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Abstract: In this paper, a structural health monitoring (SHM) system is proposed to provide automatic
early warning for detecting damage and its location in composite pipelines at an early stage. The
study considers a basalt fiber reinforced polymer (BFRP) pipeline with an embedded Fiber Bragg
grating (FBG) sensory system and first discusses the shortcomings and challenges with incorporating
FBG sensors for accurate detection of damage information in pipelines. The novelty and the main
focus of this study is, however, a proposed approach that relies on designing an integrated sensing-
diagnostic SHM system that has the capability to detect damage in composite pipelines at an early
stage via implementation of an artificial intelligence (AI)-based algorithm combining deep learning
and other efficient machine learning methods using an Enhanced Convolutional Neural Network
(ECNN) without retraining the model. The proposed architecture replaces the softmax layer by
a k-Nearest Neighbor (k-NN) algorithm for inference. Finite element models are developed and
calibrated by the results of pipe measurements under damage tests. The models are then used to
assess the patterns of the strain distributions of the pipeline under internal pressure loading and
under pressure changes due to bursts, and to find the relationship of strains at different locations
axially and circumferentially. A prediction algorithm for pipe damage mechanisms using distributed
strain patterns is also developed. The ECNN is designed and trained to identify the condition of pipe
deterioration so the initiation of damage can be detected. The strain results from the current method
and the available experimental results in the literature show excellent agreement. The average error
between the ECNN data and FBG sensor data is 0.093%, thus confirming the reliability and accuracy
of the proposed method. The proposed ECNN achieves high performance with 93.33% accuracy
(P%), 91.18% regression rate (R%) and a 90.54% F1-score (F%).

Keywords: Fiber Bragg grating (FBG) sensory system; damage detection; structural health monitoring
(SHM); deep learning; Convolutional Neural Network (CNN); composite pipelines

1. Introduction

In order to meet safety and environmental regulations, it is vital to ensure the reliability
of operating gas and oil pipelines. The failure of a large number of pipelines in several
countries in recent years has led to big losses in human lives, destruction of residential
and industrial buildings, and has caused complicated environmental hazards [1]. These
disasters have resulted in increasing research activities dealing with the issues related to
the failure prevention of pipelines.

Sensors 2023, 23, 3887. https://doi.org/10.3390/s23083887 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23083887
https://doi.org/10.3390/s23083887
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3618-1187
https://orcid.org/0000-0002-2793-5194
https://orcid.org/0000-0002-1146-8384
https://doi.org/10.3390/s23083887
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23083887?type=check_update&version=1


Sensors 2023, 23, 3887 2 of 29

Thodi et al. [2] pointed out that hydrocarbon leakage constitutes a serious impact on
the safety of chemical equipment operations. Studies have shown that corrosion is the
main cause of approximately 15% of leaks in chemical plants and accounts for 21% of gas
pipelines failures. Corrosion patterns also account for 24.6% of pipeline leaks in processing
plants. In addition, 40% of accidental hydrocarbon releases into the environment are related
to corrosion. Papavinasam et al. [3] studied weight loss, linear polarization resistance (LPR),
electrochemical impedance spectroscopy (EIS), the reliability of electrochemical noise (EN),
and the performance of inhibitors used to monitor oil and gas pipelines using external
hydrogen probes. Sinha [4] developed an ultrasonic sensing method for monitoring natural
gas pipelines. He demonstrated how to use this technique to monitor various types of
defects in pipelines and use a transducer in the pipeline to detect defects on the outside of
the pipeline (for example, in a 0.5 mm groove on a 7 mm thick tube). Jawhar et al. [5] focused
on the use of wireless sensor networks in petroleum pipelines and also for monitoring and
protection of natural gas and water pipelines. Their proposed sensor network demonstrated
that it could reduce installation and maintenance costs, reduce energy consumption, and
increase the reliability and efficiency of pipeline operations. Ceravolo et al. [6] used the
spectral entropies method for damage detection and localization of single and multiple
points of damage in a buried steel pipeline by measuring the strain. They demonstrated
that the wiener entropy or spectral flatness method is emerging as an efficient method for
damage assessment.

It is critically important to provide effective and suitable SHM systems for structures,
especially dangerous structures that would cause catastrophic loss of life if their failure
occurred suddenly without warning. The main use of SHM systems is to diagnose the
health and safety of structures over time through the collection of structural health datasets
from sensors installed in the structure and analysis using assistant algorithms to predict the
remaining life of the structure. Therefore, catastrophic accidents can be prevented before
they happen by detecting the different stages of the damage over time prior to a potential
failure [7–10]

Several studies have been reported on SHM methods for pipelines. Morison [11]
introduced an SHM scheme for detecting internal corrosion in pipelines. Park et al. [12]
proposed an SHM-based impedance method using piezoelectric materials to monitor
damage in pipelines. They used a high-frequency excitation method to monitor the local
structure area to detect the change in structural impedance associated with impending
damage. Stoianov et al. [13] improved the SHM system proposed by Jawhar by increasing
the spatial and temporal resolution for wireless sensor networks (WSN) based on real-time
data monitoring. They demonstrated that WSNs could monitor large-diameter and large-
scale water pipelines. Thien et al. [14] discussed the benefits and feasibility of applying an
SHM system that relies on the deployment of macro-fiber composite (MFC) transducers
for sensor arrays. Since the MFC patch is flexible, it can be permanently installed on the
curved surface of the pipe body. To identify and locate damage in a pipeline, they studied
Lamb wave-based MFC sensors to detect cracks and corrosion. Jin and Eydgahi [15]
described a monitoring system for pipelines via a platform of sensor networks. They
implemented their technique in pipeline systems for the distribution and transportation
of oil, natural gas, water, and sewage. They discussed how their sensor network could
detect, locate and quantify bursts, leaks, and other abnormalities in a pipeline system.
Peairs et al. [16] utilized sensor nodes to monitor oil pipelines and studied the linear
sensor placement problem to maximize their lifetime. Tapanes [17] presented current
research on the impedance-based SHM technique at the Center for Intelligent Material
Systems and Structures. They applied high-frequency excitations as the basic principle in
their technique by using piezoelectric transducers to measure the structure’s impedance
through the current and voltage monitoring. They found that the impedance methods
have drawbacks and that methods based on this approach are expensive and not practical.
Park and Inman [18] introduced a variety of SHM systems to monitor the integrity of
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pipelines while in operation and proved their approach could prevent catastrophic failures
and reduce the costs of maintenance and inspection tasks.

Once Fiber-Optic (FO) Sensors appeared in the mid-1970s, they became highly valued
by relevant research departments in various countries. The United States is the country
with the earliest and the highest level of research on FO sensors, and its progress in military
and civilian applications is very rapid. In terms of military applications, their research
and development mainly concentrates on using FO sensors for underwater detection, FO
sensors for aviation monitoring, FO gyroscopes, and FO sensors for nuclear radiation
detection. In the mechanical and civil engineering fields, FO sensors are mainly used to
monitor important parameters such as current, voltage, and temperature of the power
system, and to monitor stress changes in bridges, pipelines, and also important buildings.

Numerous studies have been carried out on pipelines using FO sensors to estimate
the effects of pipeline damage using both experiments and numerical prediction methods.
Nikles and Briffod [19] introduced a technique to address the impact of blockages in
hydrocarbon pipelines using a Fiber Bragg grating (FBG) sensing system which provides
distributed sensing capabilities. Their proposed approach provided results that simulate
the effect of pipeline blockage, which proved the validity of their introduced technique.
Inaudi and Glisic [20] reported many important field application examples of fiber-optic
(FO) sensing with the ability to measure temperature and strain at thousands of points with
a single FO. Their approach demonstrated important applications for monitoring slender
pipelines installed in oil wells and coiled tubing. Their approach could detect pipeline
leaks and prevent the failure of pipelines installed in refineries and could also be used
for detecting hot spots in high-power cables. Meinert et al. [21] proposed a method for
detecting and preventing serious damage to pipelines mainly caused by interference from
several noise sources. They showed their permanent monitoring semi-intelligent system
could reduce the need for online inspection. Yan and Chyan [22] discussed the theoretical
and numerical studies related to suppressing unfavorable FO nonlinearity and Stimulated
Brillouin Scattering (SBS) using a statistical approach.

To develop a non-slippage FO, the bonding and point fixation methods were inves-
tigated experimentally and the critical effective sensing length for long-gauge fiber was
studied [23]. A combination between an artificial neural network and a distributed FO
vibration sensing (DOFVS) system based on long-distance fiber has been used to collect the
responses in the vibration signal of soil around a pipeline [24–27]. In addition, the technol-
ogy of the DOFVS system based on a phase-sensitive optical time-domain reflectometer
(OTDR) was used to develop a water pipeline hydrostatic leak test [28] and fatigue damage
identification for composite pipelines systems using electrical capacitance sensors [29].

According to the background of the literature presented, most of the conventional
non-destructive testing (NDT) techniques are not applicable for current research work. It
has been shown that the conventional methods do not provide the necessary information
about either the current or future performance of composite pipelines systems and are
not suitable for either new or old composite pipelines systems. In this case, FO sensors
could be an effective alternative. In this study, a novel monitoring approach is developed
to detect damage at an early stage in composite pipelines. The proposed approach relies
on designing an integrated sensing-diagnostic SHM system with the capability to detect
damage in composite pipelines at an early stage. This is achieved by implementing an
artificial intelligence (AI)-based algorithm combining deep learning and other efficient
machine learning methods using an Enhanced Convolutional Neural Network (ECNN)
without retraining the model. The ultimate goal of the research is to provide pipeline
operators with a continuous, real-time, active warning system for the detection of damages
in composite pipelines using distributed strain sensors.

2. Methodology

The methodology used in this research aims for damage detection and safety assess-
ment of composite pipeline structure via a highly effective and reliable approach, and then
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integrates this approach as a practical SHM which is reliable for old and new piping system
operation.

The aim is to investigate the feasibility of developing and operating a SHM system
for the early detection of damage occurring in composite pipelines. The flowchart of the
proposed method is shown in Figure 1.
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Figure 1. Methodology flowchart.

More specifically, this paper intends to:

(1) Establish an understanding of the FBG sensor characteristics in a composite structure
made of BFRP composite pipe.

(2) Assess the effect of damage occurring in the BFRP composite pipeline on the dis-
placement response from the dynamic signal for every FBG, including on dispersion,
attenuation, and scattering.

(3) Develop a sensory health monitoring platform for early detection of damage and
damage classification of the composite pipeline.

(4) Propose a novel AI-based SHM that integrates with the FBG sensors to provide
damage classification in composite pipelines.
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(5) Suggest a hybrid approach to improve the accuracy of automatic identification of
damage in pipelines by combining deep learning and machine learning in a new
algorithm, known in this research as ECNN using a hybrid CNN + k-NN algorithm.

(6) Verify the effectiveness and accuracy of the proposed AI algorithm based on the
four indexes that include the true-positive rate (TPR), true-negative rate (TNR), false-
positive rate (FPR), and false-negative rate (FNR), the accuracy rate (P), regression
rate (R) and F1-score (F) can be determined for proposed AI algorithm.

3. A Finite Element Model (FEM) of a Composite Pipeline
3.1. Damage Model for Composite Structures

In recent years, there have been dramatic increases in composite material use in
pipelines. This due to their unique advantages in mechanical properties, particularly
specific strength and specific stiffness, as well as better fatigue resistance and damage
tolerance capabilities.

The specific characteristic of the damage is that the three components of FRP com-
posites (matrix, fiber–matrix interface, and fiber) do not fail at the same time. The most
frequent type of damage is fatigue damage which is caused by cyclic loading effects. In
this type of damage, the failure is caused by reductions in the residual strength in a part
of a composite structure, depending on their type and size [30]. There are many forms
of damage that can occur in a composite structure, such as matrix cracks, matrix-fiber
debonding, fiber breakage, and delamination.

There are three regions in which failure mechanisms occur in composite structures: the
matrix (I), matrix–fiber interface (II), and fiber (III). These are illustrated in Figure 2. Region
I is distinguished by the coalescence of microcracks due to shear, which causes progressive
damage over fatigue cycles. After that, the microcracks’ number and size increase with the
number of cycles. Fatigue damage progresses to region II once the cracks approach the
fibers along the matrix–fiber interface. The cracks grow in the direction of the fibers due to
the normal stress and strain components and this also is responsible for delamination and
then progression to region III, in which fiber breakage occurs, leading to fiber failure [31].
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3.2. BFRP Composite Pipeline Properties

The FEM of a composite pipeline is established by ANSYS software, and then both
free meshing and tetrahedron meshing are applied. The size of the minimum element and
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element type of the composite pipeline are selected as 0.005 m for element size and SHELL
181 for element type, respectively. The composite pipeline dimensions are 1 m long, the
distribution of which is [−45, 45,−45, 45,−45]. The density of the model is 2.8 g/cm3.
The internal radius (ri) is 0.04 m. The external radius (ro) is 0.043 m, and the length (L) is
1.0 m. The two ends of the pipe are both fixed as boundaries. Table 1 shows a detailed list
of the mechanical parameters of the BFRP composite pipeline properties, where Ex, Ey, Ez
are the elastic modulus in the ‘x’, ‘y’ and ‘z’ directions, Gxy, Gxz, Gyz are the shear modulus
in the ‘xy’, ‘xz’ and ‘yz’ planes, and νxy, νxz, νyz are the Poisson’s ratio in the ‘xy’, ‘xz’ and
‘yz’ planes.

Table 1. BFRP composite structural properties.

Ex
(
Pa× 10 9) 93.5

Ey
(
Pa× 10 9) 20

Ez
(
Pa× 10 9) 20

Gxy
(
Pa× 10 9) 8.5

Gyz
(
Pa× 10 9) 2.35

Gxz
(
Pa× 10 9) 2.35

νxy 0.28

νyz 0.30

νxz 0.28

3.3. Damaged Pipeline System Modeling

The damage is modeled by reducing the stiffness of the pipeline. An enlarged view of
damaged areas (marked in purple) in the pipeline is shown in Figure 3.
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The FBG sensor is a type of non-destructive test used in situ on a structure to measure
the generated vibration applied to the structure due to external excitation sources. When
the vibration source is environmental loads (e.g., wind, traffic, human activity), then the
structures are subjected to loads expressed as ambient oscillation or vibration.

The ambient excitation force applied in this work is numerically simulated by MAT-
LAB (−0.4~0.4 N) as shown in Figure 4a. Its frequency range is first detected at ap-
proximately 1–400 Hz. Its spectrum is shown in Figure 4b. The ambient excitation
force is perpendicular to the wall of the pipe. Three damage levels are introduced, i.e.,
location: D1: 0.42–0.48 m, D2: 0.52–0.58 m, and D3: 0.62–0.68 m. It is assumed that all
the damage occurs towards 180–360◦ and occurs at the pipe internal surface. The damage
cases D1 and D2 have the same damage range with different locations and D3 has a greater
damage range than both D1 and D2 combined (D1 + D2) [32–34].
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3.4. Modal Analysis of the Pipeline

The 1st, 2nd, 3rd, and 4th frequency mode shapes of the intact pipeline are listed in
Figure 5 and Table 2 for different damage cases (D0–D3).
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Table 2. Pipeline frequency orders.

Damage
Frequency Order

1st Order 2nd Order 3rd Order 4th Order

D0 (Hz) 233.55 315.62 824.38 3153.85

D1 (Hz) 232.85 312.67 822.90 3151.45

D2 (Hz) 232.13 312.64 822.48 3150.98

D3 (Hz) 230.79 310.11 820.85 3147.73
Remark: D0 is UDP.

4. System Modeling and Simulation
4.1. Stress–Strain Analysis in a Stressed Thick-Walled Pipe

Figure 6 shows a stressed thick-walled pipe with the radius r. The solid line is an
unstrained pipe and the dashed line is a strained pipe.
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As shown in Figure 6, the strain components of the pipe can be expressed by:

εH =
2π(r + u)− 2πr

2πr
=

u
r

, εL = constant, εr =
(δr + δu)− δr

δr
=

δu
δr

, (1)

where εH is the hoop strain, εL is longitudinal strain, and εr is radial strain.
By applying the stress–strain relation (tri-axial tresses) for a pipeline under hydrostatic

internal pressure (P), the stress–strain relation can be written as:

εL = σL − υ(σH + σr) = σL − υ(σH − P) (2)

EεH = E
u
r
= σH − υ(σL + σr) = σH − υ(σL − P) (3)

Eεr = E
du
dr

= σr − υ(σH + σL) = −P− υ(σH + σL) (4)

where E is the elastic modulus, υ is Poisson’s ratio, σH is hoop stress, σL is longitudinal
stress, and σr is radial stress.

From the equilibrium of the pipe element shown in Figure 6, we can find the hoop
stress differential equations by:

r(1− υ)
dσH
dr
− r(1− υ)

dP
dr

= 0 (5)

By solving the above differential equations and applying the general boundary condi-
tions of the pipe in the stress equation, the stress components in the pipe (see Figure 6) can
be expressed by:

σH =
Pri

2

ro2 − ri
2

(
1 +

ro
2

r2

)
, (6)

σr =
Pri

2

ro2 − ri
2

(
1− ro

2

r2

)
, (7)

σL =
Pri

2

ro2 − ri
2 f or tube, σL = 0 f or pipe (8)

The pipe deformation (δ = u) in Figure 6 can calculated by Equation (9):

δ =
(1− υ)

E

(
Pri

2

ro2 − ri
2

)
r +

(1 + υ)

E

(
Pri

2ro
2

r(ro2 − ri
2)

)
, (9)

4.2. Structural Health Monitoring (SHM)

SHM is a new field of research and development that emanated from the study of
smart materials and structures. SHM has attracted considerable attention in recent years
for assessment in infrastructure and aerospace vehicle applications. The goal of SHM
is to develop automated systems that can provide continuous monitoring, inspection,
and detection of damage to structures, thereby minimizing the need for human labor. A
typical SHM system embraces three main sub-systems as shown in Figure 7: (i) a sensory
system, (ii) a data processing system (including data acquisition, transmission, and storage),
and (iii) a health assessment system (including diagnostic algorithms and information
management). At a higher level, an SHM system can include a fourth sub-system with
repair capabilities [35–37].
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4.3. Fiber-Optic Sensors

Sensing technology is one of the fastest-growing forms of technology in the world
today. The new sensors not only pursue high precision, large range, high reliability, low
power consumption, and miniaturization but are also developing towards integration,
multiple functions, intelligence, and networking to meet the needs of various fields such as
industry, agriculture, national defense, and scientific research.

4.3.1. Common Types of Fiber-Optic Sensors

Selecting the correct FO sensor types to monitor the excitation forces applied to the
structure is important for detection. Before examining the details of the working prin-
ciple of FO, a concise review of the common types of FO sensors is provided. Among
the common types of FO sensors, point sensors, and distributed sensors are of interest
in the pipeline monitoring field. Figure 8 presents a classification of FO sensors based
on guiding optical principles. These include distributed sensors for distributed sens-
ing in large structures, short-gauge sensors for point-sensing in homogeneous materials,
such as steel, and long-gauge sensors for point-sensing in heterogeneous materials, such
as concrete.
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4.3.2. Fiber Bragg Grating (FBG) Sensors Description

The FBG system consists of an article interrogator that projects infrared light into the
core of an optical fiber. As a white color, broadband light travels along the fiber, passing
through grating segments, which are also known as FBG and consist of a series of article
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filters. These grid segments can filter out certain wavelengths or colors while letting
others through.

This happens by periodically changing the refractive index of the fiber, which deter-
mines which wavelengths can pass through and which are reflected. External factors such
as heat and vibration cause the reflected light to change wavelength. These variations can
then be translated into physical engineering units such as temperature and stress. A type
of FBG detection technology is shown in Figure 9.
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4.3.3. FBG Sensors Working Principle

The distributed FBG detection method uses FBG as a sensor to detect vibration signals
along the pipeline. The optical cable is affected if ambient events such as human activities
or mechanical operations occur close to sensing area. Such events generate vibration signals
and cause the strain in the optical cable, resulting in the phase of light in the optical cable.
Hence, the polarization state changes, and the system recognizes and registers the detected
changes (see Figure 10). As illustrated in Figure 10, the Fiber Bragg grating (FBG) sensor
system is integrated with a broadband light source, FBGs, a wavelength interrogator, and
system software.

When the broadband light is projecting at an FBG, reflection at the FBG occurs. Some
light with wavelengths that satisfy Bragg condition of Equation (10) is reflected, and the
remaining light passes the grating:

λB = 2ne A (10)

where λB is the Bragg wavelength, ne is the effective refractive index, and A is the grating
period. When strain is produced in an FBG, a proportional shift of the Bragg wavelength
is expected to occur. To determine the strain easily, the change in wavelength is analyzed.
This is the principle used detect the grating period change in FBG sensors due to stress
variation; therefore, the stresses can be measured without noise influence and light intensity
disturbance. The wavelength shift is proportional to the strain, and absolute strain can be
measured by Equation (11):

∆λB
λB

=

{
1− ne

2

2
[P12 − υ(P11 + P12)]

}
εB (11)

where Pij are the silica photo-elastic tensor components, εB is the strain of the fiber grating
and υ is the Poisson’s ratio.
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4.3.4. Pipeline Monitoring Based FBG Sensor Technology

The FBG sensors that have been developed can be used for detecting damage in the
pipelines. These include FBG-based pressure sensors for finding the point of leakage. The
mechanisms of these sensors depend on, when a leak initially occurs, the pressure drop in a
pipeline in either direction of the leakage point. Determining the point of leakage depends
on the time taken for the wave to reach the FBG-based pressure sensors. The advantages
and possible challenges of the FBG sensor system are as follows:

FBG sensors for pipelines can not only detect damage but also provide early warning
of hazardous pipeline events that occur along the pipeline. They have features not found in
traditional sensing technology. The key FBG sensor technologies are described as follows:
The ability to measure the temperature and strain of thousands of points with a single fiber
is very important for the inspection of slender structures (such as pipelines, pipelines, oil
wells, and coiled tubing);

(1) Reliable monitoring and locating of small and slow leakages of gas, oil, heating, etc.;
(2) The ability to identify man-made pipeline damage and provide real-time alarm and

positioning with a very high accuracy rate and very low false alarm rate;
(3) The system can provide an intelligent alarm function based on the geographic infor-

mation system (GIS) platform for monitoring requirements;
(4) Continuous distributed measurement along the line without blind spots, with self-

diagnosis function, real-time detection and localization of damage by the detection
sensor system;

(5) One optical cable can perform temperature strain detection and communicate at the
same time;

(6) High-temperature and low-temperature resistance, long-distance testing, centralized
ground signal processing;

(7) Passive, intrinsically explosion-proof, especially suitable for use in flammable and
explosive environments;

(8) Good anti-corrosion and anti-interference performance;
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(9) Long-term stability and measurement accuracy which are not affected by the loss of
transmission fiber.

4.3.5. Design Theory of FBG Strain Sensor Array

The sensor cannot gauge the hoop strain at a certain point until it is closely adhered to
the outer wall surface of the pipeline. In this work, due to the advantages of FBG distributed
sensing, a single sensor with a multi-point monitoring system is used to monitor external
strain changes. The FBG distributed sensor is installed on the outer wall surface of the
pipeline with arbitrary orientation (ϕ) as shown in Figure 11a. The relative parameters of
the packaging FBG parameters are selected as shown in Table 3.
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Table 3. Fiber-optic parameters.

Parameter Optical Fiber

Elastic Modulus (MPa) EB = 70

Diameter (mm) DB = 0.125

Area (mm2) AB = 0.01227

Pitch (m) qB = 0.1

Length (m) LB = 0.86π

Arbitrary orientation ϕ = 45◦

From Figure 11b, the length of the FBG sensor (LB) can be approximated as:

LB = πDNt (12)

where Nt is the total number of the sensor coils, and D is the outer diameter of the sensor
coils (see Figure 11b). Nt can be calculated by the formula:

Nt =
L− DB

qB
, D = 2ro + DB (13)

where DB is the sensor wire diameter, and qB is the pitch between the grating. Finally the
length of FBG sensor can be estimated as:

LB = π

[
(2ro + DB)

L− DB
qB

]
(14)

The proposed sensor sensitivity can be determined by assuming that the relationship
between the pipe hoop strain εH and the fiber grating strain εB is based on the fact that the
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hoop deformations of the sensor and pipe structures are the same, i.e., the effect of sensor
stiffness on the pipe is ignored. Moreover, the loss of strain due to the sensor fixation type
is not considered. The pipe hoop strain εH and the fiber grating strain εB can be expressed
as follows:

εB =
∆LB
LB

=
M

EB AB
(15)

where M is the internal force through the sensor due to a certain change in the pipe interior,
and the hoop strain at the outer radius of the pipe (r = ro) is given as:

εH =
σH
E

=
2Pri

2

E(ro2 − ri
2)

, (16)

And From Equation (12):

ro =
qB
2π

(
LB
L

)
, (17)

The relationship between the pipe hoop strain εH and the fiber grating strain εB, taking
into consideration the angle of the sensor, ϕ as shown in Figure 11b, can be expressed
as follows:

ro =
qB
2π

 LB

L εB
εH

= cos ϕ = ME
2PEB AB

((
qB

2πri

(
LB
L

))2
− 1
)
, (18)

KB is the strain sensitivity coefficient of the FBG strain sensor array and is given as:

KB =
LB
L

= 0.86π, (19)

The relationship between the strain and the wavelength of the grating in this band can
be approximated as:

εB =
∆λB

0.86π
, (20)

Therefore, the relationships between the center wavelength of the grating, the hoop
strain εH , and internal pressure P at the outer radius of the pipe (r = ro) are determined by
the Formulas (14), (17) and (18):

εH =
∆λB

0.86π cos ϕ
, (21)

P =
∆λBE

(
ro

2 − ri
2)

1.72πri
2 cos ϕ

(22)

Figure 12 shows the relationship between the wavelength of the different gratings of
the sensor, the hoop strain εH , and the internal pressure P at the outer radius of the pipe
(r = ro).

As shown in Figure 12 the linear relation between pressure wavelength, and hoop
strain with sensor correlation factor reaches 0.9677, which indicates there is little difference
between sensor gratings. From Figure 12 it can be concluded that the proposed sensor array
has stable performance and is sensitive and suitable for monitoring the pipeline subject of
the current study.
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4.4. The BFRP Pipeline Damage Identification Model

In the Section 4.3.5, the sensitivity, stability, and linearity of the proposed FBG sensor
network were verified for monitoring the pipeline, and the sensor response (pipeline
displacement) was studied for the intact and damaged pipeline system. However, the
various levels of damage are difficult to identify due to the inherent complexity in 3D
modeling. Therefore, in order to identify the damage, an efficient method must be used
to extract the FBG sensor response features. In damage identification problems, a hybrid
CNN + k-NN (ECNN) can be used to test the hypothesis in the presented research. It can
record better results than a traditional network CNN + softmax (TCNN). To evaluate this, a
trained CNN classification response of the neural codes learned from the same CNN are
compared, but a k-NN classifier is applied to the output of the last hidden layer. Three
configurations are evaluated to improve the accuracy of the CNN algorithm after training
with standard backpropagation (BP) in the inference stage (see Figure 13):

(1) Use of the CNN softmax layer, which is known in this research as TCNN.
(2) Using the last hidden CNN layer (before the softmax layer) to obtain the neural codes

that are passed to a k-NN which compares them to the prototypes of the training set
using the Euclidean distance in order to obtain the most likely class, known in this
research as ECNN.

(3) Using the k-NN directly on the raw data without any representation learning.
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4.4.1. A k-Nearest Neighbor (k-NN) Algorithm

Because of its ease of implementation and high efficiency, the k-NN algorithm is
considered one of the most successful in past SHM applications. The method of k-NN
application is based on searching for k points in a reference database for the closest points
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to the measured data according to a function that represents the distance between them
that represents the optimal solution of minimum distance values of k.

As the target of this new algorithm, the sensor displacement datasets and TFS maps
before and after damage are used as training features for damage detection in the composite
pipe k-NN damage prediction datasets with the following steps:

(1) Integer k should be assigned first.
(2) According to dataset distribution, the optimized k is determined so that we can iterate

the integer number to be the best k that results in the highest accuracy.
(3) The damage datasets pass through min-max normalization and z-score standardiza-

tions, as shown in Equations (23) and (24).
(4) This is because when a pair of features is inputted, the k-NN searches the nearest

k-pair of features using Euclidean distance on the same scale.

Min−Max normalization (X) =
(X−min(X))

(max(X)−min(X))
(23)

z− score standardization (X) =
(X− main (X))

StdDev (X)
(24)

The performance of k-NN results depends on the effectiveness of the method to mea-
sure the distance between the model datasets feature and new test inputs. The Euclidean
method is the optimal method usually used for distance calculations between test and
trained data. We measure the distance along a straight line from point (x1, y1) to point
(x2, y2).

Euclidean Distance =

√
n

∑
i=1

(xi − yi)
2 (25)

Figure 14 shows the k-NN algorithm. For selecting the optimum neighbors number
(k), a genetic optimization method is used.

Figure 15 shows the flowchart of the proposed genetic algorithm (GA) for selecting the
optimum k. At too small values of k (k < 10), the prediction error of the sensor displacement
is very high, and the error decreases by increasing k from 10 to 100. The least error of
prediction occurs at k = 100 and at (k > 100), the error increases again. Table 4 presents the
k-NN internal parameters of the current study.

Table 4. k-NN internal parameters.

Parameters Value

Optimum Neighbors number (k) 100

Optimization method Genetic algorithm (GA)

Distance Euclidean

Bucket size 50

Include ties 0

Distance weight equal

Break ties smallest

Standardize data 1

Type Prediction

min(X) [2.840, 41.322]

StdDev (X) [0.485, 1.016]

Weight (W) 74.9 × 10−5
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4.4.2. The Convolutional Neural Network (CNN) Modeling

The connection architecture of the proposed CNN layer is presented in Figure 16. As
shown in Figure 16, the CNN structure generally has a multi-layer architecture, including
convolution, pooling, activation, and full connection layers. The input of the network is
TFS images of the pipeline before and after damage. The significant local features are then
extracted via the convolutional and pooling layers. Finally, the damage identification is
outputted with the full connection layer.
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The fully connected layers in the CNN architecture are located as shown in Figure 17
between the input (features) and the output (target prediction) layer for the extraction of
higher-level features through the training process.
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where xl
j is the ith output map in layer l; xl−1

i is the ith output map in layer l-1; wl
ij is the

weight; bl
j is the bias; and f (·) is a nonlinear function that is applied component-wise.

One important stage of the neural network is the activation function that gives it the
required nonlinearity, where a neural network becomes simple linear without it (essentially
a probability distribution).

Softmax is used for multi-classification problems, where it normalizes the neural
network’s output to fit between “0” and “1”. It is applied to represent the certainty
“probability” in the network output. The expression of the softmax activation function is
given as Equation (27):

σ
(→

z
)

i
=

ezi

∑K
j=1 ezi

(27)

where
→
z is the input vector; zi values are the elements of the input vector; ezi is the standard

exponential function applied to each element of the input vector, and K is the number of
classes in the multi-class classifier.

The pooling layer is usually arranged between sequential convolution layers. It is
used to reduce the feature maps’ locative size. This is also called undersampling, by which
network overfitting can be controlled. The operations that can be used for undersampling
are maximum pooling and average pooling. It can be expressed as the average pooling
feature of the pooling layer in Equation (28), assuming the pooling size is c, jth is the region,
and lth is the number of pooling layers:

xl
j = f

(
Bl

jmean
(

xl−1
j

)
+ bl

j

)
(28)

where Bl
j is multiplicative; and mean(.) is the average operation. The convolution and

pooling layers work together to detect the local connections, merge similar features and
remove unnecessary irrelevant details.

5. Results and Discussion
5.1. The Displacement Response Identification

Figure 18 shows the displacement of ambient excitation measured from the FBG sensor
for the undamaged pipe (UDP) model D0 and damaged pipe (DP) models D1, D2, and D3,
respectively. The boundaries are fixed for both two ends of the pipeline. At a distance of
0.2 m from the pipeline right support is the position at which the ambient forces are applied.
The various levels of damage along the pipeline are considered.
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Figure 19 shows the time–frequency spectrogram (TFS) for the undamaged pipe (UDP)
model D0 and damaged pipe (DP) models D1, D2, and D3, respectively. The TFS in this
paper are extracted from the direct wave packet before and after pipe damage, and the
frequency of the Gaussian wavelet transform is set from 50 Hz to 300 Hz with an interval
of 1 Hz. As shown in Figure 19, the TFS images have a size of 201× 213. In Figure 19a–d,
the magnitude of the direct wave packet is increased because the reflected wave due to
pipe damage increases when the damage changes.
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5.2. Experimental Validation of the Proposed Method

In this section, we present some experimental verifications of the proposed approach
by applying the present technique to an experimental dataset adapted from Wang et al. [38].
They used an optical fiber sensing system with a configuration of fiber Bragg grating (FBG)
to extract the damage behavior in CFRP composite pipes. The ultimate goal of this section
is to extract the experimental datasets of Wang et al. [38] and compare them with the
numerical datasets presented in this work that are derived from the sensory network of an
FBG series installed on the outer surface of pipes. The aim is to prove the effectiveness and
feasibility of the proposed sensing technique.

The vibration experiments were performed on the cantilever CFRP pipes shown in
Figure 20. Excitation frequencies of 10 Hz acted on the specimens with a loading of about
2000 s. The dimensions of the specimens are 12 mm, 15 mm, and 100 mm for the inner
diameter, outer diameter, and length, respectively. Three series of FBGs were installed on
the outer surface of the pipe as follows: the first two series were composed of three FBGs,
and the last one had four FBGs.

Sensors 2023, 23, x FOR PEER REVIEW 22 of 31 
 

 

   
(c)  (d)  

Figure 19. The time–frequency spectrogram (TFS) of the UDP/DP: (a) UDP, D0; (b) DP, D1; (c) DP, 
D2; and (d) DP, D3. 

5.2. Experimental Validation of the Proposed Method 
In this section, we present some experimental verifications of the proposed approach 

by applying the present technique to an experimental dataset adapted from Wang et al. 
[38]. They used an optical fiber sensing system with a configuration of fiber Bragg grating 
(FBG) to extract the damage behavior in CFRP composite pipes. The ultimate goal of this 
section is to extract the experimental datasets of Wang et al. [38] and compare them with 
the numerical datasets presented in this work that are derived from the sensory network 
of an FBG series installed on the outer surface of pipes. The aim is to prove the 
effectiveness and feasibility of the proposed sensing technique. 

The vibration experiments were performed on the cantilever CFRP pipes shown in 
Figure 20. Excitation frequencies of 10 Hz acted on the specimens with a loading of about 
2000 s. The dimensions of the specimens are 12 mm, 15 mm, and 100 mm for the inner 
diameter, outer diameter, and length, respectively. Three series of FBGs were installed on 
the outer surface of the pipe as follows: the first two series were composed of three FBGs, 
and the last one had four FBGs. 

 
Figure 20. The position of FBGs in the series setup of the pipe. 

The vibration strains values at 𝑥 =  0.75 m and at the adjacent FBGs points were 
extracted numerically from the FEM, and also from the experimental FBGs and compared. 
Figure 21 presents the distribution of the vibration strains for both the computed and 
measured values over the time. 

Figure 20. The position of FBGs in the series setup of the pipe.

The vibration strains values at x = 0.75 m and at the adjacent FBGs points were
extracted numerically from the FEM, and also from the experimental FBGs and compared.
Figure 21 presents the distribution of the vibration strains for both the computed and
measured values over the time.
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5.3. Hybrid CNN + k-NN (ECNN) Architecture as a Surrogate Model

In the last layer of the CNN, the learned feature maps are flattened into one vector by a
fully connected layer and the expected output is extracted. In this paper, the displacement
response evaluation problem for undamaged and damaged pipes is a regression problem.
Therefore, a softmax activation function or k-NN algorithm is adopted in the full connec-
tion layer, by which a vector value denoting the displacement response is outputted. As
discussed in Section 4.4, the proposed model (ECNN) architecture includes two convolu-
tional layers, two sub-sampling layers, and a fully connected layer. Each layer tunes the
parameters and the corresponding weights. The overall process of the proposed ECNN is
described in Figure 22.
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Figure 22. The Overall CNN + k-NN (ECNN) Flowchart.

The prediction of damaged pipeline displacement can be described through the fol-
lowing steps in Figure 23. If the ambient excitation σ(x, t) and the initial condition are
given, the proposed ECNN can be used to predict the displacement response of the pipeline
(Figure 24).



Sensors 2023, 23, 3887 23 of 29Sensors 2023, 23, x FOR PEER REVIEW 25 of 31 
 

 

 
Figure 23. The steps of ECNN development. 

 
Figure 24. Training performance of proposed ECNN. 

The Displacement Response Prediction Based on the ECNN 
As shown in Figure 4, an ambient excitation load 𝜎(𝑥, 𝑡) in a composite pipeline is 

used to obtain the training data. The trained model is used to predict the displacement 
response of the damaged pipeline under that excitation load. Figure 25 shows the training 
data. As shown in the figure, the proposed deep learning model can predict the 
displacement response of the composite pipeline under ambient excitation load. The 
results show an excellent agreement between the FBG sensor data and ECNN data with 
an average error of 0.093%. 

Figure 23. The steps of ECNN development.

Sensors 2023, 23, x FOR PEER REVIEW 25 of 31 
 

 

 
Figure 23. The steps of ECNN development. 

 
Figure 24. Training performance of proposed ECNN. 

The Displacement Response Prediction Based on the ECNN 
As shown in Figure 4, an ambient excitation load 𝜎(𝑥, 𝑡) in a composite pipeline is 

used to obtain the training data. The trained model is used to predict the displacement 
response of the damaged pipeline under that excitation load. Figure 25 shows the training 
data. As shown in the figure, the proposed deep learning model can predict the 
displacement response of the composite pipeline under ambient excitation load. The 
results show an excellent agreement between the FBG sensor data and ECNN data with 
an average error of 0.093%. 

Figure 24. Training performance of proposed ECNN.

The Displacement Response Prediction Based on the ECNN

As shown in Figure 4, an ambient excitation load σ(x, t) in a composite pipeline is used
to obtain the training data. The trained model is used to predict the displacement response
of the damaged pipeline under that excitation load. Figure 25 shows the training data.
As shown in the figure, the proposed deep learning model can predict the displacement
response of the composite pipeline under ambient excitation load. The results show an
excellent agreement between the FBG sensor data and ECNN data with an average error
of 0.093%.
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Table 5 labels all the cases regarding different damage cases (D0–D3). Table 6 shows
the comparison between the three AI configurations for damage identification results for
four labels with respect to true positive rate (TPR), true negative rate (TNR), false positive
rate (FPR) and false negative rate (FNR).

In general, for all indexes (TPR, TNR, FPR, and FNR), using k-NN over the input
datasets resulted in a lower average accuracy than the TCNN configuration. The hybrid
approach ECNN achieved better results than the TCNN or k-NN. As a general conclu-
sion, the proposed ECNN approach consistently outperformed the TCNN and k-NN for
all indexes.

To estimate the proposed ECNN performance in damage identification of BFRP com-
posite pipelines, three indicators were calculated during the training process. The accuracy
rate (P%), regression rate (R%), and F1-score (F%) are based the indexes (TPR, TNR, FPR,
and FNR) and are calculated as follows:

P% =
TPR

TPR + FPR
(29)

R% =
TPR

TPR + FNR
(30)

F% =
2 TPR

2 TPR + FNR + FPR
(31)
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Table 5. Labeled Dataset.

Label 1 2 3 4

Case D0 D1 D2 D3

Location UDP 0.42–0.48 m 0.52–0.58 m 0.62–0.68 m

Table 6. Identification Testing Detailed Results.

Indexes AI Method
Label

1 2 3 4

TPR
k-NN 97.11% 90.89% 91.73% 93.97%
TCNN 98% 92% 93% 95.2%
ECNN 98.71% 95.64% 96.32% 97.19%

TNR
k-NN 94% 96.82% 97.13% 95.81%
TCNN 95.66% 98.53% 97.95% 96.74%
ECNN 97.61% 99.32% 99.46% 98.72%

FPR
k-NN 6.21% 2.14% 4.34% 6.65%
TCNN 6.35% 2.45% 4.56% 6.99%
ECNN 7.59% 3.49% 6.1% 8.32%

FNR
k-NN 3.87% 11.98% 11.27% 10.34%
TCNN 4% 13% 12% 11.3%
ECNN 6.21% 15.4% 13.64% 12.33%

Figure 26 shows the calculated P%, R%, and F% for 800 testing datasets divided into ten
groups of displacement results (i.e., D1, D2, . . . .., and D10) after 350 iterations to verify the
effectiveness of the proposed ECNN. They are presented as bar plots with different colors,
and the overall performances of selected displacement is indicated with a dashed line.

As shown in Figure 26, the overall performance values were 93.33%, 91.18%, and
90.54%, for P%, R%, and F%, respectively. These results confirm that the proposed method
can automatically identify the damage in composite pipelines with satisfactory performance
regardless of the corresponding capacitance data noise background and conditions.

As seen in Figure 26, based on the results of testing with 800 datasets, the proposed
method applying ECNN to the identification of different extents of damage in pipelines is
promising and may be suitable for other composite structures.
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6. Conclusions

Based on the response of the FBG sensor system of the damaged composite pipeline, a
novel AI-based algorithm is proposed that combines deep learning and machine learning
utilizing ECNN without modifying the training stage for the displacement response pre-
diction of the composite pipeline. The proposed architecture replaces the softmax layer in
TCNN with a k-NN algorithm for inference. The proposed ECNN model was divided into
two networks: a response and frequency network. The frequency network converges to the
shape mode of the pipeline, and the response network is a feedback network for predicting
the displacement response a long pipeline. A composite pipeline made of the BFRP was
analyzed using an FEM to simulate the displacement of the pipeline. Three damage levels
were introduced to validate the effectiveness of the proposed approach. The training data
were generated by the FEM. From the results, it can be concluded that the proposed AI-
based model can effectively predict the displacement response of composite pipelines, and
works much faster than in terms of computational time of the traditional FEM. The results
show that replacing softmax with k-NN significantly outperforms the TCNN architecture
in terms of accuracy. The proposed method achieved satisfactory performance, with the
values of P%, R%, and F% being 93.33%, 91.18% and 90.54, respectively. Therefore, the
proposed method has special advantages for solving practical engineering problems.
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Notations

BFRP Basalt fiber reinforced polymer
SHM Structural health monitoring
NDT Non-destructive testing
FO Fiber-Optic
FBG Fiber Bragg grating
UDP Undamaged pipe
DP Damaged pipe
TFS Time–frequency spectrogram
AI Artificial intelligence
k-NN k-Nearest Neighbor
GA Genetic algorithm
CNN Convolution Neural Network
TCNN Traditional Convolution Neural Network
ECNN Enhanced Convolution Neural Network
FEM Finite element model
TPR True-positive rate
TNR True-negative rate
FPR False-positive rate
FNR False-negative rate
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