. Parameters and hyperparameters for DDQN.

Parameter Value

Learning rate 0.0005

Greedy exploration parameter (ε) 0.2

Exploration decay rate (λε) 0.0001

Minimum exploration rate (εmin) 0.01

Greedy decay rate 0.0001

Size of state for angent/BS k (|sk|) 44

Size of action for angent/BS k (|ak|) 64

Replay buffer size for angent/BS k (|Dk|) 500

Batch size for angent/BS k 32

Normalization factors for local BS (Nl
b, Nl

c, Nl
i , Nl

r) (1, 10−4, 10−4, 1)

Normalization factors for interferer BS (Ni
b, Ni

i , Ni
c, Ni

u) (18, 1, 10−4, 10)

Normalization factors for interfered BS (Nn
c , Nn

u , Nn
s , Nn

e ) (10−4, 1, 10, 10−2)

In the parametric analysis, we first conducted different experiments to find the most
suitable parameters for the multi-agent DDQN algorithm to be compared in the following,
including the number of transmit power levels (Np), the number of beam directions (Ncode),
and the number of power splitting ratios (Neh). After that, we compared the proposed
algorithms with the other schemes, and the results obtained confirm our proposal to
outperform these benchmark schemes in terms of the utility U(Ω, θ), data rate Cd(Ω, θ) =

∑∀i Cd
i , and harvested energy Eh(Ω, θ) = ∑∀i E h

i .

6.2. Parametric Analysis
6.2.1. The Number of Power Levels

As shown in (33), there are two parts to constitute a BP. With respect to the first part of
BP, transmit power, we set the transmit power to have 4, 8, and 16 levels of value for the
Q learning to see its impact on the system performance. The results are summarized in
Figure 4, showing that the different numbers of power levels Np provided similar utilities,
data rates, and harvested energies. It implies that the algorithm may not, in this case, find
the optimum represented through the values shown in these power sets even if Np and the
overall state space increase. Thus, Np = 4 is considered sufficient in the sequel as it pays
the lowest overhead for the algorithm to converge.
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Figure 4. System performance by varying Np: (a) utility, (b) data rate, and (c) harvested energy.

6.2.2. The Number of Beam Directions

For the second part of BP, the beam direction, we set the codebook to have 4, 8, and
16 vectors or directions, respectively, to see its impact on the system performance. The
results are now summarized in Figure 5, showing that Ncode = 8 could produce a higher
data rate to compensate for a lower harvested energy and that Ncode = 16 could obtain a
higher harvested energy to compensate for a lower data rate when compared with that
of Ncode = 4. However, the trend is still the same in that increasing Ncode would provide
similar utility as that on Np. This suggests that, despite the slight trade-off between the
data rate and harvested energy, Ncode = 4 would be sufficient for the algorithm to converge
for the desired overall utility without further increasing its learning overhead.
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Figure 5. System performance by varying Ncode: (a) utility, (b) data rate, and (c) harvested energy.

6.2.3. The Number of Power Splitting Ratios (PR)

Apart from BP, PR is another objective in our MOO problem. For the distributed
DDQN algorithm, the number of PR level has the same importance as the former. To
see its impact on the system performance, we provided a set of 4, 8, and 16 real values
equally distributed between 0 and 1, for the experiments. As shown in Figure 6, Neh > 4
(i.e., Neh = 8 and 16) provided higher harvested energies and lower data rates, which
eventually led to higher utilities compared with that of Neh = 4. However, to conduct
the baseline for comparison without loss of generality, we adopted Neh = 4 as well as
Np = Ncode = 4, which exhibited the performance differences significantly enough for the
DDQN algorithm in comparison and had a reasonable overall computational overhead.

Note that, as indicated in [52], when a multi-agent setting is modified by the actions
of all agents, the environment becomes non-stationary from a single agent perspective, in
which the effectiveness of most reinforcement-learning algorithms would not hold [53].
Thus, the performance of a multi-agent DRL algorithm does not guarantee an increase as the
number of action increases through a trial-and-error mechanism in such environments [40]
but could be explored by selecting suitable numbers of actions to constitute the action space
as when performed for the proposed DDQN algorithm with the above experiments.
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Figure 6. System performance by varying Neh: (a) utility, (b) data rate, and (c) harvested energy.

6.3. Performance Comparison

In this subsection, we exhibit the performance differences between the proposed
algorithms and the other schemes. Specifically, based on the parametric analysis that we
introduced, we set Np = Ncode = Neh = 4 for the multi-agent DDQN algorithm as well as a
CTDE counterpart for a benchmark to be introduced in the following and `m = `η = 100 for
the FP algorithm. Then, we conducted a performance comparison between these algorithms
and the other four benchmark schemes shown as follows:

• Global state information-based scheme: In principle, this scheme is the same as the
distributed multi-agent DDQN algorithm. However, instead of adopting its own state
sk only, each agent k adopts the full state information, i.e., {s1, s2, . . . , sL} for its own
DDQN operations, based on the concept of centralized training distributed executing
(CTDE). Clearly, collecting such information would require a centralized processor or
a full information exchange mechanism to exist in the network and, thus, is denoted
as “glo-DDQN” as noted at the beginning of this section.

• Single-agent DRL scheme: As a branch of machine learning, DRL is conventionally
developed with a single agent operated centrally in a processor. Here, the state-of-
the-art RL algorithm, Advantage Actor Critic, is adopted as a centralized DRL-based
benchmark scheme for resolving the MOO problem and is simply denoted as “A2C”.

• Random-based scheme: As a baseline algorithm, the scheme leads each agent to
randomly choose an action in each time slot and is denoted here as “random”.

• Greedy-based scheme: As another baseline algorithm, each agent in this scheme adopts
the beam direction with the maximum channel gain and the maximum transmit power
while randomly selecting its PR from the set of Neh elements for the DDQN. For easy
reference, this scheme is denoted as “greedy” in the sequel.

For these algorithms, we set W = 0.1, 0.5, and 0.9 in (10) to represent a “low”,
“middle”, and “high” weight on the data rate (or a “high”, “middle”, and “low” weight
on the harvested energy), and we examined the performance differences on these weights
applied to these algorithms. Their results are summarized in Figure 7. Specifically, in
Figure 7b,c, the random algorithm, which randomly chooses BP from the codebook despite
W is shown to retain the same performance on these metrics, as expected. Similarly, given
a non-zero W, each agent with the greedy algorithm chooses the best BP for its data rate
despite the harvestable powers from the others, which are out of its control on BP, and this
is also shown to remain the same on the two metrics when varying the weight.

Apart from these, the other algorithms exhibited similar trends, where increasing W
increased the data rate and decreased the harvested energy, thus confirming the design
aim of W. However, as the amount of the increased rate can be different from that of
the decreased energy, their weighted sum or the resulting utility cannot be guaranteed to
increase when W increases as shown in Figure 7a.

Given the similar trend, the FP-based algorithm (FP), which represents an optimization-
based approach, is shown to provide the most effective solutions for the MOO problem,
confirming our design aim. As shown in Figure 7a as well, the distributed multi-agent
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DDQN algorithm (dis-DDQN) has its overall utility under that of FP but outperforms the
other schemes in comparison through the following viewpoints.
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Figure 7. Comparison with different weights: (a) utility, (b) data rate, and (c) harvested energy.

First, with respect to its variant (glo-DDQN), it can be observed that both algorithms
(dis-DDQN and glo-DDQN) converge to similar results, and glo-DDQN can barely obtain
a higher utility. The latter is possible because equipped with the global state information,
each agent may need even more time to learn the strategy approaching the optimal system
performance. It implies further that, with a higher overhead for learning, the large system
state caused by glo-DDQN may not lead to a better result, a faster converging speed, or
both, in time.

From Figure 8, which exemplifies the converging progresses of these algorithms with
W = 0.5, it can be observed with more evidence that glo-DDQN actually converges more
slowly than dis-DDQN in the time domain for all the metrics involved. Apart from the
above, it can be also seen that the DDQN-based algorithms can obtain higher rates but
provide relatively lower energies, which eventually leads to the overall utilities being lower
than those obtained by the FP algorithm.
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Figure 8. Comparison on convergence: (a) utility, (b) data rate, and (c) harvested energy.

Second, with respect to A2C, which represents a state-of-the-art single-agent algorithm
for the conventional environment to be evaluated centrally, it can be seen that such an
algorithm may not work well in the distributed network with multiple BSs for a large state
space, a large action space, or both. In other words, although A2C can handle the spaces
involving both discrete and continuous variables (e.g., the beam direction is discretized
while the transmit power, and the PR remains continuous in this case), its solution is not
always efficient for the dynamic network environment. In contrast, by suitably discretizing
the spaces involved, the distributed multi-agent DDQN (dis-DDQN) can be more easily
handled by each agent to learn its strategy based on the limited discrete values in these
spaces to approach the optimal solution.

Finally, in addition to the performance trends shown in the beginning, the greedy algo-
rithm exhibits itself as a baseline scheme to provide a higher low-bound when no specific
learning mechanism other than a greedy approach is adopted to resolve the MOO problem,
and the random algorithm is shown to provide a lower low-bound on the performance if
only randomly choosing an action is considered for solving this problem. As a summary,
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apart from the FP introduced, which represents an optimization-based approach to obtain
outperforming solutions, the proposed DDQN algorithm (dis-DDQN) can also outperform
the others in terms of the utility up to 1.23-, 1.87-, and 3.45-times larger than that of the
A2C, greedy, and random algorithms, respectively, in comparison in the case of W = 0.5.

Apart from the above, we show, in Figure 9, the reward and loss for the RL-based
algorithms in comparison. As can be easily seen, the reward increases and the loss decreases
as time elapses, and dis-DDQN and glo-DDQN have higher rewards and lower losses
compared to A2C, as expected. In particular, the lower losses found for the two DDQN
algorithms suggest that the obtained models would perform better compared to A2C. To
further validate the trained models from these RL-based algorithms, we prepared a set of
5000 test data by randomly generating channel fading conditions different from those of
the training set.

By reacting to the random data, each trained model can provide its own BPs and PRs,
leading to the performance results summarized in Figure 10. From this figure, we can see
that the test can consistently give outputs similar to those at the end of training, despite
the different random unseen data for testing. This observation indicates that the trained
models would have good generalization performance as expected.
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Figure 9. Reward and loss in the RL-based algorithms: (a) reward and (b) loss.
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Figure 10. Test results of the RL-based algorithms: (a) utility, (b) data rate, and (c) harvested energy.

7. Conclusions

In this work, a MOO problem was formulated that aims to obtain the optimal BP and
PR concurrently for MISO downlink SWIPT-enabled wireless networks. For this problem,
a weighted sum approach was conducted to make a trade-off between SE and EH in
the Pareto-optimal sense. Given this, an EA-aided quadratic transform technique was
proposed to conduct an FP-based algorithm that can obtain near-optimal solutions with
the computationally-efficient iterative update procedure introduced. At the same time,
a DTDE scheme was adopted to introduce a multi-agent DDQN algorithm that requires
only partial observations of CSI for local computation in each agent to further reduce the
communication overhead and the computational complexity.

With the simulated environment, our experimental results demonstrated that, among
the benchmark schemes conducted, the introduced FP-based algorithm was the most effec-
tive approach for solving the MOO problem. Apart from the FP algorithm, the proposed
multi-agent DDQN algorithm was also shown to outperform A2C, which represents the
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state-of-the-art single-agent DRL algorithm and the other baseline schemes while providing
lower overhead and complexity compared with that of FP. This reveals the possibility that
a programming-based method and a DRL-based algorithm can complement each other
to solve various optimization problems in networking, and a joint design to take benefits
from both will be our future work.
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Notations

Following the writing convention, vectors and matrices in this work are denoted by
boldface lowercase and uppercase symbols (e.g., x and X), respectively. The Hermitian
transposition and inverse are denoted by the superscripts (·)† and (·)−1, respectively. In
addition, | · | denotes the absolute value operator, and || · || is that for the Euclidean norm.
Further, Re(·) is the operation to take the real part, and Î denotes an identity matrix.
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