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Abstract: In this study, we consider the combination of clustering and resource allocation based on
game theory in ultra-dense networks that consist of multiple macrocells using massive multiple-input
multiple-output and a vast number of randomly distributed drones serving as small-cell base stations.
In particular, to mitigate the intercell interference, we propose a coalition game for clustering small
cells, with the utility function being the ratio of signal to interference. Then, the optimization problem
of resource allocation is divided into two subproblems: subchannel allocation and power allocation.
We use the Hungarian method, which is efficient for solving binary optimization problems, to assign
the subchannels to users in each cluster of small cells. Additionally, a centralized algorithm with low
computational complexity and a distributed algorithm based on the Stackelberg game are provided to
maximize the network energy efficiency (EE). The numerical results demonstrate that the game-based
method outperforms the centralized method in terms of execution time in small cells and is better
than traditional clustering in terms of EE.

Keywords: game theory; ultra-dense network; energy efficiency; unmanned aerial vehicle (UAV);
massive multiple-input multiple-output (mMIMO)

1. Introduction

The global mobile data traffic is witnessing an exponential increase, and the number
of global mobile connected devices is forecast to increase rapidly from 8.8 billion in 2018 to
13.1 billion in 2023 [1]. The deployment of ultra-dense networks (UDNs) as a type of cellular
network is an extremely promising technology for supporting the huge number of connec-
tions, especially in the applications of massive Internet of Things (IoT). In comparison with
present network technologies, UDNs help to considerably improve the network capacity,
spectral efficiency, as well as coverage with a high quality-of-service (QoS) by reducing
the distance between the base stations (BSs) and user equipment (UE) [2,3]. However,
the highly dense deployment of small cells in UDNs causes high interference, high power
consumption, and high computational complexity, which must be addressed to satisfy the
stringent constraints of the beyond fifth-generation networks (B5G) [4].

In UDNs, small cells are smaller than ever, and therefore the distance of neighboring
small cells decreases. As a result, the intercell interference is extremely high. In addition,
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the interference is especially hard to control becaused small cells are randomly distributed.
There are several studies on interference mitigation in UDNs. In [5], to cope with co-channel
interference, the authors used a conflict graph based on machine learning to form a clus-
tering problem and subchannel allocation (SCA) problem for throughput maximization.
Two other user-centric clustering methods, using k-means algorithms and jamming strate-
gies, were proposed in [6,7]. These papers show that the clustering-based approach is an
efficient tool for mitigating interference in UDNs. However, the clustering methods in [5–7]
did not consider the signal to interference plus noise ratio (SINR), which directly influences
the data rate. This can lead to a decline in the throughput, which is an important advantage
of UDNs compared with conventional networks. In [8], an adaptive clustering method was
proposed to maximize the spectral efficiency and the network throughput using two stages:
offline and online. Additionally, sum-rate maximization was taken into account as the main
objective in a user-centric clustering method, a modified Louvain method, proposed in [9].

Owing to maneuverability, using unmanned aerial vehicles (UAVs) in communica-
tions is becoming increasingly popular because the networks can be quickly built and have
flexibility. Compared with small terrestrial base stations, drones can easily move to form
many different structures of networks to serve users more efficiently. Additionally, the
channels between drones and users are usually line-of-sight channels because drones fly at
high altitudes where obstacles to the users are less likely. It is also convenient for network
operators because small cells can be easily added or removed to increase performance or
save cost depending on the number of connections as well as the requirements of users.
Thus, in communications, using UAVs as small flying base stations is a promising solution
to serve hotspots where there is a massive number of users such as at sports events, concerts,
exhibitions, and fairs, or provide mission-critical services, e.g., disaster recovery, traffic
congestion, etc. [10,11]. UAVs, as flying base stations, can be widely used in many scenar-
ios such as cognitive radio networks [11], ultra-reliable low-latency communications [12],
communications using reconfigurable intelligent surface [13], and caching [14]. Despite
the advantages of UAVs compared with terrestrial base stations, they still face many chal-
lenges in the attempts at employing UAVs in wireless networks. For example, in terms
of deployment, the authors of [15] proposed a deployment method for multiple UAVs
with the aim of maximizing both the coverage area and the coverage lifetime, whereas a
Q-learning method with the reward being the sum of user data rates was used in [16]. Re-
garding area throughput and energy management, mixed-integer programming problems
were formulated and efficiently solved for establishing the optimal location and action
scheduling under the constraints of battery and powered energy in [17,18]. Additionally,
the authors of [19] considered improving the spectrum efficiency by optimizing bandwidth
allocation, power allocation, and trajectory for one UAV. On the other hand, due to the fast
movements and jitters of UAVs, there are quick changes in the channels between the UAVs
and ground users [20]. Therefore, real-time computing is crucial in UAV-assisted networks,
especially in UDNs with many small cells [11,21].

In UDNs, the complexity of optimal resource allocation problems is very high because
massive numbers of small cells and small UEs (SUEs) are randomly and densely deployed
in large-scale areas. Game theory (GT), which is a distributed mathematical framework, is
efficiently used for decoupling an extremely complex problem into multiple subproblems
with lower complexity. Thus, there are several studies that investigated the applications
of GT in UDNs. In [22], two noncooperative games (NCGs) were designed for solving
the power allocation and user association with constraints on the quality of service (QoS).
The proposed combination of backhaul game and access game significantly improved
the total rate compared with the hierarchical game. Additionally, in [23], the authors
considered small cell networks with nonorthogonal multiple access (NOMA) with the aim
of network throughput maximization. The results showed the effectiveness of NOMA
and the locally cooperative game in interference mitigation in UDNs. In spite of some
improvements in [22,23], the main objective was to maximize the throughput; in UDNs,
the energy issue is more critical due to the high power consumption of a massive number of
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network elements. Energy efficiency (EE), which is defined as the ratio of total data rate to
total power consumption, is a useful metric for modeling the trade-off between throughput
and energy. However, EE maximization problems are nonconvex optimization problems
and much harder than throughput maximization problems or power minimization prob-
lems. In [24,25], two optimization problems (i.e., SCA and power allocation (PA)) were
considered with PA problems modeled by the Stackelberg game (SG) in order to maximize
the EE. Although there were some considerable improvements in terms of EE, there was
a limitation in the applicability of the used model of UDNs, which had only one macro
base station (MBS) and one BS in a network. In the previous works, either cooperation or
noncooperation between network elements was considered, but these elements have the
characteristics of both collaboration and competition,. In detail, small-cell base stations
(SBSs) prefer to be in joint clusters for cooperatively transmitting signals to UEs. This leads
to a decrease in intracluster interference. On the other hand, the SBSs in different clusters
tend to conflict regarding power usage. This means that increasing the power of an SBS
in a cluster also increases the interference for SUEs in adjacent clusters. Therefore, there
is a lack of a game-based paradigm that has the characteristics of both cooperation and
competition of network elements in order to concurrently mitigate interference, maximize
the network EE in drone-aided UDNs with multiple MBSs, and handle a massive number
of randomly distributed drones.

Motivated by the aforementioned discussion, this paper proposes a mathematical
model to jointly design the clustering and resource allocation for maximizing the total
network EE in UDNs consisting of multiple MBSs and many small-cell drones (SCDs).
Cells served by MBSs are macrocells, and cells served by drones are small cells. We propose
a coalition game for clustering SCDs to restrict the intercell interference. The SCDs in
each cluster cooperatively transmit the signals to UEs. The SCA methods for two tiers are
provided to choose the subchannel with the highest channel gain for each UE. To reduce the
computational complexity, centralized and distributed PA methods are proposed in terms
of maximizing the EE. The main contributions of our paper are summarized as follows:

• Adjacent SCDs tend to join together and cooperatively serve UEs because they highly
interfere with each other. Thus, we form this cooperation with a coalition game, with
the utility function being the signal-to-interference ratio (SIR).

• To fully eliminate the intracluster interference, we model the SCA for small cells as a
binary optimization problem. Then, the Hungarian method is proposed to obtain the
solution. Meanwhile, the SCA for macrocells chooses the subchannel with the highest
channel gain without any constraint.

• To reduce the complexity of nonconvex PA optimization problems, we propose an
iterative centralized PA algorithm to obtain at least a locally optimal solution in
terms of maximizing the EE. Inequalities are used for relaxing the complex objec-
tive functions of EE maximization into convex functions that are easy to solve with
programming tools.

• The distributed PA algorithm based on SG consists of two subcooperative games with
MBSs as leaders and SCDs as followers. This algorithm decouples the very complex
PA optimization problems into multiple low-complextiy and convex ones that are
extremely useful for solving optimization problems with a huge number of variables.

Compared with the conference version [26], a macrocell layer consisting of multiple
MBSs is added to the networks. As such, the interference environment is more complex
due to intercell interference. Additionally, the objective function is to minimize the network
EE, which is more practical to use energy more efficiently compared with the objective of
maximizing the sum-rate in UDNs but is more complex to solve because of the fractional-
type function. Moreover, we propose a centralized approach to solve PA as a benchmark
and the distributed one using the Stackelberg game, and multiple simulations with different
aspects such as EE, sum rate, and execution time were performed to prove the efficiency of
the proposed methods. The rest of this paper is organized as follows: Section 2 presents the
system model and optimization problems used in this paper. A small-cell clustering method
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based on the coalition game is described in Section 3. Then, the SCA for both macrocells
and small cells as well as the beamforming method for MBSs are discussed in Section 4.
In addition, Section 5 describes both centralized and distributed optimization methods
for solving PA problems. Numerical simulations proving the efficiency of our proposed
methods are outlined in Section 6. Section 7 provides the conclusions of this study.

2. System Model and Problem Formulation
2.1. System Model

In this paper, we consider the downlink transmission in a two-tier UDN that consists of
multiple macrocells and a massive number of UAVs serving as small-cell base stations with
highly dense deployments. MBSs and SCDs share the same N orthogonal subchannels with
bandwidth BW per subchannel to serve their UEs. The advantage of using multiple orthog-
onal subchannels is that multiple UEs can be simultaneously served in these subchannels
without interference. One typical macrocell with two subchannel is illustrated in Figure 1.
In the macrocell tier, each F MBS is equipped with T array antennas to transmit the signal
to M MUEs by using massive multiple-input multiple-output (mMIMO) techniques. In the
small-cell tier, to serve U UEs, many B SCDs equipped with one omni-directional antenna
each are randomly deployed according to the independent homogeneous Poisson point
processes (PPP) Φ with density λ in the coverage of MBSs (B > U) [24]. When UEs are
located in the coverage of one or some SCDs, they are served by SCDs, i.e., SUEs. On the
other hand, if the UEs are not in the coverage of any SCD, then the power of SCDs is not
high enough to serve these UEs or causes extremely high interference with surrounding
SCDs, especially in UDNs. Therefore, they are served by MBSs, i.e., MUEs. We used
the main mathematical notation, which is shown in Table 1, to design tbe optimization
problems. At each MBS, because of the mMIMO, the number of antennas of MBS f is much
greater than the number of its authorized MUEs (T � M f ). Each signal s(n)m, f is multiplied

by a beamforming vector wm, f ∈ CT×1, and then the aggregation of processed signals of
MUEs that are served by MBS f is transmitted.

Table 1. The description of the main mathematical notation.

Notation Definition

F {1, 2, . . . , F}: The set of MBSs

B {1, 2, . . . , B}: The set of SCDs

C {1, 2, . . . , C}: The set of clusters of SCDs

Ci {1, 2, . . . , Ci}: The set of SCDs in cluster i

U {1, 2, . . . , U}: The set of SUEs

M {1, 2, . . . , M}: The set of MUEs

UCi {1, 2, . . . , UCi}: The set of SUEs served by cluster Ci

Ub {1, 2, . . . , Ub}: The set of SUEs served by SCD b

M f {1, 2, . . . , M f }: The set of MUEs served by MBS f

s(n)m, f ∈ C: The instant desired symbol of MUE m served by MBS f in subchannel n

p(n)m, f E{s(n)m, f s(n)H
m, f }: The transmit power of MBS f to MUE m in subchannel n

s(n)u,b ∈ C: The instant desired symbol of SUE m served by SCD b in subchannel n
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Table 1. Cont.

Notation Definition

p(n)u,b E{s(n)u,b s(n)H
u,b }: The transmit power of SCD b to SUE u in subchannel n

h(n)
m, f ∈ C1×T : The channel response from MBS f to MUE m in subchannel n

h(n)m,b ∈ C: The channel response from interference source SCD b to MUE m in subchannel n

h(n)u,b ∈ C: The channel response from SCD b to SUE u in subchannel n

h(n)
u, f ∈ C1×T : The channel response from interference source MBS f to SUE u in subchannel n

wm, f ∈ CT×1: Beamforming vector at MBS f to serve MUE m

a(n)m, f , a(n)u,Ci
subchannel allocation indicator

y(n)m, f Received signal at MUE m served by MBS f in subchannel n

y(n)u,Ci
Received signal of SUE u served by cluster Ci in subchannel n

I(n)u,F ∑ f∈F ∑m∈M f
a(n)m, f |h

(n)
u, f wm, f |2 p(n)m, f : The interference power from MBSs

I(n)u,C\Ci ∑Cj∈C\Ci ∑b′∈Cj ∑u′∈UCj
a(n)u′ ,Cj

|h(n)u,b′ |
2 p(n)u′ ,b′ : The interference power from other clusters except cluster Ci

I(n)cross-talk ∑m′∈M f \m
a(n)m′ , f |h

(n)
m, f wm′ , f |2 p(n)m′ , f : The cross-talk interference power from MBS f

I(n)m,F\ f ∑ f ′∈F\ f ∑m′∈M f ′
a(n)m′ , f ′ |h

(n)
m, f ′wm′ , f ′ |2 p(n)m′ , f ′ : The interference power from MBSs except MBS f

I(n)m,C ∑Ci∈C ∑b∈Ci ∑u∈UCi
a(n)u,Ci
|h(n)m,b|

2 p(n)u,b : The interference power from the clusters of SCDs

CN (0, σ2) A complex Gaussian random variable with zero mean and variance σ2

Cluster 1

Cluster 2
Cluster C

MBS

SCD

SUE

MUE

Figure 1. A typical hexagon macrocell in UDNs. Each small cell has an SCD as a flying base station
with bounded circle coverage. Dotted red lines and beams denote the signal from BSs to UEs in a
subchannel, while the others denote the signal in another one.

The aggregation x(n)f at MBS f in subchannel n is the sum of M f processed signals:

x(n)f = ∑m∈M f
a(n)m, f wm, f s(n)m, f , (1)
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where the binary indicator of SCA is defined as

a(n)m, f =

{
1, if MUE m is assigned MBS f in subchannel n,
0, otherwise.

The received signal y(n)m, f at MUE m served by MBS f in subchannel n is expressed by

y(n)m, f = h(n)
m, f wm, f s(n)m, f︸ ︷︷ ︸
desired signal

+∑m′∈M f \m
a(n)m′ , f h(n)

m, f wm′ , f s(n)m′ , f︸ ︷︷ ︸
cross-talk interference

+ ∑ f ′∈F\ f h(n)
m, f ′x

(n)
f ′︸ ︷︷ ︸

interference from other MBSs

+ ∑Ci∈C∑b∈Ci
∑u∈UCi

a(n)u,Ci
h(n)m,bs(n)u,b︸ ︷︷ ︸

interference from clusters

+nm, (2)

where the aggregation of signals at MBS f ′ is x(n)f ′ = ∑m′∈M f ′
a(n)m′ , f ′wm′ , f ′ s

(n)
m′ , f ′ , and

nm ∼ CN (0, σ2) is additive white Gaussian noise (AWGN) at MUE m.
The received signal y(n)u,Ci

of SUE u served by cluster Ci in subchannel n is given by

y(n)u,Ci
= ∑

b∈Ci

h(n)u,b s(n)u,b︸ ︷︷ ︸
desired signal

+ ∑
f∈F

h(n)
u, f x(n)f︸ ︷︷ ︸

interference from MBSs

+ ∑
Cj∈C\Ci

∑
b′∈Cj

∑
u′∈UCj

a(n)u′ ,Cj
h(n)u,b′ s

(n)
u′ ,b′︸ ︷︷ ︸

interference from other clusters

+nu, (3)

where nu ∼ CN (0, σ2) is the AWGN of SUE u, h(n)u,b = g(n)u,b

√
β
(n)
u,b is the channel response,

g(n)u,b is a complex Gaussian random variable with zero mean and unit variance that repre-

sents the small-scale fading of the channel from SCD b to SUE u, and β
(n)
u,b is the large-scale

coefficient of this channel. Therefore, the SINRs at SUE u and MUE m are, respectively,
written as

γu =
∑b∈Ci

|h(n)u,b |
2 p(n)u,b

I(n)u,F + I(n)u,C\Ci
+ σ2

u

, (4)

γm =
|h(n)

m, f wm, f |2 p(n)m, f

I(n)cross-talk + I(n)m,F\ f + I(n)m,C + σ2
m

. (5)

2.2. Problem Formulation

As the deployment of small cells in UDNs becomes extremely dense, the problem
of effectively using resources becomes more important than ever. In this section, we
formulate the optimization problems for the resource allocation of both spectrum and
power according to the processing operations in Figure 2. The overall architectures of the
proposed optimization solutions are shown in Figure 2 with the names of the 6 problems in
blocks. The detailed description and algorithms are presented in Sections 3–5. The objective
functions at different stages are different to obtain an optimal solution for multiple proposed
objectives, such as interference mitigation in clustering, a guarantee of high-gain channels
in subchannel allocation, and efficient energy usage in power allocation.
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SCDs
SUEs Coalition Game

Clustering

Clusters
Hungarian method
for SUEs in each

cluster

Subchannel Allocation

Choosing the best
channel for each

MUE

MBSs
MUEs

Precoding design
for MBSs

Find optimal actions
for followers (SCDs)

Maximize EE

Power Allocation
using Stackelberg Game

Find optimal actions
for leaders (MBSs)

Maximize EE

Sub-NCG
Players: MBSs
Action: Power
Utility: EE

Sub-NCG
Players: Clusters
Action: Power
Utility: EE

(P1) (P2)

(P3) (P4)

(P6)

(P5)

Figure 2. Block processing operations of proposed optimization solutions.

2.2.1. Subchannel Allocation (SCA)

Due to the high efficiency of spectral usage, co-channel assignment is usually used
in practical systems [27]. However, this causes high interference between the two tiers in
UDNs and is hard to control, especially with the random deployment of small cells. Thus,
the optimization problems with the objective to choose the highest channel gain guarantee
that the BSs serve their UEs in good subchannels.

SCA for macrocells: We consider MBS f serving M f MUEs. By using mMIMO
technology at each MBS, the number of MUEs in each subchannel causes a minor inter-
ference effect. The target is to find a subchannel with the highest gain for each MUE.
The optimization problem can be expressed as

max
a(n)m, f

∑
M f
m=1 ∑N

n=1 VMm,na(n)m, f (6a)

s.t. ∑N
n=1 a(n)m, f = 1, m = 1, . . . , M f , (6b)

a(n)m, f ∈ {0, 1}, n = 1, . . . , N, ∀m ∈ M f , (6c)

where VMm,n = trace
{∥∥∥h(n)

m, f

∥∥∥}. (6b) indicates that each MUE m ∈ M f authorizes only one

subchannel. (6c) represents the constraint of the binary values of the SCA. If a(n)m, f = 1, then

MUE m is served by MBS f through subchannel n, and vice versa if a(n)m, f = 0. Optimization
problem (6) is denoted by (P3) in Figure 2. Problem (6) is integer linear programming
because (6a) and (6b) are affine functions, and (6c) is the constraint of two discrete values
of variables.

SCA for small cells: In Figure 2, after clustering the small cells, the SCDs in each
cluster cooperatively transmit the same signal to their SUEs. Therefore, the power of
the desired signal at each SUE is improved compared with that using only one serving
SCD. Considering cluster Ci, to find the appropriate subchannels for the SUEs in set UCi ,
an optimization problem is formulated as

max
a(n)u,Ci

∑
UCi
u=1 ∑N

n=1 VCu,na(n)u,Ci
(7a)

s.t. ∑
UCi
u=1 a(n)u,Ci

= 1, n = 1, . . . , N, (7b)

∑N
n=1 a(n)u,Ci

= 1, ∀u ∈ UCi , (7c)

a(n)u,Ci
∈ {0, 1}, n = 1, . . . , N, ∀u ∈ UCi , (7d)
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where VCu,n = ∑b∈Ci
|h(n)u,b |

2 is the sum of channel gains from SCDs in cluster Ci to SUE
u. (7b), (7c) indicates that each subchannel n is authorized by at most one SUE u ∈ UCi

and vice versa. (7d) is the constraint of the binary values of SCA. If a(n)u,Ci
= 1, then SUE

u is served by the SCDs in cluster Ci through subchannel n, and vice versa if a(n)u,Ci
= 0.

Optimization problem (7) is denoted by (P2) in Figure 2. Problem (7) is integer linear
programming because (7a)–(7c) are affine functions, and (7d) is the constraint of two discrete
values of variables. The solving methods for (P2) and (P3) are proposed in Section 4.1.

2.2.2. Power Allocation (PA)

In UDNs, the distance between the SCDs and SUEs as well as the distance between
small cells are very small: from a few dozen to a few hundred meters. Therefore, increasing
the power at an SCD to improve the signal to its UEs causes extremely high interference
to other small cells compared with that of conventional networks. In addition, different
tiers have different objectives that need to be optimized. For that reason, after SCA, we
formulate two optimization problems for PA in macrocells and small cells (Figure 2).

PA for MBSs (EE maximization): Each MBS, equipped with massive antennas, is
connected directly to a core network. MBSs, using high power with wide coverage areas,
guarantee the serving of all UEs that are not connected to any small cell. Therefore,
an important problem for MBSs is maximizing the data rate of the MUEs to satisfy the
standards of the new generations of future networks (B5G) while efficiently using energy.
EE, which is the ratio of data rate to power consumption, is widely used for evaluating the
efficiency of energy usage. The optimization problem of PA for MBSs is as follows

max
p(n)m, f

∑M
m=1 BW log2(1 + γm)

∑ f∈F Ptotal
f

(8a)

s.t. ∑N
n=1 ∑m∈M f

a(n)m, f p(n)m, f ≤ Pmax
MBS, ∀ f ∈ F , (8b)

p(n)m, f ≥ 0, ∀ f ∈ F , ∀m ∈ M, n = 1, . . . , N, (8c)

BW log2(1 + γm) ≥ Tpmmin, ∀m ∈ M, (8d)

where the variable p(n)m, f represents the transmit power of MBS f to MUE m in subchannel n.

Ptotal
f = Pcircuit

f + ∑N
n=1 ∑m∈M f

a(n)m, f p(n)m, f is the sum of power fo ther hardware circuits and
power for transmitting signal in all subchannels of MBS f , Pmax

MBS is the maximum power
of each MBS, and Tpmmin is the minimum throughput of each MUE. (8b) and (8c) are the
constraints of the transmit power of MBSs, which range from 0 to Pmax

MBS. (8d) guarantees
the QoS of all UEs.

PA for SCDs (EE maximization): Due to the short distance between the SCDs and
SUEs, the channel links experience the line of sight (LoS). However, with a large number
of small cells, the power consumption rises considerably. Thus, the target of SCDs is
effectively using limited energy. The optimization problem for maximizing the EE of small
cells is formulated as

max
p(n)u,b

∑U
u=1 BW log2(1 + γu)

∑Ci∈C ∑b∈Ci
Ptotal

b
(9a)

s.t. ∑N
n=1 ∑u∈UCi

a(n)u,Ci
p(n)u,b ≤ Pmax

SCD, ∀b ∈ B, (9b)

p(n)u,b ≥ 0, ∀b ∈ B, ∀u ∈ U , n = 1, . . . , N, (9c)

BW log2(1 + γu) ≥ Tpsmin, ∀u ∈ U , (9d)
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where p(n)u,b denotes the transmit power of SCD b to SUE u in subchannel n.

Ptotal
b = Pcircuit

b + ∑N
n=1 ∑u∈UCi

a(n)u,Ci
p(n)u,b is the sum of power for hardware circuits and power

for transmitting signal in all subchannels of SCD b ∈ Ci, and Pmax
SCD is the maximum trans-

mit power of each SCD, Tpsmin is the minimum throughput of each MUE. (9b) and (9c)
represent the range of transmit power. To guarantee the QoS, (9d) is used for all SUEs.

3. SCDs Clustering by Coalition Game (P1)

In this section, we introduce a coalition game for clustering small cells. In UDNs,
an effective clustering method is essential because of three main reasons, as follows:

• Mitigating interference: Intercell interference is a big challenge in UDNs due to the
ultra-dense density of small cells, especially for SUEs in the overlapping areas of small
cells. Formulating clusters that combine small cells seriously interfering with each
other is an appropriate solution. The SCDs in the same cluster cooperatively transmit
the signal to UEs so as there is no intracluster interference.

• Enhancing the quality of the signal: In UDNs, the SUEs in the overlapping areas of
two or more small cells are usually far from their primal SCDs, while they receive
high interference from the others. In many cases, using some of these SCDs along
with primary SCDs to serve UEs helps improve the power of the desired signal.
Furthermore, multiple SCDs transmitting the same signal to a UE also improves the
diversity gain.

• Decreasing handover processes: The smaller the size of small cells, the larger the
number of handover processes. Moreover, when UEs move at high speed, the central
controller has to compute the complex handover processes with the massive number
of UEs in a short time. Therefore, if small cells join together to form temporarily bigger
cells, the number of handover processes significantly declines.

Therefore, adjacent small cells have an incentive to join clusters to obtain a higher
value for the objective instead of independent transmission. The coalition game. as a
type of cooperative game where players tend to cooperate to achieve higher total utility, is
appropriate to model this situation. The standard form of a coalition game is CG = 〈PL, v〉,
where PL = Bactive is the set of players (i.e., SCDs, which serve at least one SUEs), and
v(C) ⊆ RC is the set of nontransferable utility functions of clusters [28]. The utility function
of cluster Ci is defined as

v(Ci) = ∑u∈UCi
SIRu, (10)

where SIRu is the SIR of the links from cluster Ci to SUE u and is expressed as

SIRu =
∑b′∈Ci

|hu,b′ |2

∑Cj∈C\Cj ∑b∈Cj
|hu,b|2

, (11)

where hu,b = 1
N ∑N

n=1 h(n)u,b is the average of channel gain from SCD b to SUE u. The solution
of this coalition game is the set of coalitions of players or clusters of SCDs in UDNs [28].
In these clusters, there is no SCD that has an incentive to change clusters for achieving
higher utility. This is the state where all clusters have reached equilibrium. The two
operations that change the SCDs between clusters are split-merge and swap [29]. If SCD
b ∈ Cj leaves Cj to join Ci, then the operation is denoted as

{
Ci, Cj

}
→
{
Ci ∪ {b}, Cj \ {b}

}
.

In addition, if SCD b ∈ Cj swaps with b′ ∈ Ci, then the operation is described as{
Ci, Cj

}
→
{
Ci ∪ {b} \ {b′}, Cj ∪ {b′} \ {b}

}
. SCD b tends to leave Cj to join Ci or prefer Ci

to Cj if v(Ci ∪ {b}) + v(Cj \ {b}) > v(Ci) + v(Cj).
To obtain the solution to this coalition game, we use Algorithm 1. In this algorithm,

we use the variable dmax for determining the SUEs that are less than dmax m away from
SCD b. Then, the set of neighbor clusters Cnear that consists of these SUEs is determined.
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Therefore, different from [30], we only consider some close clusters with SCD b because
the interference from b has a minor impact on far SUEs at very high frequency. In addition,
variables g and gn are used for choosing the best option for SCD b to move to a new cluster.
If the number of SCDs in each cluster increases, then the number of pairs of SCD and SUE
with a distance larger than dmax increases. Thus, we use Nmax for limiting the number of
SCDs in each cluster.

Algorithm 1 Clustering SCDs using the coalition game.

1: Input: Channel matrix H, the set of players PL = Bactive, locations of SCDs and SUEs,
the maximum number of SCDs in a cluster Nmax, the number of subchannels N, dmax

2: Randomly initialize a partition C(0), l = 0
3: while C(l) 6= C(old)

4: C(old) ← C(l)
5: for b ∈ Bactive
6: Assume b ∈ Cj, Cnear is the set of clusters that have some SUEs covered with radius

dmax and center b, gap g = 0
7: for Ci ∈ Cnear
8: if |Ci| = Nmax and UCi + Ub −Ub′ ≤ N and UCj + Ub′ −Ub ≤ N

9: C(tmp) ← swap SCD b and SCD b′ ∈ Ci
10: gn = v(Ci ∪ {b} \ {b′}) + v(Cj ∪ {b′} \ {b})− v(Ci)− v(Cj)
11: else if UCi + Ub ≤ N
12: C(tmp) ← SCD b joins Ci
13: gn = v(Ci ∪ {b}) + v(Cj \ {b})− v(Ci)− v(Cj)
14: if gn > g
15: C(ok) ← C(tmp), g = gn

16: C(l) ← C(ok)

17: l ← l + 1
18: Output: The set of clusters C

4. Subchannel Allocation (P2, P3) and Beamforming Design for MBSs (P4)

In this section, we propose methods to solve the SCA problems (6) and (7). Satisfactory
subchannels are allocated to UEs with high channel gain while guaranteeing the constraints
are met. In addition, the beamforming design for MBSs is also described.

4.1. Subchannel Allocation

(P2) For clusters, constraints (7b)–(7d) are the same as the constraints of an assignment
problem where each task is assigned to only one worker to minimize the cost. One of the
effective methods to solve assignment problems is the Hungarian method [31]. Compared
with other methods, the Hungarian algorithm can solve large-scale assignment problems in
polynomial time. Addtionally, it is a deterministic and global algorithm that guarantees the
optimal solution is the best assignment. Regarding flexibility, the Hungarian method can
be applied to solve assignment problems with equal or unequal numbers of resources and
tasks, especially in the cases of variable numbers of network elements in clusters in our
proposed SCA problem. Therefore, we use the Hungarian algorithm for making decisions
in choosing the optimal subchannels for SUEs. Matrix VCmaxprob, which consists of the
value of VCu,n with all pairs of SUE u ∈ Ci and subchannel n, is given in Table 2.
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Table 2. The matrix of values of VCu,n.

SUE\Channel 1 2 . . . N

1 VC1,1 VC1,2 . . . VC1,N
2 VC2,1 VC2,2 . . . VC2,N

. . . . . . . . . . . . . . .
UCi VCUCi ,1

VCUCi ,2
. . . VCUCi ,N

To obtain the solution to the optimization problem (7), we use the Hungarian method
in Algorithm 2 [30]. Because of the limitation of the number of UEs in each cluster by N,
the complexity of Algorithm 2 is O(N4) [31].

Algorithm 2 The Hungarian method for SCA in each cluster.

1: Input: VC matrix VCmaxprob.
2: Convert to minimization problem by subtracting the maximum of the matrix from

all elements VCminprob = {VCi,k =
∣∣∣VCi,k −max(VCmaxprob)

∣∣∣| i = 1, . . . , UCi and

k = 1, . . . , N}.
3: Extend VCminprob to a square matrix with the size of N × N
4: Obtain modified matrix:
5: Subtract the smallest entry from all entries in each row of VCminprob.
6: Subtract the smallest entry from all entries in each column of VCminprob.
7: Repeat
8: Cover all zeros in the matrix with minimum number of vertical/horizontal lines

nlmin.
9: if nlmin < N then

10: Subtract the lowest number from all elements that are not covered by any line.
11: Add this lowest number to elements that are crossed by any two lines.
12: Until nlmin = N.
13: Obtain the optimal association from zeros in the processed matrix.
14: Output: The association matrix X = {xi,k | i = 1, . . . , , UCi and k = 1, . . . , N}.

(P3) For macrocells, constraint (6b) requires one MUE to be allocated only one subchan-
nel. Moreover, the number of MUEs in a subchannel is not important due to the mMIMO
MBSs. Therefore, the solution to the optimization problem (6) can be easily obtained by
choosing the maximum value of VMm,n, n = 1, . . . , N for each MUE m.

4.2. Beamforming Design

According to the model in Figure 2, after SCA, we need to design the beamforming
vectors for MBSs. Assuming that the CSI is known at the MBSs, we introduce two types of
appropriate beamforming vectors for two cases.

• If there are multiple MUEs that are served by MBS f in subchannel n, then the
beamforming vector is one vector in the null space of the channel matrix from MBS f
to all of its MUEs except MUE m, and is expressed as

wm, f = Null
(

H(n)
M f \m, f

)
.

Therefore, we can neglect the cross-talk interference in (2).
• If only one MUE m is served by MBS f in subchannel n, then according to the zero-

forcing beamforming, the beamforming vector is as follows

wm, f =
(

h(n)
m, f

)†
/
∥∥∥∥(h(n)

m, f

)†
∥∥∥∥.
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In both cases, the magnitude of the beamforming vector is normalized to 1 (||wm, f || = 1).

Thus, the PA for MBSs and SCDs only depends on p(n)m, f and p(n)u,b .

5. Power Allocation for Macrocells and Small Cells (P5, P6)

Power allocation (PA) is a promising approach for interference mitigation in UDNs.
In this section, we propose both a distributed method and a centralized method to obtain
the solutions to the optimization problems (8) and (9). It is clear that the powers of
MBSs and SCDs are variables in both optimization problems (8) and (9). This causes these
optimization problems to be extremely complex and hard to solve. In addition, the channels
from MBSs to MUEs are usually more strongly affected by environmental factors than the
channel between SCDs and SUEs, while guaranteeing the QoS. Therefore, the optimization
problem of MBSs has higher priority than that of SCDs. We assume that the interference
from small-cell tiers to each MUE m is a constant at first as follows:

I(n)m,C = ∑Ci∈C∑b∈Ci
∑u∈UCi

a(n)u,Ci
|h(n)m,b|

2Pmax
SCD/N. (12)

Each active SCD uses the maximum power of Pmax
SCD, which is divided equally to th sub-

channels, to serve theSUEs. Thus, the interference from the small-cell tier to MUEs is
extremely high when first solving the PA optimization problem of MBSs. This helps the
QoS constraints to remain satisfied after obtaining the solution to the PA optimization
problem of SCDs with very low interference.

5.1. Centralized Power Allocation

In this subsection, we propose practical methods to solve centralized PA problems
for macrocells and small cells. In these methods, we combine three techniques: changing
variables, approximating objective functions, and the Dinkelbach algorithm. To this end,
the very complex maximizing EE optimization problems especially in UDNs are converted
into much easier convex problems in iterative algorithms. This is a promising approach to
achieving real-time computing in multitier massive-cell networks such as UDNs.

The EE maximization PA problem for macrocells is expressed as follows

max
p(n)m, f

∑M
m=1 log2

1 +
|h(n)

m, f wm, f |2 p(n)m, f

I(n)cross-talk + I(n)m,F\ f + I(n)m,C + σ2
m


∑ f∈F Ptotal

f
=

ϕM(PF )
πM(PF )

(13a)

s.t. ∑N
n=1 ∑m∈M f

a(n)m, f p(n)m, f ≤ Pmax
MBS, ∀ f ∈ F , (13b)

p(n)m, f ≥ 0, ∀ f ∈ F , ∀m ∈ M, n = 1, . . . , N, (13c)

γm ≥ γm min, ∀m ∈ M, (13d)

where γm min , 2Tpmmin/BW − 1 is the minimum SINR to guarantee the QoS of MUEs.
By using the beamforming vectors in Section 4.2, the value of cross-talk interference
I(n)cross-talk in the macrocells equals 0. I(n)m,C is fixed by using estimation (12). We can easily
convert constraint (13d) into a linear inequality becuase each γm in (13d) is an affine-
affine fraction. Therefore, all constraints in the optimization problem (13) are linear. Let
Im(PF ) , I(n)cross-talk + I(n)m,F\ f + I(n)m,C . Definitely, in (13a), a given UE m is served by MBS f in sub-

channel n, so p(n)m, f > 0 with constraint (13d). For xm = |h(n)
m, f wm, f |2 p(n)m, f , ym = Im(PF ) + σ2

m,

and at the κ-th iteration x̄m = |h(n)
m, f wm, f |2 p(n)(κ)m, f , ȳm = Im(P

(κ)
F ) + σ2

m, where P(κ)
F , is a

feasible point of optimization problem (13). Following the method in [32] and using in-
equality (A1) in Appendix A.1, we have ϕM(PF ) ≥ ϕ̃M(PF , P(κ)

F ), where ϕ̃M(PF , P(κ)
F ) ,
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∑M
m=1

(
ã(κ)m − b̃(κ)m /xm − c̃(κ)m ym

)
and ã(κ)m = log2

(
1 +

x̄m

ȳm

)
+

2x̄m

ln(2)(x̄m + ȳm)
, b̃(κ)m =

x̄2
m

ln(2)(x̄m + ȳm)
, c̃(κ)m =

x̄m

ln(2)ȳm(x̄m + ȳm)
.

Let λ
(κ)
M , ϕM(P(κ)

F )/πM(P(κ)
F ). According to the Dinkelbach algorithm, the subopti-

mization problem to find P(κ+1)
F for iteration (κ + 1) is as follows

max
p(n)m, f

ϕ̃M(PF , P(κ)
F )− λ

(κ)
MπM(PF ) s.t. (13b), (13c), (13d). (14)

Because ã(κ)m , b̃(κ)m , c̃(κ)m > 0, the objective function in (14), which is the sum of pairs of
convex functions, i.e., constant × variable and −constant/variable (constant > 0), is con-
vex. Therefore, problem (14) is convex due to the convexity of the objective function
and the affine functions at the constraints. The proof of the convergence is provided in
Appendix B.1. Based on [33], the computational complexity of each iteration for solving
(14) is O

(
(MFN)2(F + MFN + M)2.5 + (F + MFN + M)3.5

)
with the number of decision

variables MFN and the number of constraints F + MFN + M.
It is given that the UE u is served by cluster Ci, which combines SCDs b. The EE

maximization PA problem for small cells is given by

max
p(n)u,b

∑U
u=1 log2

1 +
∑b∈Ci

|h(n)u,b |
2 p(n)u,b

I(n)u,F + I(n)u,C\Ci
+ σ2

u


∑Ci∈C ∑b∈Ci

Ptotal
b

=
ϕU (PC)
πU (PC)

(15a)

s.t. ∑N
n=1 ∑u∈UCi

a(n)u,Ci
p(n)u,b ≤ Pmax

SCD, ∀b ∈ B, (15b)

p(n)u,b ≥ 0, ∀b ∈ B, ∀u ∈ U , n = 1, . . . , N, (15c)

γu ≥ γs min, ∀u ∈ U , (15d)

where γs min , 2Tpsmin/BW − 1 is the minimum SINR that guarantees the QoS of the SUEs.
Using the same technique as for the PA problem for macrocells, (15d) can be easily converted
into a linear constraint. Therefore, the optimization problem (15) is a linear-constrained
optimization problem. However, the objective function of the optimization problem (15) is
more challenging than the optimization problem (13) of macrocells because there is more
than one variable in the numerator of γu. Let Iu(PC) = I(n)u,F + I(n)u,C\Ci

. To find the lower

bound of ϕU (PC), we use inequality (A3) in Appendix A.2. In detail, for xu,b = |h(n)u,b |
2 p(n)u,b ,

yu = Iu(PC) + σ2
m, and at the κth iteration x̄u,b = |h(n)u,b |

2 p(n)(κ)u,b , ȳu = Iu(P
(κ)
C ) + σ2

u , where

P(κ)
C is a feasible point of the optimization problem (15). Following inequality (A3), we have

ϕU (PC) ≥ ϕ̃U (PC , P(κ)
C ), where ϕ̃U (PC , P(κ)

C ) , ∑U
u=1

(
ã(κ)u −∑b∈Ci

b̃(κ)u,b /xu,b − c̃(κ)u yu

)
and s̄u = ∑b∈Ci

x̄u,b,ã(κ)u = log2

(
1 +

s̄u

ȳu

)
+

2s̄u

ln(2)(s̄u + ȳu)
, b̃(κ)u,b =

x̄2
u,b

ln(2)(s̄u + ȳu)
,

c̃(κ)u =
s̄u

ln(2)ȳu(s̄u + ȳu)
.

Let λ
(κ)
U , ϕU (P

(κ)
C )/πU (P

(κ)
C ). According to the Dinkelbach algorithm, the subopti-

mization problem to find P(κ+1)
C for iteration (κ + 1) is as follows

max
p(n)u,b

ϕ̃U (PC , P(κ)
C )− λ

(κ)
U πU (PC) s.t. (15b), (15c), (15d). (16)
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The same as for optimization problem (14), optimization problem (16) is also a convex
problem. The proof of convergence is presented in Appendix B.2. Figure 3 shows a diagram
for solving the centralized PA optimization problems, with ε denoting the tolerance value
and nmax being the maximum number of iterations. If the values of the objective functions
in both (14) and (16) are lower than the tolerance value ε or nlp ≥ nmax, with nlp denoting
the number of iterations, then the convergence holds true. With the number of decision
variables BUN and the number of constraints B + BUN +U, the computational complexity
of each iteration for solving (14) is O

(
(BUN)2(B + BUN + U)2.5 + (B + BUN + U)3.5

)
.

  - Solve problem (14) of MBSs in the Dinkelbach algorithm 
  - Update  and  

  - Solve problem (16) of SBSs in the Dinkelbach algorithm 
  - Update  and 

Begin

End
yesno

Convergence: 
objective in (14) <   

 

Estimate interference from SBSs

no

yes

Fix the power from MBSs

Convergence: 
objective in (16) <   

 

Figure 3. The flow chart of the proposed method to solve centralized PA.

5.2. Distributed Power Allocation by the Stackelberg Game

The solution of centralized PA methods is the best option for PA to MBSs and SCDs.
However, when the number of small cells increases, the execution time of these methods
also significantly rises. Therefore, centralized PA methods cannot satisfy the strict time
constraints of UDNs in B5G. In this subsection, we propose a distributed PA method based
on a SG to considerably reduce the complexity of the original optimization problems while
retaining an acceptable efficiency of the solution. A SG is a type of NCG where players
have no incentive to collaborate. There are two levels of priority in a SG. In detail, players
with a high level of priority are called leaders and the others are followers. When starting a
SG, leaders choose optimal actions first. Then, followers see the actions of the leaders to
choose their optimal actions. Thus, a SG is also called a two-stage NCG.

The distance from MBSs to MUEs is usually much larger than the distance between
SCDs to SUEs. Therefore, the problems of reflection, diffraction, and scattering influence
the received signal at MUEs more than at SUEs. Meanwhile, MBSs must guarantee serving
all UEs that are out of the coverage of the small cells, with the constraint of data rate.
Therefore, MBSs, as leaders, have a high level of priority, and SCDs are followers in this SG.

5.2.1. NCG for Leaders (MBSs)

We formulate the optimization problem (8) as an NCG, where NCGleader = 〈PLF , PF , ulF 〉,
where PLF = F is the set of players (i.e., MBSs), PF is a matrix of PA for all MBSs,
and ulF ( f ) is the utility function of the EE of MUEs served by MBS f . The solution to
NCGleader is a Nash equilibrium where no MBS has an incentive to change its power,
and the power of each MBS is the best response to the power of other MBSs [30]. By
using an NCG, the optimization problem (8) can be divided into multiple suboptimization
problems for MBSs to obtain the best response for each player. In each subOP, we find an
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optimal solution for an MBS while the power of the other MBSs is fixed. A subOP for MBS
f is formulated as

max
P f

ulF ( f ) =
∑m∈M f

log2(1 + γm)

Ptotal
f

=
A f (P f )

B f (P f )
(17a)

s.t. ∑N
n=1 ∑m∈M f

a(n)m, f p(n)m, f ≤ Pmax
MBS, (17b)

p(n)m, f ≥ 0, ∀m ∈ M f , n = 1, . . . , N, (17c)

γm ≥ γm min, ∀m ∈ M f . (17d)

The objective function (17a) is a concave–convex fraction. We can use the Dinkelbach
method to solve the optimization problem (17). In detail, we introduce a new variable λ f ,
and the optimization problem (17) can be rewritten as

max
P f

UTf (P f , λ f ) = A f (P f )− λ f B f (P f ) s.t. (17b), (17c), (17d). (18)

The objective function in (18) is a concave function in the maximization problem, so the
optimization problem (18) is a convex problem. Therefore, the optimization problem (18)
can be effectively solved by using CVX or CVXPY [34,35]. The optimal solution P∗f is also
the optimal solution to optimization problem (18) if UTf (P∗f , λ∗f ) = 0. We use Algorithm 3
to find the solution for the NCG NCGleader. With the number of decision variables M f N
and the number of constraints 1 + M f N + M f , the computational complexity of each

iteration for solving (18) is O
(
(M f N)2(1 + M f N + M f )

2.5 + (1 + M f N + M f )
3.5
)

. It is
clear that the complexity of (18) is much lower than that of (14) because M f < M and only
one MBS is considered.

Algorithm 3 SG-based PA for macrocells and small cells.

1: Initialize power matrix P(0)
MBS that meets constraints (17b), (17c), (17d), k = 0

2: while the convergence is not reached
3: P(k)

MBS = P(k−1)
MBS

4: for f ∈ F
5: P(tmp)

f = P(k)
f

6: while UTf (P
(tmp)
f , λ f ) > ε

7: λ f = A f (P
(tmp)
f )/B f (P

(tmp)
f ), P(tmp)

f = P∗f where P∗f is the solution of (18)

8: P(out)
f = P(tmp)

f

9: P(k)
MBS = P(out)

MBS, k = k + 1

10: Initialize power matrix of SCDs P(0)
cluster that meets constraints (19b), (19c), (19d), k = 0

11: while the convergence is not reached
12: P(k)

cluster = P(k−1)
cluster

13: for Ci ∈ C
14: P(tmp)

Ci
= P(k)

Ci

15: while UTCi (P
(tmp)
Ci

, λCi ) > ε

16: λCi = A(P(tmp)
Ci

)/B(P(tmp)
Ci

), P(tmp)
Ci

= P∗Ci
where P∗Ci

is the solution of (20)

17: P(out)
Ci

= P(tmp)
Ci

18: P(k)
cluster = P(out)

cluster, k = k + 1
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5.2.2. NCG for Followers (Clusters)

We formulate optimization problem (9) as an NCG NCG f ollower = 〈PLC , PC , ulC〉,
where PLC = C is the set of players (i.e., clusters), PC is a matrix of PA for all clusters of
SCDs, and ulC(Ci) is the utility function of the EE of cluster Ci. The PA problem for SCDs
in (9) can be divided into multiple suboptimization problems by using NCG with players
as clusters. A suboptimization problem of cluster Ci is as follows

max
PCi

ulC(Ci) =
∑u∈UCi

log2(1 + γu)

∑b∈Ci
Ptotal

b
=

ACi(PCi )

BCi(PCi )
(19a)

s.t. ∑N
n=1 ∑u∈UCi

p(n)u,b ≤ Pmax
SCD, ∀b ∈ Ci, (19b)

p(n)u,b ≥ 0, ∀b ∈ Ci, n = 1, . . . , N, (19c)

γu ≥ γs min, ∀u ∈ UCi . (19d)

To obtain the best response of cluster Ci, the power of the other clusters is fixed. This
best response is the solution to optimization problem (19). We use the Dinkelbach method
to solve the optimization problem (19) because its objective function is a concave–convex
fraction. In detail, we introduce a new variable λCi , and the optimization problem (19) can
be rewritten as

max
PCi

UTCi (PCi , λCi ) = ACi(PCi )− λCi BCi(PCi ) s.t. (19b), (19c), (19d). (20)

The objective function in (20) is a concave function, so the optimization problem (20) is a
convex optimization problem. Therefore, the optimization problem (20) can be effectively
solved by using CVX or CVXPY [34,35]. The optimal solution P∗Ci

is also the optimal
solution to the optimization problem (20) if UTCi (P

∗
Ci

, λ∗Ci
) = 0. We use Algorithm 3 to

find the solution to the NCG NCG f ollower. With the number of decision variables UCi Ci N
and the number of constraints Ci + UCi Ci N + UCi , the computational complexity of each

iteration for solving (20) isO
(
(UCi Ci N)2(Ci + UCi Ci N + UCi )

2.5 + (Ci + UCi Ci N + UCi )
3.5
)

.
The complexity of (20) is much lower than that of (16) since UCi < U and Ci < B.

6. Simulation Results

Next, we investigated the performance of the proposed methods in a two-tier UDN.
Three hexagon macrocells with a coverage radius of 100 m were deployed next to each
other. In each macrocell, one MBS equipped with 128 antennas was located in the center of
the cell. In addition, many small cells that had a radius of 20 m were randomly distributed
by PPP. A small cell had an SCD equipped with one omnidirectional antenna. The UEs
in the coverage of any small cell were served by the cluster that contained that small cell,
and the others were served by theMBSs. The parameters in the simulations are given in
Table 3 [36]. Additionally, we introduced two more clustering methods for comparison.
In the traditional clustering method, each SUE is served by the nearest SCD. Meanwhile,
with random clustering, each SUE randomly connected to an SCD, which had a distance
to this SUE of less than d = 3 × the radius of small cells. On the other hand, equal power
allocation, where the power of Pmax

MBS/2 of each MBS is equally divided among its MUEs
and the power Pmax

SCD of each active SCD is equally divided among the subchannels, was
also used for comparison with the EE maximization PA methods. To prove the performance
improvement, the proposed methods were compared with conventional methods based
on multiple aspects such as convergence speed of PA methods, energy efficiency, sum
rate, and transmit power usage. The acronyms for the combinations of clustering and PA
methods are given in Table 4. To solve the optimization problems and build simulating
programs, CVXPY and PYTHON were used [35]. The computing platform was a PC with
CPU@3.7 GHz and 32 GB RAM memory.
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Table 3. Simulation parameters.

Parameter Numerical Value

Carrier frequency/Total bandwidth 2 GHz/20 MHz

Bandwidth per subchannel 4 MHz

# subchannels 5

Path loss from MBSs to UEs 128.1 + 37.6 log10 d [dB], d in km

Path loss from SCDs to UEs 140.7 + 36.7 log10 d [dB], d in km

Shadowing standard deviation 8 dB

Noise power density −174 dBm/Hz

Maximum transmit power of MBS 46 dBm

Maximum transmit power of SCD 30 dBm

Circuit power of MBS 20%Pmax
MBS

Circuit power of SCD 20%Pmax
SCD

The radius of a macrocell 100 m

The radius of a small cell 20 m

# transmit antennas per MBS 128

The minimum throughput per MUE 0.1 Mbps

The minimum throughput per SUE 1 Mbps

Table 4. ID of strategies for comparison.

ID Clustering PA for Macrocells PA for Small Cells

CGCO Coalition Game Centralized optimization Centralized optimization

CGDO Coalition Game Game-based optimization Game-based optimization

TCDO Traditional clustering Game-based optimization Game-based optimization

RCDO Randomly clustering Game-based optimization Game-based optimization

TCEP Traditional clustering Equal power allocation Equal power allocation

Figure 4 illustrates an example of a triple-macrocell UDN that combines 100 SUEs
and 24 MUEs with a density of SCDs of 2000 SCDs/km2. In the first close-up in Figure 4a,
two adjacent small cells use two same subchannels to serve their SUEs. This causes high
interference for these SUEs. Meanwhile, after using the coalition game, these two small cells
form a cluster to cooperatively transmit (the first close-up in Figure 4b). Therefore, there is
no interference in a cluster. Another advantage of clustering that is shown in the second
close-up is to enhance the quality of the desired signal. The SUE (red) subchannel is served
by two small cells tgat have almost the same distance to it instead of being served by a
single cell. When the density of SCDs is very high, these situations occur many times. Thus,
clustering SCDs based on coalition game, and cooperative transmission help to efficiently
mitigate intercell interference and improve the power of the received signal.
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(a) After traditional clustering and SCA. (b) After clustering by coalition game and SCA.

Figure 4. A typical triple-macrocell UDN after SCA with traditional and game-based clustering. Red
triangles denote MBSs; red dots are MUEs; blue triangles are SCDs; blue dots are SUEs; SCDs in the
same cluster are connected by black straight lines; SUEs served in the same subchannel are connected
with their primal SCDs by the same color straight lines.

6.1. Convergence Speed of PA Methods

In this subsection, we consider the convergence of CGCO and CGDO in the network
that has an SCD density of 2000 SCDs/km2, 100 SUEs, 3 MBSs, and 24 MUEs. The changes
and differences in the quantity of the EE of these methods, along with the iterations in the
macrocell tier and small-cell tier, are shown in Figure 5a,b, respectively. It is given that one
iteration of GT methods is complete after updating the best responses of all players. At the
convergence, the EE of the CGDO is always lower than that of the CGCO. In detail, the EE
of the CGDO is lower than that of CGCO in the macrocell tier and small-cell tier by 0.65%
and 15.39%, respectively. However, the CGDO almost converges to the equilibrium after
only one loop for updating all the best responses of the players, while it takes three and
four iterations in the macrocell tier and small-cell tier, respectively, for the CGCO to achieve
an EE of more than 95% at the convergence. On the other hand, in Figure 5b, the EE of the
CGDO after one iteration is greater than the value of the convergence. This is reasonable
because, in game theory, the value of the utility function at the Nash equilibrium may not
be the best solution.
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Figure 5. The convergence speed of the two PA methods.

6.2. Performance Analysis of CGCO, CGDO, and TCDO

We evaluated the performance of the proposed methods regarding the EE, the sum
rate, the total transmit power, and the execution time in different scenarios with the number
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of network elements that are given in Table 5, and the number of SUEs equaled 60% of the
number of SCDs.

Table 5. The different network size scenarios.

Density (SCDs/km2) 500 600 700 800 900 1000

# MBSs 3 3 3 3 3 3

# MUEs 9 12 15 18 21 24

Figure 6 displays data on the changes in the quantity of the EE of CGCO, CGDO,
TCDO, RCDO, and TCEP in the small-cell tier when the density of SCDs increases from 500
to 1000 SCDs/km2. To overview, the EE of all methods witnesses a decrease with different
levels since the denser the deployment of small cells is, the higher interference is. The
EE of CGCO is greatest in both the five methods since it uses the centralized PA method.
In detail, the EE of CGDO equals 74.09% of the EE of CGCO on average. Meanwhile, the EE
of CGDO is greater from 11.15% to 17.23% than the one of TCDO in all testing scenarios.
In addition, CGCO, CGDO, and TCDO outperform RCDO and TCEP in terms of the EE.
Therefore, using the coalition game for clustering small cells before SCA and PA based on
distributed method helps improve the efficiency of energy usage in UDNs compared with
the traditional clustering and the random clustering.
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Figure 6. The changes in the EE of the methods in different scenarios.

Along with the EE, the computing execution time is an important factor to evaluate
the performance of different methods. Table 6 describes the data in detail regarding the
time required for the PA of CGCO, CGDO, and TCDO. Thanks to (12), the intensity of
interference from small cells is pre-estimated in the PA optimization problems of the
macrocell tier. Therefore, the execution time of the PA methods in the macrocell tier does
not depend on the density of SCDs. On the other hand, the execution time for the PA of the
MBSs of CGDO and TCDO is higher than the one of CGCO when the number of MUEs
is small. The reason is that optimization problem (18) with the objective, a logarithmic
function, takes a longer time to solve than optimization problem (16) with the objective
as the sum of affine functions and rational functions when the number of variables is
slightly different. However, the execution time in macrocells is less important than that
in small cells with much more variables in the OPs. Considering the small-cell tier, when
the density of the SCDs changes from 500 to 1000 SCDs/km2, the execution time of the
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CGCO significantly increases by 1.7 times, while those of the distributed methods CGDO
and TCDO do not depend on the number of SCDs. Additionally, the execution time of
CGCO is always longer, from 1.95 to 3.49 times that of CGDO. In large-scale UDNs, quick
adaptation is key. If a very complex algorithm is used and the execution time is long, when
the solution is obtained, it is not optimal anymore because the channel and user locations
have changed too much. Therefore, the trade-off between EE and a quick execution time
using our proposed PA method is essential and effective in UDNs.

Table 6. The average execution time for solving one optimization problem of PA methods for different
network sizes.

Density (SCDs/km2) 500 600 700 800 900 1000

CGCO MC (ms) 113 129 148 163 183 195

CGCO SC (ms) 243 284 323 364 379 411

CGDO MC (ms) 157 165 168 176 183 180

CGDO SC (ms) 125 124 124 122 115 118

TCDO MC (ms) 160 176 171 176 180 180

TCDO SC (ms) 118 112 114 109 103 104

Figure 7 shows the average of the sum rate and the total power consumption of
CGCO, CGDO, and TCDO in the macrocell tier of UDNs. The level of the sum-rate growth
of the three methods gradually decreases when the number of small cells increases in
a certain area. The sum rate of these methods increases and reaches the maximum at a
density of 900 SCDs/km2. Then, it gradually decreases when densities are greater than
900 SCDs/km2 despite the increased power usage because MUEs experience extreme
interference from the small-cell tier. To clearly identify this trend, we added two more
scenarios with densities of 1100 and 1200 SCDs/km2, and we set the number of MUEs
to 24. Additionally, in comparison with traditional clustering, SCDs were used in more
subchannels for transmitting the signals to both their primal SUEs and the other SUEs in
their clusters. This causes more interference from small cells to macrocells. Therefore, MBSs
with CGDO use more power to achieve a higher sum rate than those of TCDO.

Figure 8 describes the sum rate and the total transmit power of the three methods,
namely CGCO, CGDO, and TCDO, in the small-cell tiers of UDNs with different network
sizes. When the density of the SCDs increases, the energy consumption considerably
increases, while the rate of increase in the sum rate declines. Due to using centralized
optimization, the data rate of CGCO is always larger than those of the others, while the
total transmit power of CGCO is the lowest for the three methods. The power consumption
of CGDO is lower by 9.51% to 15.19% than that of TCDO. On the other hand, when the
deployment of SCDs becomes denser, to achieve the same data rate, the SCDs use much
more power. For example, in Figure 8a, the sum rates, which CGDO and TCDO achieve
with small cells with densities of 800 and 900 SCDs/km2, are nearly equal. Meanwhile,
the power consumption of CGDO and TCDO significantly increases in this range of density,
as shown in Figure 8b. Moreover, the data rate of CGDO is slightly higher than that of
TCDO. To summarize, the clustering method based on the coalition game helps to achieve
a higher data rate than the traditional clustering method with lower power consumption.
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Figure 7. The sum rate and the total power consumption of the macrocells.
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Figure 8. The sum rate and the total power consumption of the small cells.

6.3. Execution Time of Coalition Game (Algorithm 1) and the Hungarian Method (Algorithm 2)

Using the same simulation parameters as in Section 6.2, we evaluate the execution time
of Algorithms 1 and 2 in Table 7. It is clear that the execution times of the coalition game and
the Hungarian method increase with the increasing density of SCDs for the different levels.
In detail, from 500 to 1000 SCDs/km2, the execution time of the coalition game increases
3.8 times and that of the Hungarian method increases 3.1 times. The computational
complexity of the Hungarian method is O(N4) in the worst case for the SCA in each cluster.
Thus, its computational time has a linear relationship with the number of clusters in the
small-cell tier.
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Table 7. The execution time of the clustering-method-based coalition game and SCA-based Hungarian
method for different network sizes.

Density (SCDs/km2) 500 600 700 800 900 1000

Coalition game (µs) 282.2 309.1 426.7 543.4 586.9 1073.8

The Hungarian method (µs) 542.5 734.5 816.4 925.8 976.6 1688.6

7. Conclusions

We investigated the problem of resource allocation for UDNs with two tiers consisting
of multiple MBSs and massive randomly distributed drones in this study. We proposed a
paradigm that combines three processes: clustering using the coalition game, SCA using
the Hungarian method, and PA using the SG as a distributed optimization method. Our
simulations proved that the execution time of the centralized method for PA is much higher,
by 1.95 to 3.49 times, than that of our distributed method, while the network EE of the
proposed method using clustering based on the coalition game is improved by 11.15% to
17.23% compared with that of the distributed one with traditional clustering. Therefore,
the centralized method is more suitable for UDNs with a small number of network elements,
while the distributed method can be efficiently employed in large-scale UDNs where many
MBSs and drones communicate simultaneously. Moreover, real-time computing plays an
important role in drone-aided UDNs due to the mobility of both base stations (i.e., drones)
and users. The execution time of the coalition game and the Hungarian method showed
that they can be applied to real-time systems in UDNs.

For future work, with a massive number of users, data traffic is extremely high in
drone-aided networks. To avoid network data congestion, drones equipped with caching
storage, which can prestore common data packets, are a promising solution. However,
the optimization problem for caching is integer programming with a large number of
decision variables. Therefore, low-complexity algorithms for solving caching problems with
the objective of minimizing the risk of network congestion are essential to be considered as
an extension of this method. Additionally, to guarantee the quality of the signal received by
users, drone-to-user communications need to be line of sight. Thus, the trajectory design
for multiple drones in order to adapt to the movements of users is also an open topic to be
addressed in the future.
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Appendix A. Fundamental Inequalities

Appendix A.1

According to [32,37], we have

log2(1 + x/y) ≥ ã− b̃/x− c̃y, (A1)
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where ã = log2(1 + x̄/ȳ) + 2x̄/
(
ln(2)(x̄ + ȳ)

)
> 0, b̃ = x̄2/

(
ln(2)(x̄ + ȳ)

)
> 0,

c̃ = x̄/
(
ln(2)(x̄ + ȳ)ȳ

)
> 0.

Appendix A.2

Functions h : Rn → R and g : Rn → Rn, h(u) , log2
(
∑n

i=1 exp(ui)
)

and gi(xi) ,
ln(1/xi) are both convex in x = [xi]

n
i=1 > 0 [38]. The extended-value extension h̃ of h is a

nondecreasing function in each argument. Therefore, the vector composition of functions g
and h is as follows

f (x) , h
(

g(x)
)
= h

(
g1(x1), . . . , gn(xn)

)
= log2

(
∑n

i=1 exp(gi(xi))
)
= log2

(
∑n

i=1 1/xi

)
,

is convex. In addition, if we add a convex function to f (x), then the convexity is preserved,
and the new convex function is expressed as

f1(x, y) , f (x) + log2

(
1
y

)
= log2

(
∑n

i=1
1
xi

)
+ log2

(
1
y

)
= log2

(
∑n

i=1
1

xiy

)
.

On the other hand, if z0 is a positive real number, we have an inequality as follows [39]

log2(1 + z) ≥ α log2(z) + β, (A2)

where α = z0/(1+ z0), β = log2(1+ z0)− α log2(z0). The left part of (A2) is close to another
part, and the equality holds true at z = z0 [39].

Using (A2) and the convexity of f1(x, y), we have

f2(x, y) , log2

(
1 + ∑n

i=1
1

xiy

)
≥ ᾱ log2

(
∑n

i=1
1

xiy

)
+ β̄

≥ᾱ
(

f1(x̄, ȳ) + 〈∇ f1(x̄, ȳ), (x, y)− (x̄, ȳ)〉
)
+ β̄

= ᾱ f1(x̄, ȳ) + β̄ + ᾱ ∑n
i=1

1
ln(2)ȳx̄i ∑n

i=1(1/(x̄i ȳ))
+ ᾱ

∑n
i=1(1/x̄i)

ln(2)ȳ ∑n
i=1(1/(x̄i ȳ))︸ ︷︷ ︸

ã

−∑n
i=1

1
ln(2)ȳx̄i

2 ∑n
i=1(1/(x̄i ȳ))︸ ︷︷ ︸
b̃i

xi −
∑n

i=1(1/x̄i)

ln(2)ȳ2 ∑n
i=1(1/(x̄i ȳ))︸ ︷︷ ︸
c̃

y,

where ᾱ =

(
∑n

i=1
1

x̄i ȳ

)
/

(
1 + ∑n

i=1
1

x̄i ȳ

)
, β̄ = log2

(
1 + ∑n

i=1
1

x̄i ȳ

)
− ᾱ log2

(
∑n

i=1
1

x̄i ȳ

)
.

Replacing xi → 1/xi and x̄i → 1/x̄i in f2(x, y), we have

log2

(
1 + ∑n

i=1 xi/y
)
≥ ã−∑n

i=1 b̃i/xi − c̃y. (A3)

where ã = log2

(
1 +

s̄
ȳ

)
+

2s̄
ln(2)(s̄ + ȳ)

, b̃i =
x̄2

i
ln(2)(s̄ + ȳ)

, c̃ =
s̄

ln(2)ȳ(s̄ + ȳ)
, s̄ = ∑n

i=1 x̄i.
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Appendix B. Proving the Convergence

Appendix B.1

Let P(κ+1)
F be the solution of the convex optimization problem (14). Thus, the value

of objective function in (14) at P(κ+1)
F is greater than the value of the other feasible points

(i.e., P(κ)
F ) as [32]

ϕ̃M(P(κ+1)
F , P(κ)

F )− λ
(κ)
MπM(P(κ+1)

F ) > ϕ̃M(P(κ)
F , P(κ)

F )− λ
(κ)
MπM(P(κ)

F ). (A4)

From (A1), the equality is achieved when x = x̄ and y = ȳ. Therefore, we have

ϕ̃M(P(κ)
F , P(κ)

F )− λ
(κ)
MπM(P(κ)

F ) = ϕM(P(κ)
F )− λ

(κ)
MπM(P(κ)

F ) = 0. (A5)

With (A4) and (A5), we have

λ
(κ+1)
M =

ϕM(P(κ+1)
F )

πM(P(κ+1)
F )

≥
ϕ̃M(P(κ+1)

F , P(κ)
F )

πM(P(κ+1)
F )

> λ
(κ)
M . (A6)

Therefore, the first loop in Figure 3 converges at least to a local maximal point of the
optimization problem (13).

Appendix B.2

Using the same approach as in Appendix II.1, we have λ
(κ+1)
U > λ

(κ)
U . From this, the sec-

ond loop in Figure 3 also at least converges to a local maximal point of the optimization
problem (15).
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