
Citation: Li, L.; Li, M.; Sun, W.; Li, Z.;

Yang, Z. Spot Detection for Laser

Sensors Based on Annular

Convolution Filtering. Sensors 2023,

23, 3891. https://doi.org/10.3390/

s23083891

Academic Editor: Shah Nawaz

Burokur

Received: 10 March 2023

Revised: 31 March 2023

Accepted: 6 April 2023

Published: 11 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Spot Detection for Laser Sensors Based on Annular
Convolution Filtering
Lingjiang Li 1, Maolin Li 1,2, Weijun Sun 1,3, Zhenni Li 1 and Zuyuan Yang 1,*

1 Guangdong Key Laboratory of IoT Information Technology, School of Automation, Guangdong University of
Technology, Guangzhou 510006, China; lagcyp@msn.com (L.L.); lml617658@163.com (M.L.);
gdutswj@gdut.edu.cn (W.S.); lizhenni2012@gmail.com (Z.L.)

2 Key Laboratory of Intelligent Detection and the Internet of Things in Manufacturing (GDUT), Ministry of
Education, Guangzhou 510006, China

3 Guangdong-Hong Kong-Macao Joint Laboratory for Smart Discrete Manufacturing,
Guangzhou 510006, China

* Correspondence: yangzuyuan@gdut.edu.cn

Abstract: Spot detection has attracted continuous attention for laser sensors with applications in
communication, measurement, etc. The existing methods often directly perform binarization pro-
cessing on the original spot image. They suffer from the interference of the background light. To
reduce this kind of interference, we propose a novel method called annular convolution filtering
(ACF). In our method, the region of interest (ROI) in the spot image is first searched by using the
statistical properties of pixels. Then, the annular convolution strip is constructed based on the energy
attenuation property of the laser and the convolution operation is performed in the ROI of the spot
image. Finally, a feature similarity index is designed to estimate the parameters of the laser spot.
Experiments on three datasets with different kinds of background light show the advantages of
our ACF method, with comparison to the theoretical method based on international standard, the
practical method used in the market products, and the recent benchmark methods AAMED and ALS.

Keywords: laser sensor; spot detection; image processing; ACF

1. Introduction

With the development of laser sensor technology, lasers are widely used in modern
society [1], such as in medicine, measurement, communication, and industry, due to their
characteristics of directional luminescence, high brightness, pure color, high energy density,
high monochromaticity, and high coherence [2,3]. For example, in the medical field [4,5],
laser coagulation is currently mainly used in the repair of retinal detachment. Laser has
the advantages of high precision, good hemostatic effect, and minimal invasiveness. In
the industry field [6], laser is increasingly occupying an important position. Laser-based
satellite communications are necessary, which can provide 10 to 100 times higher data
transfer rates than radios, due to the higher bandwidth [7].

The quality of laser directly affects the laser sensors. The study of laser beam quality
has always been an active field of laser science [8,9]. At the same time, the detection of
laser beam quality is inseparable from the laser spot, so the detection and analysis of the
laser spot has become an important research topic [10,11]. In laser applications, precise
measurement of the spot parameters is necessary. Therefore, it is of great significance to find
a suitable method to detect and analyze the parameters of the laser spot. At present, there
are mainly two kinds of methods for detecting the parameters, including the mechanical
scanning method and the optical imaging method [12,13].

Regarding the mechanical scanning method, it is popular, traditional, and suitable
for applications with little requirement for detection time. The method in [14] proposes a
diffraction measurement technique for the spot beam using the moving slit method. The
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method proposed in [15] uses the knife-edge method to measure the resolution of aerial
images. However, since this kind of method utilizes the mechanical scanning scheme, it is
time-consuming to obtain the parameters of the laser, and it is hard to give the variance of
the laser in a timely fashion. In contrast to the traditional mechanical scanning method, the
optical imaging method has faster measurement speed and higher instant measurement
accuracy. Due to the usage of the fast area array CCD for the detector, it can improve
the quality of laser products as a whole. Therefore, the latter attracts special attention for
measuring the spot size of laser beams. In fact, it can simultaneously and quickly measure
the light intensity distribution in the two-dimensional direction of the beam cross-section,
which is suitable for measuring the characteristic parameters of the laser beam shape [16].
At present, this scheme is used in many methods for detecting laser spot parameters. For
example, for speckle denoising and edge detection, the method proposed in [17] combines
median filter and Gaussian filter to eliminate speckle noise to improve the method of
detecting the center of the speckle. The proposed method of edge detection in [18] is based
on the least squares error method and subpixel edge-detection algorithm. The method
proposed in [19] performs edge detection with adjacent dispersion, which avoids threshold
selection, anisotropy in convolution computation, and edge discontinuity. The method
proposed in [20] is an unbiased non-local mean fuzzy C-means method based on local
Zernike moments for edge detection on spot images. The method in [21] proposes to use
surrounding pixel values as local context to estimate the probability of a pixel belonging
to an edge, which considers using surrounding pixels for edge detection. The method
proposed in [22] utilizes a contour-based segmentation scheme by employing the Canny
algorithm, which combines various operations such as morphology and reconstruction to
remove noise before performing edge detection.

The method in [23] proposes to perform image segmentation based on edge ratio
statistics and adaptive threshold to perform edge detection. The method proposed in [24]
is an edge-detection algorithm based on multi-scale, which can detect the weak edges
of images. The method proposed in [25] uses a small-area weak-edge signal-detection
method. This method detects edges by projecting boundary signals in the column direction
to increase the gradient of edges. The method proposed in [26] is an improved Canny
algorithm based on morphology, where the used morphological filtering not only removes
image noise but also strengthens the protection of image edges, and the double-detection
thresholds are used for further segmentation to obtain final edge points. The method
proposed in [27] provides a fractional-order adaptive p-Laplace equation image edge-
detection algorithm. This method preserves the texture and details of the image while
removing noise to detect image edges. The method proposed in [28] designs a quantum
image edge-detection scheme with enhanced quantum representation of digital images and
multi-directional grayscale morphology for the detection of image edges.

Related Work and Our Contribution

For spot center detection, the method in [29] proposes a reaction–diffusion (RD) system
as the main computational framework to robustly find laser spot centers. Lately, the least
squares method or the circle-fitting algorithm have been widely discussed in regards to
performing contour fitting and then estimating the center coordinates of the spot [30–33].
In recently work, the method proposed in [34] develops the Gaussian-weighted adaptive
threshold scheme to detect the position coordinates of the spot center. The method proposed
in [35] uses a random sampling scheme to select the candidate center of a circle and then
updates it iteratively. An iterative two-zone contraction method based on baseline strategy
is proposed in [36].

For spot-shape fitting, a method combining Gram Schmidt orthogonalization and least
square elliptic fitting is proposed in [37], where only two interferograms are needed for each
wavelength. The method proposed in [38] develops the supervised learning model based
on domain randomization technique. The method proposed in [39] designs a fractional
Fourier transform (FRFT)-based scheme, which uses the continuity of FRFT to extract the
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edge of the image to detect the spot shape. The method in [40] adds a concave and convex
arc determination algorithm on the basis of Hough transform to improve the accuracy of
spot-shape fitting. The method proposed in [41] provides a projection-invariant pruning
algorithm to fit the light spot shape. Methods in [42–46] use edge curvature information and
gradient information to segment the curve into arcs, and use the convexity and concavity
of the arc to fit the shape of the spot.

Specifically, in this paper, we propose a spot detection method for laser sensors
based on annular convolution strips. Our method comprehensively utilizes the statistical
information of the gray value of the spot and the Gaussian distribution characteristics of
the spot to improve the measurement accuracy and robustness of the spot parameters. It
is mainly based on the statistical properties of the spot image, and the statistical moment
formula is employed to calculate the ellipse center and the tilt angle, and they are updated
iteratively, together with the corresponding ROI region. Then, according to the Gaussian
distribution characteristics of the laser spot, the annular convolution strip is generated for
the convolution operation. Finally, a feature similarity index is designed to estimate the
parameters of the elliptical spot, including the long axis and the short axis.

2. Materials and Methods: Spot Detection Using Annular Convolution Filtering
2.1. The Gaussian Laser Spot

In our method, we first generate the background-free laser spot image using Matlab
software. For calculating the focused laser beam, we use the Rayleigh Formula (1) to
calculate the Rayleigh length, which is determined by the beam waist radius ω0 and
wavelength λ.

z0 =
πω2

0
λ

(1)

At present, the most commonly used laser wave lengths in the market are 1064 nm,
532 nm, and 355 nm. In our method, we focus on ω0 = 1 mm and λ = 532 nm. Based on the
Rayleigh length z0, one can further calculate the beam radius W(z) of the light spot during
the propagation process by

W(z) = ω0

√
1 + (

z
z0
)

2
(2)

where z represents the position distance of the propagation process.
Then, the points in the Gaussian beam image can be represented by

I(z, r) = I0 ∗ exp(−2 ∗ r2

W(z)2 ) (3)

where r denotes the physical distance of any point and the central point, and I0 represents
the maximum light intensity (we set I0 = 220 in the experiments). Denote η to be the ratio
of the total distance and the total pixel number, which is a known parameter of the sensor.
Then, in the case that the coordinate of the central point is (0, 0), one can rewrite (3) for any
point with pixel position coordinate (x, y) by

I(z, x, y) = I0 ∗ exp(−2η2 ∗ x2 + y2

W(z)2 ) (4)

For simplicity, we focus on z = 2 in this paper, and the Gaussian beam image with a
general central point (x̃, ỹ) is finally given by

I(x, y) = I0 ∗ exp(−2η2 ∗ (x− x̃)2 + (y− ỹ)2

W(2)2 ) (5)

The formula in (5) is used to generate the spot for experiments in Section 3.
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2.2. ROI Determination

In order to measure the laser spot parameters more accurately, one often needs to
first determine the ROI. We utilized the difference method to remove the background
information inside and outside the spot, and obtained an image with only light spot
information finally. Similar to the method in [47], the implementation steps of finding ROI
are as follows.

(1) Search the initial central coordinate O: list the gray value of each pixel of the given
image I, let the variable G be the maximum gray value and set the corresponding pixel
position as the initial central coordinate O(x̃, ỹ);

(2) Determine the initial ROI area: find the flag pixels whose gray values closely equal
to G × 13.5% in I, where the attenuating ratio 13.5% is empirical and also used in [47].
For each pixel in this flag set, count the pixel number between it and O, and denote the
maximum and minimum of the number set by m̃ and ñ, respectively. Finally, set m = 2m̃
and n = 2ñ to be the length and width of the initial ROI area;

(3) Update the central coordinate O(x̃, ỹ): according to the grayscale information in
the initial ROI, we used the following Formula (6) to calculate, approximately, the center
based on the statistical characteristics of the signal:

x̂ =

x̃+m̃
∑

x=x̃−m̃

ỹ+ñ
∑

y=ỹ−ñ
xI(x,y)

x̃+m̃
∑

x=x̃−m̃

ỹ+ñ
∑

y=ỹ−ñ
I(x,y)

ŷ =

x̃+m̃
∑

x=x̃−m̃

ỹ+ñ
∑

y=ỹ−ñ
yI(x,y)

x̃+m̃
∑

x=x̃−m̃

ỹ+ñ
∑

y=ỹ−ñ
I(x,y)

(6)

where I(x, y) is the gray value of the image at coordinate (x, y). It is notable that the order
of the pixels in I starts from left to right, up to down, i.e., the pixel at the left and up position
corresponds to the coordinate (1, 1). The updated central coordinate is x̃ = p(x̂), ỹ = p(ŷ),
where p(x) denotes the closest integer to x. Reset G = I(x̃, ỹ);

(4) Determine the final ROI: repeat steps (2) and (3) until convergence.

2.3. Annular Convolution Strip

In the process of convolution operation on the general image, one often strips the
convolution kernel along the coordinate axes. However, for the laser spot image, it suffers
from overlap of the edge information and the background light, resulting in low accuracy
and poor robustness of the parameters for detecting the spot. In this paper, according to
the energy distribution characteristics of the laser spot, we propose an annular convolution
strip to detect the contour of the laser spot.

Firstly, according to the statistical characteristics of the signal, the gray information of
the pixels in the ROI is used to calculate the tilt angle θ of the spot, and the corresponding
formula is as follows [47].

θ = arctan
A + B

C
(7)

where



A = I(x, y)(
x̃+m̃
∑

x=x̃−m̃
(x− x̃)2 −

ỹ+ñ
∑

y=ỹ−ñ
(y− ỹ)2)

B =

√√√√A2 + 4(
x̃+m̃
∑

x=x̃−m̃

ỹ+ñ
∑

y=ỹ−ñ
I(x, y)(x− x̃)(y− ỹ))

2

C = 2
x̃+m̃
∑

x=x̃−m̃

ỹ+ñ
∑

y=ỹ−ñ
I(x, y)(x− x̃)2(y− ỹ)2

, and (x̃, ỹ) denotes the cen-

tral coordinate.
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Then, we construct the following annular convolution strip according to parameters
about the center (x̃, ỹ) and the angle θ:

f (x, y, a, b) =
((x− x̃) cos θ + (y− ỹ) sin θ)2

a2 +
((y− ỹ) cos θ + (x− x̃) sin θ)2

b2 (8)

where (x, y) denotes the coordinate of the pixel point, a denotes the long axis, b denotes
the short axis (b ≤ a), and θ denotes the tilt angle. In the model (8), when f (x, y, a, b) = 1,
the annular convolution strip is generated for convolution operation. Figure 1 shows the
convolution operation that is carried out in the ROI of the spot image. Since the pixels of
the spot image are discrete, one needs to utilize an error parameter ε to determine the exact
pixel coordinates for convolution operation (see the model (9)).

Figure 1. Annular convolution strip.

φ(aik, bik) =

(
arg
{x,y}

( f (x, y, aik, bik)− 1)2 ≤ ε

)
(9)

Take Figure 1, for example, to show the elements of φ in (0). Denote the center of I
with the largest number 220 by O(x̃, ỹ) and the smallest red strip by f1. Then, by using (9)
under a very small parameter ε, the annular strip coordinates set φ1 corresponding to f1
obtains 12 elements, i.e., φi

1 = φ̃i
1 + (x̃, ỹ), ∀i, where φ̃1 is below:

φ̃1 = {(−3, 0), (−2, 1), (−2,−1), (−1, 1), (−1,−1), (0, 1), (0,−1), (1, 1), (1,−1), (2, 1), (2,−1), (3, 0)}

Once φ is obtained, a projection function g is used to generate the convolution factor φ̂,
where any element of φ̂ = g(φ) is often a constant. Regarding the process of the convolution
operation, it is given in the model (10) and further shown in Figure 2. Actually, we first
determine the location of the generated annular convolution strip through the center O,
then determine the direction of the strip according to the tilt angle θ, and finally perform
the convolution operation in the ROI area Î of the spot image. As the gray values of Î are
the same to the corresponding part of I, we do not discriminate between them in some
circumstances for the uniform usage of the pixel coordinates.

Mik = Î ⊗ φ̂(aik, bik) (10)

It is notable that the convolution operation is helpful to estimate the attenuation
attribute of the laser. Regarding the attenuation attribute, one often needs only a small
number of feature points to measure it. Based on the positions of these points in the guided
spot, we select the needed feature points M̂ik from the convolution points Mik, where the
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projection function g is set to be 1/Nik and Nik = |φ(aik, bik)| is the number of pixels in the
annular convolution strip. Finally, M̂ik can be calculated by:

M̂ik =

∑
(x,y)∈φ(aik ,bik)

I(x, y)

Nik
(11)

We further design a feature similarity index to determine the contour of the input
spot. This index reflects the Euclidean distance between the selected convolution result
M̂i =

[
M̂i1, · · · , M̂ik

]
and the standard and known spot feature M̃ =

[
M̃1, · · · , M̃k

]
, and it

is calculated by the following Equation (12).

Si =
√
(M̂i − M̃)(M̂i − M̃)′ (12)

Figure 2. The process of the convolution operation.

Then, the estimated contour of the input spot is determined according to the minimum
value of S. The proposed algorithm is summarized in Algorithm 1.

Algorithm 1: The proposed ACF algorithm.

Input: original laser spot image with background light;
Output: The long axis â and the short axis b̂ of the estimated spot;
Step 1: Calculate the ROI, the central coordinate, and tilt angle by using the method in Section 3.2;
Step 2: Obtain the optimal ratio of the short axis and the long axis using the following iteration,
where a = l, b = 1 in the initialization;

Set i = 1;
While b < a

Calculate ri = b/a;
Set k = 1, b = b;

While k < K
Let aik = a, bik = b, calculate Mik by Equation (11);
Update a = a + ∆a;

Update b = ari;
Update k = k + 1;

End while
Calculate the feature similarity Si by Equation (12);
Update a = l;
Update b = b + 1;

Update i = i + 1;
End while
Output the optimal ratio ri corresponding to the minimum value of S;

Step 3: Fitting a new ellipse using the results in Step 1 and Step 2, where the ratio of the energy in
this ellipse and that in ROI is chosen as the widely used value 86.5% (see [48]);
Step 4: Output the long axis â and the short axis b̂ of the ellipse in Step 3.
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Remarks 1. l is often set by the approximate pixel number between the center and the point with
80% of the maximum gray value in the direction of the tilt angle, K denotes the maximum strip
number, and ∆a is a positive integer, such as 5 without loss of generality.

In this section, the Gaussian feature of the laser is introduced first, and then the ROI
of the whole image is determined. Finally, the proposed algorithm ACF is derived for
detecting the laser spot in ROI. In next section, numerical experiments are given to show
the performance of our ACF, including the used data introduction, the parameter sensitivity
analysis, and the results with comparison to the related methods

3. Results

In this section, we conduct experiments on three datasets and perform a comparative
analysis with four related methods. In our experiments, each compared method is imple-
mented using MATLAB R2011b installed in a personal computer with Intel(R) Celeron(R)
2.4-GHz CPU, 2-GB memory, and the Microsoft Windows 10 operational system.

3.1. Datasets
3.1.1. Standard Dataset

Based on the steps in Section 3.1, we generated a Gaussian spot image using the
Matlab software. Figure 3 is a diagram of the lateral propagation of a fundamental mode
Gaussian beam. Figure 4 is the generated simulation spot image, where I0 = 220, and
x̃ = 640, ỹ = 512. The elements of the real spot feature vector M̃ in Equation (12) are 206.03,
200.82, 194.93, 189.17, 183.19, 176.68, 168.77, 161.12, 153.18, 145.26, · · · .

Figure 3. Lateral propagation diagram of the Gaussian beam.

Figure 4. Spot image without background light.
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3.1.2. Test Dataset

To generate the test dataset, the standard Gaussian spot in (1) was mixed with different
background light images. The following three datasets were tested in our experiments.
Dataset 1 was obtained by superimposing the standard spot data and the uniform light
background. Dataset 2 was obtained by superimposing the standard spot data with the
fluorescent light background. Dataset 3 was obtained by superimposing the standard spot
data with the natural light background.

3.2. Compared Methods

To verify the performance of our proposed method, we compared it with the following
four methods.

Theoretical method (TM) [48]: This method is mainly used for processing the spot
without background light. It uses the second moment of light intensity to define the beam
width. It first uses a two-dimensional area array detector to measure the light intensity
distribution of the laser beam on a certain transverse mode plane. Then, the first-order
intensity moment and second-order intensity moment of the laser beam are obtained
according to the light intensity distribution, and, finally, the long and short axes of the
beam are calculated.

Practical method (PM): This method is widely used in market products with the typical
software Anbeam. It uses the second-order moment of light intensity and the definition of
power flux to define the beam width. It first performs adaptive background filtering on the
collected light spots. Then, the center coordinates of the light spot are calculated by the
second moment method of light intensity. Finally, the least squares method is used to fit
the ellipse of the spot, and then calculate the long and short axes of the beam.

AAMED Method [44]: This method proposes an ellipse-detection algorithm based on
arc adjacency matrix. Firstly, the extracted edge lines are divided into elliptic arcs, and then
a direct arc adjacency matrix AAM is constructed. Secondly, through bidirectional traversal
of AAM, all possible combinations of arcs that could be real candidates for ellipses are
obtained, together with the cumulative matrix CM based on the accumulation factor CF.
Finally, a synthetic formula is given to calculate the verification score to estimate the long
and short axes of the beam.

ALS Method [45]: This method uses LSD algorithm to connect and group arc-support
line segments and generate the initial ellipse candidate set. Then, it clusters the ellipses that
may come from the same ellipse candidate set, and eliminate the ellipse with low quality.
At last, the long and short axes of the estimated ellipse are obtained.

3.3. Parametric Sensitive Analysis

In this subsection, we analyze the performance of the proposed method under different
parameters. Since the used strip number and select parameters ε of circular convolutions
may affect the values of the long and short axes of the spot, they are mainly tested, and the
performance index includes Ea = â− a0 and Eb = b̂− b0, where â, b̂ are the long axis and
short axis, respectively, estimated by using our ACF, and a0, b0 are the real long axis and
short axis, respectively.

(1) The number of convolution strip varies in the set {5, 10, 15, 20, 25}. The entire
convolution operation is performed for each update step, and the annular convolution
operation is performed on the three test datasets above. When the number of convolution
strips on the spot image is changed, the errors of the long and short axes are detected. The
experimental results are shown in Figures 5 and 6.

From these figures, we find that the errors of the long axis and the short axis of dataset
1 change greatly with the increase in the number of convolutions at the beginning. When
the number of convolutions becomes 20, the errors of both the long and short axes of
dataset 1 tend to be stable. When the number of convolutions becomes 10, the errors of
the long and short axes of dataset 2 and dataset 3 tend to be stable. We set the number of
convolutions to 20 in the experiments for comparison.
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(2) Before performing the convolution operation on the spot image, it is necessary to
set the select parameter ε to determine the exact pixels chosen to be calculated. If the value
of the selection parameter is changed, the number of the selected pixels in the spot image is
changed, and the corresponding errors of the long and short axes could be changed. They
are detected and the influence of this parameter on the stability of the long and short axes
is analyzed. The select parameter varies in {0.00075, 0.0015, 0.00225, 0.003, 0.00375, 0.0045,
0.00525, 0.006, 0.00675, 0.0075}, and the experimental results are shown in Figures 7 and 8.
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It can be seen from Figures 7 and 8 that the errors of the long axis and short axis in
dataset 1 change greatly and they are robust in the other two datasets. When the select
parameter is 0.0045, the errors of both the long and short axes of dataset 1 tend to be stable.
We set this parameter to 0.0045 in the experiments for comparison.

3.4. Compared Results

In this subsection, we conduct experiments on three datasets and evaluate our algo-
rithm with the laser spot feature (i.e., long axis and short axis), and the results are compared
with that of the related methods. We first use the parameters that generate the simulated
spot to obtain the standard data, which are used for comparison. To demonstrate the
generality of our method, we use different background light in different dataset. The
experimental results are show in Tables 1–3.

Table 1. Standard data and the results of the compared methods on dataset 1.

Standard
Data ACF TM PM AAMED ASL

Long axis a (nm) 158 159.09 156.41 167.2 165.93 168.97
Short axis b (nm) 132 132.57 124.63 133.75 132.75 135.03

Table 2. Standard data and the results of the compared methods on dataset 2.

Standard
Data ACF TM PM AAMED ASL

Long axis a (nm) 158 158.64 154.95 168.1 / 168.53
Short axis b (nm) 132 132.2 123.29 134.05 / 135.1

Table 3. Standard data and the results of the compared methods on dataset 3.

Standard
Data ACF TM PM AAMED ASL

Long axis a (nm) 158 159.94 156.7 171.4 / 169.64
Short axis b (nm) 132 133.28 125.17 137.25 / 136.54

Table 1 shows the comparison of spot parameter measurement results of dataset 1
for five different methods, from which one can see that all the spot parameters measured
by ACF have the smallest difference from the standard data. Regarding the long axis and
short axis, the differences of ACF are 1.09 and 0.57, the differences of TM are 1.59 and
7.37, the differences of PM are 9.2 and 1.75, the differences of AAMED are 7.93 and 0.75,
and the differences of ALS are 10.97 and 3.03, respectively. For the simulated spot images,
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the ACF method can fit the elliptical spot shape more accurately in the environment with
background light. The main reason is that the method ACF uses the annual convolution
filtering to fit the shape of the spot, which effectively protects the grayscale information of
the spot and improves the measurement accuracy of the spot parameters.

Regarding our method, after M̂ is calculated by the Equation (11), the elements of
its optimal feature are 205.31, 200.75, 196.57, 190.05, 182.47, 175.10, 167.38, 160.32, 152.69,
144.87, · · · , where the feature similarity value 4.87 is the smallest in the feature similarity
vector S calculated by Equation (12). Clearly, the elements of this optimal feature are close
to that of the standard feature M̃. Thus, our method has good performance.

Table 2 shows the comparison of spot parameter measurement results of dataset 2 for
five different methods, from which one can see that on the long axis and short axis, the
differences between ACF and the standard data are 0.64 and 0.2, the differences of TM are
3.05 and 8.71, the differences of PM are 10.1 and 2.05, and the differences of ALS are 10.53
and 3.1, respectively. As for AAMED, it does not work in this dataset, as it cannot find the
needed ellipse due to the interference of the background light.

For our method, the elements of the optimal feature selected from M̂, which is calcu-
lated by the Equation (11), are 205.89, 200.50, 195.34, 189.26, 182.17, 175.71, 168.29, 160.71,
152.94, 145.05, · · · , where the feature similarity value 2.72 is the smallest in the vector
S. These values are close to that of the standard feature M̃, implying the competitive
performance of our method.

Table 3 shows the comparison of spot parameter measurement results of dataset 3 for
five different methods, from which one can see that on the long axis and short axis, the
differences between ACF and the standard data are 1.94 and 1.28, the differences of TM are
1.3 and 6.83, the differences for PM are 13.4 and 5.25, and the differences of ALS are 11.64
and 4.54, respectively. Again, due to the interference of the background light, AAMED
does not work in this dataset. The experimental results demonstrate that ACF has the best
accuracy in measuring the spot parameters.

As for the details of our method, the elements of the optimal feature selected from M̂
are 205.38, 200.23, 195.33, 190.07, 182.95, 175.68, 168.27, 161.14, 153.44, 144.56, · · · , where
the feature similarity value 2.31 is the smallest in the vector S. Again, one can see that these
values are close to that of the standard feature M̃, clearly reflecting the effectiveness of
our ACF.

4. Discussion and Conclusions

In this paper, we propose a novel spot detection for laser sensors based on annu-
lar convolution filtering (ACF). We comprehensively use the gray value information of
the light spot and the Gaussian distribution characteristics of the light spot to improve
the measurement accuracy and robustness of the light spot parameters. We first use the
grayscale information of the light spot to calculate the central coordinate and tilt angle of
the light spot, and further determine the ROI. Then, based on the Gaussian distribution
characteristics of the laser spot, the feature of the spot is obtained by using annual con-
volution filtering, and the similarity index is used to determine the parameters of spot.
Finally, a new ellipse is constructed as the estimated spot. We conducted experiments on
three datasets with different background light. At the same time, we compare it with four
related methods. Experimental results show the effectiveness of our method. Specifically,
the parameters of the long axis and the short axis of the annular spot estimated by our
method are much closer to the real parameters than that of the compared methods, due to
the development of statistical features of the image.

It is worth noting that the ellipse estimated by PM used in the current commercial
system is often much bigger than the real one due to the interference of background light.
The proposed method has advantages in detecting the laser beam characteristics under the
interference. These characteristics play critical parts in generating a robust beam profiler,
which can monitor the working status of the laser products.
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Generally, the study of the spot detection method is very important, especially in the
case that there is background light. Actually, an excellent beam profiler is necessary for the
laser user to process the material precisely, as it can reduce the irreversible damage to the
material by analyzing the quality of the laser in prior. It leads to the necessity of our study,
which can detect more precisely the unknown spot under the background light.

In this study, we focus the detection method based on the image processing. Our
method performs the best during the compared methods. In future, it could be extended
further to process more complex background light, such as the dynamic light, the strong
light, and so on.
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