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Abstract: As technology continues to evolve, our society is becoming enriched with more intelligent
devices that help us perform our daily activities more efficiently and effectively. One of the most
significant technological advancements of our time is the Internet of Things (IoT), which interconnects
various smart devices (such as smart mobiles, intelligent refrigerators, smartwatches, smart fire
alarms, smart door locks, and many more) allowing them to communicate with each other and
exchange data seamlessly. We now use IoT technology to carry out our daily activities, for example,
transportation. In particular, the field of smart transportation has intrigued researchers due to its
potential to revolutionize the way we move people and goods. IoT provides drivers in a smart city
with many benefits, including traffic management, improved logistics, efficient parking systems,
and enhanced safety measures. Smart transportation is the integration of all these benefits into
applications for transportation systems. However, as a way of further improving the benefits
provided by smart transportation, other technologies have been explored, such as machine learning,
big data, and distributed ledgers. Some examples of their application are the optimization of
routes, parking, street lighting, accident prevention, detection of abnormal traffic conditions, and
maintenance of roads. In this paper, we aim to provide a detailed understanding of the developments
in the applications mentioned earlier and examine current researches that base their applications on
these sectors. We aim to conduct a self-contained review of the different technologies used in smart
transportation today and their respective challenges. Our methodology encompassed identifying
and screening articles on smart transportation technologies and its applications. To identify articles
addressing our topic of review, we searched for articles in the four significant databases: IEEE Xplore,
ACM Digital Library, Science Direct, and Springer. Consequently, we examined the communication
mechanisms, architectures, and frameworks that enable these smart transportation applications and
systems. We also explored the communication protocols enabling smart transportation, including
Wi-Fi, Bluetooth, and cellular networks, and how they contribute to seamless data exchange. We
delved into the different architectures and frameworks used in smart transportation, including cloud
computing, edge computing, and fog computing. Lastly, we outlined current challenges in the smart
transportation field and suggested potential future research directions. We will examine data privacy
and security issues, network scalability, and interoperability between different IoT devices.

Keywords: smart transportation; internet of things; machine learning; intelligent systems; distributed
systems; smart transportation applications

1. Introduction

The recent increasing urbanization is a severe multiple global problem that requires
a multifaceted answer. The population living in urban areas has increased due to the
increased inflow of people to the cities. The United Nations projects that the world’s
urban population will reach about 4.9 billion by 2030. This raises many issues, such as
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pollution, traffic, resources, etc. Due to the development of Internet of Things (IoT), there
are a massive number of IoT devices that are connected to the network. Those devices
continuously collect data and transmit the data to computing nodes for further analysis.
Due to the significant progress of deep learning techniques, many applications leverage
deep learning to analyze the collected data and achieve “intelligence” and “automation”.
Hence, based on the data analysis and IoT infrastructures, “Smart Cities” as a general
application that includes smart grids, smart transportation, smart manufacturing, smart
buildings, and much more, have become more popular [1–4].

Transportation systems are an indispensable part of people’s daily life. Since the
population living in urban areas has increased, the world will thus witness explosive
growth in motor vehicles, which will have a detrimental impact and contribute to traffic
congestion, noise pollution, road accidents, and other issues [5]. Statistics reveal that there
were around 290 million registered vehicles in the United States by the end of 2022 [6].
Furthermore, an average of 40% of the population is thought to have spent at least an
hour daily on the road [7]. The increasing dependency on transportation systems has
significantly increased in recent years, and thus it is common that a person in modern
society has to deal with a sizable number of issues with current transportation systems
on a typical day, such as traffic congestion, parking problems with limited parking spaces,
longer commuting times, high levels of CO2 emissions, increased number of accidents, and
many others.

According to estimates, traffic congestion costs the U.S. economy more than 101 billion
dollars annually [8], and the economy of the European Union over 2% of GDP [9]. Moreover,
as per reports published by the U.S. Federal Highway Administration, it was shown that
about 50–60% of all traffic delays are the result of traffic incidents that occurred in the
cities [10].

To improve the operational effectiveness of transportation systems, it is imperative to
increase the use of information technology [10]. Intelligent Transportation Systems or Smart
Transportation is defined as “The application of advanced sensor, computer, electronics,
and communication technologies, and management strategies in an integrated manner
to improve the safety and efficiency of the surface transportation system” [11]. Smart
transportation systems improve traffic flow and safety, reducing travel times and fuel
consumption. It is imperative to use IoT infrastructures more and seamlessly integrate
information and communication technologies (ICT) to create a sustainable, intelligent trans-
portation system. The implementation and application of cutting-edge communications,
electronic, and computing capabilities enable information transfer, traffic flow control,
and the administration of transportation networks. Four key concepts, sustainability, in-
tegration, safety, and responsiveness, are prioritized when adopting and implementing
emerging technologies in transportation systems. These principles will be crucial in attain-
ing the main goals of smart transportation, which are access and mobility, environmental
sustainability, and economic development [12].

Smart transportation applications have a great deal of potential to address the prob-
lems faced by the constant influx of population to urban areas and deliver a safer traveling
experience by extensively coordinating among various traffic control systems from differ-
ent domains, operating at scale, and processing a sizable amount of data gathered from
different sources. Emerging technologies will enable the sustainability of transportation
infrastructures. By implementing novel techniques for gathering, processing, and dissem-
inating information based on traffic conditions, they will encourage the efficient use of
existing transportation infrastructures to regulate, control, and manage vehicular traffic.
This will improve congestion management and lessen its effects [12].

This survey comprehensively examines the research on smart transportation systems
and their applications, focusing on the diverse technologies utilized in intelligent transport
systems. Our contributions are :
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• A comprehensive survey that examines the research on smart transportation systems
and their applications, with a focus on the diverse technologies utilized in smart
transportation systems.

• In this survey, we assess the opportunities and challenges of deploying various tech-
nologies to smart transportation, with a particular emphasis on IoT and machine
learning techniques.

• The survey evaluates communication protocols currently used in smart transporta-
tion systems while also investigating the architectures and frameworks employed in
building smart transportation systems.

• Additionally, we analyze various smart transportation applications to assess the
performance of communication techniques and deep learning models. We then delve
into challenges associated with these technologies in smart transportation systems
and recommend future research directions in the field.

Methodology

This literature review used a formal, systematic process to identify and screen articles
on smart transportation technologies and applications. For the identification of articles
addressing our topic of review, we searched for articles in the four significant databases
named IEEE Xplore, ACM Digital Library, Science Direct, and Springer by using the terms
(“smart transportation” OR “smart transportation applications” OR “smart transportation
technologies” OR “smart transportation architectures.” These terms were keyed in the
databases to limit the search result to a more relevant article. Relevant articles included
papers published in the past 22 years (2000–2022).

A total of 123 articles from the search were screened and assessed based on the title
and abstract. We excluded articles not focusing on smart transportation applications,
architectures, and technologies, reducing the number of relevant articles to 94. The selected
papers were downloaded and read in full. A second assessment was made based on the
following criteria. The first criteria excluded articles that provide no empirical data, such
as abstracts, editorials, conference summaries, short papers, and book chapters. Second, all
non-English written articles were excluded. Third, similar duplicate articles were removed.
After these criteria had been fulfilled, 87 articles remained. After these selections had been
made and downloaded, we conducted a further backward reference search to learn more
about this body of knowledge development. This method analyzed the citations in the
selected articles related to the terms searched earlier. By doing that, we included 16 more
articles resulting in a total of In total 103 reviewed articles, as depicted in Figure 1.

The remainder of the paper is structured as follows: Section 2 lists the different ar-
chitecture and frameworks used by smart transportation systems. Section ?? presents
the background of different technologies used in intelligent transportation systems, fur-
ther expanding on the challenges presented by each technology. Section 4 presents the
most prominent applications of ITS. Section 5 discusses the current challenges, possible
opportunities, and future directions. Section 6 then concludes this paper.
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Figure 1. Methodology process used to identify papers reviewed (where n is the total number of papers).

2. Architectures and Frameworks of Smart Transportation Systems

In this section, we discuss the various architectures and frameworks adopted for
developing smart transportation systems. The architectures we discuss are distributed
computing, centralized computing, and edge cloud computing. Additionally, we also
discuss the various communication protocols that are used in smart transportation systems.

2.1. Distributed Computing

Applications for smart transportation, in general, have been supported and deliv-
ered in large part by centralized computing, such as cloud computing. The cloud and
networking infrastructure, however, face significant challenges in transporting and pro-
cessing transportation-related data, such as CCTV streams or road sensory data, due to the
constantly growing number of linked vehicles. Thus, many applications in this field call
for a distributed data processing strategy instead of a centralized one due to the latency
sensitivity and large volume of transportation data [13].

For instance, driving in urban settings frequently necessitates making snap judgments
about whether or not to change lanes or routes to avoid traffic bottlenecks. An application
must collect pertinent information, such as location, driving speeds, traffic flow, or collision
events, to assist the driver in making decisions. Additionally, it must analyze those data and
respond instantly. In order to meet the objectives in this scenario, the cloud infrastructure
has a problem because it must quickly gather and process a large amount of data in a short
amount of time. Having a distributed data processing infrastructure greatly reduces this
burden of the Cloud while still achieving the latency-sensitivity requirement [14].

A wireless sensor network for Intelligent Transportation System (WITS) is a prototype
for an intelligent transportation system suggested by Chen et al. [15]. The information is
gathered, and the data is transferred using the WITS system. The vehicle unit, the roadside
unit along both sides of the road, and the intersection unit at the intersection are the
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three different types of WITS nodes utilized in this system. The roadside units get the
vehicle parameters from the vehicle unit, which measures them. The intersection unit
then receives the information gathered by the roadside unit about the nearby vehicles.
Next, the strategy sub-system determines an appropriate scheme in accordance with the
predetermined optimization aim after receiving and analyzing the information from other
units and passing it to the intersection unit.

CarTel is a mobile distributed sensor computing system created by Hull et al. [16].
An embedded mobile computer connected to a group of sensors is called a CarTel node.
Each node collects and processes sensor data locally before sending it to a central gateway,
where it is stored in a database and made available for additional analysis and visualiza-
tion. CarTel generally facilitates the collection, processing, delivery, and visualization of
heterogeneous data from intermittently connected mobile nodes. By gathering data on the
traffic, this method may help smoothen commute times.

2.1.1. Service Oriented Architectures

According to [17], (SOA) Service Oriented Architecture is a new approach to devel-
oping dependable distributed systems, one in which all the interacting components are
loosely connected, and the functions are constructed as services. With all the interacting
components being loosely connected and the functions being constructed as services, SOA
offers an effective method for developing dependable distributed systems.

An intelligent traffic control data center for Beijing is presented by [18] and is based on
SOA. The primary justification for choosing SOA for this implementation is that it includes
common qualities such as distributed architecture, service-based applications, platform
independence, and fine graininess. The Beijing Traffic Data Centre’s architecture aims for
thorough data integration, effective data sharing, appropriate data exchange, support for
on-demand services, and a cost-effective standard model for future development.

The issue of maintaining the quality of traffic information is mentioned by [19] due to
the abundance of Travel Information Service (TIS) providers. This research presents the
concept of a traffic information service built on SOA, which combines services or data from
several sources to produce trustworthy, accurate, and comprehensive information for the
traveling public. In order to collect and incorporate various types of transport information
into public-oriented services, two mechanisms are therefore necessary: the first is to build
a distributed architecture to integrate services from various providers, and the second is
to introduce a set of uniform standards to categorize and present the description of TIS.
The TIS system’s foundation in SOA enables interchange with other systems, allowing for
simple integration of services from various suppliers.

The design of a GIS (Geographic Information System) transportation system built on
web service technology is presented by [20]. Without the need to integrate GIS instruments,
the primary goal of the GIS-T web services is to assist ITS applications with spatial data
and the processing of various geoprocessing tasks, such as - detecting duplicate addresses,
displaying maps, planning routes, etc. The GIS-T web service enables several transporta-
tion system departments to create a collaborative workspace, making coordination more
straightforward and effective. Traditional GIS software finds accommodating all ITS re-
quirements on a single platform difficult. However, GIS-T web services technology has
provided a workable answer to this issue.

2.1.2. Grid Computing

Grid computing uses numerous computer resources to work together and is loosely
coupled to solve a specific problem. In grid computing, a big task is split up among numer-
ous workstations to make the most efficient use of the resources that are available [10].

By combining the Grid, Service Oriented Architecture (SOA), and Web Service tech-
nologies, [21] introduce the Shanghai Transportation Information Service Application Grid
(STISAG), a module for ITS. STISAG primarily focuses on the issue of traffic congestion in
Shanghai and provides end users with a variety of real-time traffic and travel information
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services. The model incorporates information or services from various traffic sources, includ-
ing the Shanghai Transportation Information Center, the Shanghai Taxi Company, and the
Shanghai Bus Company. The model also incorporates Shanghai Grid nodes to handle and
store a significant amount of traffic data as well as real-time transportation information.

2.1.3. Fog Computing

Fog is defined as a network of numerous heterogeneous and decentralized devices
that interact and may work together to accomplish processing and storage functions
without the involvement of outside parties [22]. Fog computing can be used as a solution
to the shortcomings of the cloud for smart transportation systems. The Fog computing
paradigm uses the processing, storage, and network resources within the edge of the
network to augment the capabilities of the cloud [23]. The Fog computing approach may be
a preferable option for creating distributed applications [24] since it distributes computer
resources closer to people and things, especially for latency-sensitive applications like
Smart Transportation apps [25].

One of the primary application domains where the Fog Computing model exhibits the
best fit, according to the authors of the original study on fog computing [23], is VANETs
applications. This is especially true in light of recent developments in communication
technology that enable complete Internet connectivity for infrastructure, automobiles,
and other devices.

A vehicular search application using CCTVs networked in transportation infrastruc-
ture to look for a suspect driving a car is an example of a fog-based smart transportation
application that can be found in [13]. An application is disseminated across various de-
vices, including CCTV cameras, roadside units, and the like, according to a suggested
programming model. To identify the vehicle in the frame, images from CCTVs are relayed
to neighboring or local computing resources, like a roadside unit. If the recognition attempt
fails, the computer system will send a Pan-Tilt-Zoom signal to the camera to direct its
attention to a specified area to capture a clearer picture of the suspected car.

2.1.4. Edge Computing

A broad definition of edge is “Enabling technologies that enable computation to occur
at the network edge so that computation occurs close to data sources” [26]. The authors in
the research [27] present an Edge Computing based Public Vehicle (ECPV) system to sched-
ule ridesharing among travelers and reduce the latency of decision-making by utilizing
edge computing. This system would increase traffic efficiency and vehicle occupancy ratios.
In order to cut down on travel times and boost traffic efficiency, the research formalizes
the public vehicle scheduling problem as an optimization problem with maximum traveler
satisfaction as the goal.

2.2. Centralized Computing
Cloud Computing

Several researchers have applied various cutting-edge technologies to create smart
transportation systems, but due to its sophisticated electronic data storage and communica-
tion medium, cloud computing serves as a prominent player [28]. Cloud computing gives
us the ability to create and deploy computing services with minimal effort, equipment,
and up-front costs [29].

Incorporating information technology, control technology, sensor technology, com-
munication technology, and system inclusive technology, Cai and Sun [30] describe a
contemporary intelligent transportation system based on cloud computing. In order to
address the issues and difficulties with the current intelligent transportation system, this
article presents a new generation of intelligent transportation systems based on cloud
computing. From a technological standpoint, it covers the design of a cloud transportation
system. From a managerial one, it shows how to develop the cloud transportation system.
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Additionally, Jaworski et al. [31] proposed an urban traffic control system that uses
cloud computing. Its objectives are to improve traffic flow and traffic regulation for better
participant safety, less fuel consumption, and lower carbon emissions. The urban vehicle
control scenario assumes that an off-board control unit that monitors each traffic intersection
determines the speed of every vehicle in the controlled region. An Intersection control
service (ICS) is the piece of software in charge of that. The system views the cars as cloud
services, and they are found and called upon using a cloud computing technique. Targeting
all vehicles in the designated zones is accomplished via geographic multicast addressing.
Geographical multicast addressing uses a simple addressing mechanism by pointing to all
the vehicles in a particular region. ICSs are a component of a city-wide cloud network that
manages traffic flow between intersections.

On-demand bus services are demand-responsive transportation services where users
can reserve their bus seats before their commute. Although on-demand bus services have
been introduced in many cities, their high operating costs make them less popular. Tsub-
ouchi et al. [32] describe their innovative solution considering the issue of high costs. Their
solution is based on cloud computing technology, wherein their proposed system includes
four major modules: a schedule calculation system, communication devices, a reservation
interface, and a database. The primary benefit of this method is the implementation of the
software blocks on remote servers. As a result, the service can be operated by the local
transport authorities without them having to invest in purchasing their own servers. Thus,
the system’s operational expenses are consequently decreased.

2.3. Edge Cloud Computing

The current Intelligent Transportation System (ITS) uses various remote sensors to
assess the status of a road network in real-time. It then transmits control signals to roadside
systems and road users. To transmit situation awareness and control messages, future
ITS may need to communicate with users of the road network and roadside furniture.
To transmit driving intention information, such as emergency braking or road conditions,
vehicles may need to interact with one another. Additionally, in order to receive advanced
notice of impending road conditions or to transmit control signals to controlled intersections
to clear lanes for emergency vehicles and public transportation, vehicles may also need to
connect with roadside equipment.

Currently, available cloud providers operate from data centers in well-connected
nations. However, network latency for end users can be high due to long distances between
the user and the cloud data center, and using mobile networks adds additional latency
overheads. End users’ expectations are expanding to include those with wireless network
connections, many of whom are actively mobile, as opposed to those who are headquartered
at fixed physical locations with hard network connections [29].

By developing products based on their core cloud offerings that can run on smaller
computing systems while maintaining compatibility with their core cloud platforms, estab-
lished cloud vendors are beginning to experiment with edge-cloud computing.

2.4. Smart Transportation Communication Protocols

Modern vehicles have increasingly been equipped with a variety of sensors, actua-
tors, and communication devices such as GPS devices, mobile devices, and embedded
computers. Vehicles and nearby roadside units (RSUs) nowadays are equipped with pow-
erful communication, sensing, networking, and processing capabilities making a vehicular
ad-hoc network (VANET). They can exchange and communicate data and information
with other vehicles (Vehicle—to—Vehicle network (V2V)), smart transportation devices
(Vehicles—to—Infrastructure (V2I)), and applications and with the outside world using a
variety of technologies (Internet of Things (IoT), Cloud computing, and distributed comput-
ing) and communication protocols (WiFi, 4G/5G, TCP/IP) which when enforced together
can help researchers obtain advanced and improved transportation systems.
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2.4.1. 4G/5G

With the large-scale interconnections of people and things, data traffic has increased
dramatically, putting pressure on the present generation of wireless mobile communi-
cation [33]. As a result of the extraordinary development in the number of connected
devices, mobile data traffic, and the limits of 4G technologies, businesses, and academics
are focusing their efforts on defining the standards for wireless mobile communication’s
fifth generation (5G) [34].

Cellular connectivity is essential in the smart transportation system [35]. 5G is geared
toward connecting individual cars through the development of Cooperative Intelligent
Transport Systems (CITS). 5G can help cities become smarter by making automated trans-
portation systems safer and more efficient than existing transportation networks. This also
aids the public transportation system deal with significant transportation concerns such
as traffic congestion, pollution, and crashes [33]. 5G has the potential to overcome these
difficulties by creating a genuinely smart transportation system. With access to high-speed
Internet on public transportation. A Linked Traffic Cloud collects and analyzes real-time
data from connected cars, infrastructure, and devices to help with operational decision-
making, improved navigation, fuel, and time resource optimization, and so on [36].

One of the main reasons of motor vehicle accidents is rapid traffic slowing, particu-
larly on fast-scrolling roads and highways with poor visibility. It can be caused by other
accidents, road construction, excessive motorized vehicles, particularly during peak hours,
and so on. Fixed traffic sensors on roadways that connect with drivers’ mobile apps over
the 4G network may often reduce such an issue, but sadly, not all roads and highways
are equipped with such equipment. Celesti et al. [37] presented a possible alternative
strategy for resolving such a problem by utilizing mobile traffic sensors directly mounted
in private and/or public transit cars and volunteer vehicles. Experiments show that the
system delivers acceptable reaction times, allowing drivers to receive alarm signals quickly,
reducing the danger of potential accidents.

2.4.2. V2V, V2X, V2I, V2P

Vehicular communication use cases are classified into four categories: V2X refers
to Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), Vehicle-to-Pedestrian (V2P),
and Vehicle-to-Network (V2N) communications. V2V and V2P communications are pri-
marily between cars or vehicles and vulnerable road users (for example, pedestrians and
bicycles) to transmit position, speed, and direction information to avert accidents [38].
Figure 2 below shows the components of the vehicular communication protocol.

Direct connection between automobiles and roadside infrastructure, such as Roadside
Units (RSUs), is part of V2I. The RSU acts as a forwarding node to broaden the range
of communications received from a vehicle. V2N transmission occurs between a vehicle
and a V2X application server, enabling services such as entertainment streaming video
and connection for dynamic route management. Using a wireless network, direct or indi-
rect communication between two cars, or between a vehicle and roadside infrastructure
can increase driver safety and mobility [39]. The applications include cooperative driv-
ing assistance, decentralized probe vehicles, and user, and information communications.
For example, with this technology, automobiles may broadcast a warning to other vehicles
to avert accidents when changing lanes [40]. Vehicular communication, which connects
cars, roadside units, and pedestrians, is a vital technology in the Intelligent Transportation
System (ITS).

Concerns about location privacy and secure communication impede the adoption of
smarter and safer modes of ITS. Gupta et al. [41] presented a secure and trusted V2V and
V2I communication approach based on edge infrastructures, in which trusted cloudlets are
used to authorize, check, and verify the authenticity, integrity, and anonymity of messages
exchanged in the system rather than direct peer-to-peer communication. Moving cars or
roadside equipment are dynamically linked to adjacent cloudlets, where security measures
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may be established to clean or prevent fraudulent communications and prevent rogue
vehicles from communicating with other vehicles.

Figure 2. Vehicle-to-Everything Communication(V2X) protocol.

Vehicle-to-anything (V2X) communications deal with the interchanging of information
between a vehicle and numerous parts of the intelligent transportation system (ITS), such
as other cars, pedestrians, Internet gateways, and transportation infrastructure (such as
traffic lights and signs). The technology has the potential to enable a wide range of
unique applications in areas such as road safety, passenger entertainment, automobile
manufacturer services, and vehicle traffic efficiency. V2X communications are now based
on one of two basic technologies: dedicated short-range communications (DSRC) and
cellular networks [42]. However, it is not predicted that a single technology will be able
to handle such a wide range of projected V2X applications for a significant number of
cars in the near future. As a result, interoperability between DSRC and cellular network
technologies is recommended for efficient V2X communications.

The authors of [43] propose a reliable method for selecting relays based on distance
in vehicular networks. Their approach aims to achieve fast message dissemination in a
wide range of vehicle densities while also ensuring acceptable speeds in adverse scenarios.
They identify the challenges of using a distance-based approach to select relay nodes
in vehicular networks and present a robust relay selection method that optimizes their
previous work, exponent-based partitioning broadcast protocol (EPBP). Furthermore, they
provide analytical models that demonstrate the performance of their proposal in terms of
contention latency and packet delivery ratio. The results revealed that the analysis and
simulations across a range of vehicle densities show that their proposal has acceptable
performance in adverse scenarios, improved performance in general scenarios comparable
to EPBP on densely deployed networks, and superior performance in sparse densities and
adverse scenarios.

2.4.3. Vanet

A vehicle ad-hoc network (VANET) is defined as a group of mobile vehicles com-
municating over a wireless network to exchange information between themselves (V2V)
and with local roadside units (V2I). This enables the dissemination of information to
improve passenger safety and comfort. A VANET is a decentralized, self-organizing, dy-
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namic network with restricted bandwidth and range only suitable for direct peer-to-peer
communications [44].

Chang et al. [45] proposed three contributions to route planning utilizing VANET
technology. First, a vehicular-ad-hoc-network-based A (VBA) route planning algorithm
is suggested to determine the route with the shortest travel time or the lowest fuel con-
sumption based on two real-time traffic information sources not previously employed in
typical GPS applications. The initial source of traffic information is the recorded traffic
information of the road segment over which the vehicle has traveled. It is then sent be-
tween vehicles through an IEEE 802.11p wireless network. Google Maps then provides the
second traffic update. Finally, the VANET simulator runs simulations for six route planning
algorithms in a single congested. As compared to standard route planning algorithms, VBA
delivers considerable savings in both the average travel time and fuel consumption of the
projected route.

Additionally, Maneguette [46] created a framework to enable various sorts of services,
storage methods, access, and information management tools for diverse modes of trans-
portation, not just for people but also for commercial vehicles and emergency services such
as ambulances. Furthermore, by utilizing vehicular networks and integrating VANETs with
other networks, it was feasible to enhance the capacity for abstraction to satisfy information
demands, therefore providing useful information for the monitoring and administering of
an intelligent transportation system.

2.4.4. Wi-Fi/ Wireless Sensor Network (WSN)

Smart cities increasingly use Wi-Fi connections to connect various resources. Due
to its restricted bandwidth, Wi-Fi networking is typically used in smart transportation
systems to connect automobiles, traffic lights, and lampposts [35]. Research organizations
are proposing low-cost complementary solutions because roadside electrical equipment
to support VANETs are costly. A Wireless Sensor Network (WSN) is one of the comple-
menting solutions. The wireless self-organized sensor network nodes are often powered by
battery-powered, low-cost [47], energy-efficient collection, communication, and processing
technologies. These low-power nodes may often run for several years on a pair of AA
batteries, decreasing maintenance requirements. Because of its low power consumption
and low cost, a large number of roadside WSNs may be strategically positioned to help
vehicle communication technology [48].

WSNs have lately gained prominence owing to their potential to alter many aspects
of our financial system and daily lives, including shipping automation, environmental
monitoring, transportation, and healthcare. The gathering and sharing of transportation
information are critical in the Intelligent Transportation System (ITS). Unfortunately, most
traditional ITSs can only detect a vehicle in a fixed place, and their communication and
power lines raise the building and maintenance costs. The usage of wireless sensor networks
(WSN) in ITSs is anticipated to address the aforementioned challenges due to its advantages,
including low power consumption, wireless distribution, and flexibility without cable
restrictions [49].

WSNs have assisted in many issues in transportation, such as parking automobiles
which is a serious issue that contributes to traffic congestion, air pollution, and driver
discomfort. Kalebe et al. [50] presented a smart parking system capable of gathering
quantitative data and delivering it to drivers and other smart city apps via an expandable
platform. On a three-layer architecture, the suggested system was built with wireless sensor
networks for IoT-based parking. Wang and He [51] also proposed a similar solution that
uses WSN for reservation-based parking policy with the potential to streamline parking
system operations while also alleviating traffic congestion caused by parking hunting.

To address the difficulties of traffic control and monitoring, Sherly et al. [52] developed
a real-time traffic monitoring system. The information from real-time traffic monitoring was
utilized in the study to detect issues on the road. RFID, wireless sensor technologies, ad hoc
networking, and internet-based information systems compose the IoT traffic architecture.
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Furthermore, Sighn et al. [53] proposed a system that uses (WiFi-equipped) Smart
Highways and a dashboard navigation device with a 3D camera to improve accident
prevention, monitoring, and control. As a result, in the event of an accident, the video
captured can be reviewed with the evidence stored simultaneously and provide additional
services to capture and share real-time accident/traffic footage.

This article [54] discusses the use of a connected dominating set (CDS) as a virtual
backbone for efficient routing in wireless sensor networks. Constructing a minimal CDS
(MCDS) is desirable for efficient packet routing and energy conservation but is a difficult
problem (NP-hard). The article proposes a new algorithm, called E-MCDS (energy efficient
MCDS construction algorithm), that considers energy consumption during the construction
of the MCDS. The resulting CDS is approximately composed of two independent sets
(IS). The performance ratio of E-MCDS is analyzed for two different graphs and found to
be 9.33opt and 17.33nkopt, respectively. Simulation results demonstrate that E-MCDS is
effective in terms of both the size of the CDS constructed and energy efficiency.

Despite numerous studies that have utilized sensor mobility to enhance coverage
and connectivity, little attention has been given to reducing sensor movement, which
often depletes the limited energy of sensors and significantly shortens the lifespan of the
network. To address this issue, Liao et al. [55] tackles the challenges of the Mobile Sensor
Deployment (MSD) problem and explores ways to deploy mobile sensors with minimal
movement in order to establish a Wireless Sensor Network (WSN) that offers both target
coverage and network connectivity. The MSD problem is divided into two sub-problems:
the Target Coverage (TCOV) problem and the Network Connectivity (NCON) problem.
For TCOV, the paper presents an extended Hungarian method that can achieve an optimal
solution for general cases, along with two heuristic algorithms that rely on clique partition
and the Voronoi diagram, respectively. As for the NCON problem, the paper proposes
an edge-constrained Steiner tree algorithm to identify the destinations of mobile sensors,
followed by the utilization of the extended Hungarian method to dispatch the remaining
sensors for network connectivity.

3. Background and Related Technologies

This section presents an overview of the technologies currently used in smart trans-
portation and their challenges.

3.1. The Role of Internet-of-Things (IoT) in Smart Transportation Systems

Recent advances in wireless sensor networking, cloud computing, big data, and IoT
are giving rise to a new generation of smart transportation applications. IoT consists of a
network of web-enabled physical objects embedded with sensors, processors, and com-
munication hardware that acquire data from their environments [56]. These devices form
pervasive monitoring platforms that allow massive collection and exchange of real-time
data, thus building the foundation of smart transportation systems.

IoT is a discovery that can solve current issues by combining technology and social
implications [57]. It is a worldwide system that meets people’s demands. It allows advanced
services with physical and virtual connections based on current and future developments
in information and technology communication (ICT) [58]. By its name, IoT refers to the
integration of data gathered from different types of objects onto any virtual platform using
existing Internet infrastructure [59]. Hence, any gadget with an on/off switch that links to
the internet is considered an IoT device.

IoT applications have evolved in several parts of smart transportation. Examples
are smart traffic, smart parking, and intelligent mobility. These advancements make
smart transportation conceivable to give drivers efficient route ideas, quick parking book-
ings, economical street lighting, telematics for public transportation, accident avoidance,
and autonomous driving using sensors integrated into cars or mobile devices and devices
deployed in the city [60].
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According to IoT analytics, there is a rise in the adoption of IoT in various transportation
segments. According to the 2020 research of the top IoT application categories, Manufac-
turing/Industrial settings are the most popular (22%), followed by Transportation/Mobility
(15%) and Energy IoT projects (14%) [61]. Their research implies that the transportation
industry had the second-highest use of IoT in diverse projects. Figure 3 below shows the total
number of projects that leveraged IoT to provide transportation solutions.

Figure 3. IoT transportation projects by segment in 2020.

3.1.1. Existing Relevant Works

Smart transportation based on IoT technology promises to give citizens more flexible,
efficient, and safe transportation options. Traffic safety is one of the significant issues
that individuals face in congested cities. In this aspect, IoT can be more proactive in
identifying human mistakes and preventing road accidents. Therefore, in order to achieve
safer roadways, IoT-based solutions must be developed [62].

Pham et al. [63] offered a unique algorithm that improves the current cloud-based
smart-parking system’s efficiency and creates a network architecture based on Internet-of-
Things technology. They suggested a system that assists users in automatically finding a
free parking spot at the lowest possible cost based on new performance metrics to compute
the user parking cost by considering the distance and the total number of vacant spaces in
each car park. The simulation results suggest that the algorithm improves the likelihood of
successful parking and reduces user waiting time.

Jan et al. [64] created a model for evaluating transportation data using Hadoop and
Spark to manage real-time transportation data. The data is distributed to the smart trans-
portation system using the suggested system and decision mechanism based on the pro-
posed data networking system. The peer-reviewed results of evaluating the suggested
approach reveal data processing and real-time distribution to citizens in the shortest possi-
ble time.

Deeplaxmi et al. [65] used IoT to develop a novel system for smart transportation
called Smart Vehicle Assistance and Monitoring System (SVAMS). SVAMS is an intelligent
transportation system (ITS) that addresses various traffic challenges. It is a traffic manage-
ment, monitoring, and optimization solution which links all cars through Zigbee and is
centrally monitored and assisted by a data center. The system stores all data in the cloud
for future analysis, processing, and usage. SVAMS is a low-cost, compact system with
various functions such as emergency response, pollution level monitoring, automatic toll
collection, traffic rule violation detection, and vehicle tracking. Adopting SVAMS will aid
in developing Clean, Corruption-Free, and Crime-Free (C-3) cities.
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3.1.2. Challenges

IoT technology is not without peril. All connected items link together in several ways,
including WiFi/Ethernet remotely through IP protocols, proximity Bluetooth for battery
savings, NFC, and other medium-distance radio networks. Hidden behind it are possible
dangers to data security, physical security, device security, legislation, privacy, encryption,
authentication, and many other issues that must be solved so that these impediments do
not obstruct future progress [66].

Several issues are now prominent due to data uploading by sensors, actuators, and in-
telligent appliances that post the acquired data to the internet, thereby increasing traffic.
As a result, the most significant issues these systems face relates more to traffic volumes.
Soltanmohamma et al. [67] explored the traffic concerns of M2M communications over LTE,
concentrating on the challenges imposed on a radio access network’s access channel and
traffic channel. They also outlined the benefits and drawbacks of remedies provided by
other scholars. They were curious about the problems caused by M2M communication on
cellular LTE and LTE-A networks [68].

Another issue is the security of IoT devices concerning smart transportation, which is
critical. Most of the data acquired by IoT devices is personal and requires privacy. These sen-
sitive data in IoT may be an open invitation for attackers to capture and consume in various
ways. However, preserving privacy in IoT is challenging for several reasons. For starters,
the CPU in IoT devices is restricted and cannot perform sophisticated instructions.

Additionally, the security algorithm’s power consumption must be low because most
IoT devices utilize batteries. The security method’s cost should be as cheap as feasible
to cover as many devices as possible. Therefore, it is better to simplify the present IP
architecture to enable seamless connection and control of diverse network environments.

Other problems in developing IoT for smart transportation include device identifica-
tion and addressing, mobility, interoperability, and energy efficiency [68].

3.2. The Role of Machine Learning (ML) in Smart Transportation Systems

A typical definition of machine learning is a system’s capacity to make intelligent
choices without it being explicitly programmed. Data is at the heart of ML techniques
and ML teaches computer systems to accomplish tasks like classification, grouping, predic-
tion, pattern recognition, and many others.

The process involves training systems to archive learning by analyzing sample data
with various algorithms and statistical models. It involves categorizing the sample data
by quantifiable properties known as features, and an ML algorithm attempts to identify a
relationship between the features and specific output values known as labels [69]. The data
gathered during the training phase is then utilized to find patterns or make judgments
based on new data.

Although Machine Learning has recently acquired popularity due to its exponential
rate of data collection and technology improvements to enable it, its roots may be traced
back to the 17th century [70]. Since the dawn of time, people have sought to make sense of
data and analyze it to acquire immediate insights. Figure 4 below gives an overview of the
evolution of ML.

3.2.1. Existing Relevant Works

Machine learning has become the base for developing cutting-edge technology due to
the speed and accuracy at which data is trained, processed, and predicted. Unsurprisingly,
we now see a rise in the application of machine learning algorithms to offer solutions to
some issues faced in transportation.
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Figure 4. The evolution of machine learning.

The widespread use of smartphones equipped with location-sensing technology has
created opportunities for transportation researchers and city planners to gather detailed
mobility data through smartphone-based travel surveys. By utilizing data mining and
machine learning techniques to analyze this information, we can better understand the
demands placed on the current commercial parking and road infrastructure. One such
data collection platform that can be used for this purpose is the Future Mobility Sensing
(FMS) platform. This platform can be integrated with both portable smart mobile devices
and traditional GPS trackers to monitor and analyze mobility patterns. By combining raw
mobility data with other relevant contextual information, machine learning algorithms
can be used to infer additional trip details such as travel time, mode of transportation,
and stopping points [71].

A survey was conducted in Singapore using an FMS platform to collect information
on the stop activity and movement of heavy goods vehicles. However, a large portion of
the recorded stops were not verified, and there was an imbalance in the reported activity
types. Therefore, the authors of [71] develop a model that predicts the activity type based
on various features collected through the FMS platform and point-of-interest information
from Open Street Map. The proposed model uses a gradient-boosting approach and data
resampling techniques to address the class imbalance. By integrating the model into
the FMS platform, activity-related fields of the survey can be pre-populated to improve
completion rates and reduce respondent burden. The model can also be used to recover
activity information from unverified stops, providing insights into the movement and
parking behaviors of commercial vehicles in Singapore.

Additionally, You et al. [72] developed a travel data collection and visualization
FMS system to comprehend mobility patterns and travel behavior. The FMS system
collects and fuses data from various sources and presents them visually. It is made up of
two parts: (1) the FMS Data Collection Platform, which employs mobile sensing devices
such as smartphones and GPS loggers, as well as machine learning algorithms with user
verification to gather detailed, multi-day travel data, and (2) the FMS Data Fusion and
Visualization Platform, which merges data from different sources and transforms them into
knowledge for users to review their mobility diary, provide additional input and explore
their mobility patterns.

To combat distracted driving, one of the leading causes of car accidents, Gosh et al. [73]
created a technology similar to a high-efficiency eye blink sensor using AdaBoost, which
is an Ensemble algorithm. This alarm system can eliminate several drivers distractions,
perhaps leading to a road accident. In comparison, Hou et al. used four models in their
paper to anticipate traffic flow for planned work zone activities. The four models are
random forest, regression tree, multilayer feedforward neural network, and nonparametric
regression. The results revealed that the most influential variables for highway data were
the latest interval’s look-back traffic flows at the upstream, downstream, and present
locations. The most relevant factors for arterial data were traffic flows from the three
look-back periods at the current site only [74].
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In [75], Dogru et al. compared RF to SVM and ANN to detect road accidents.
SUMO [76] is used for data collecting in a traffic simulation scenario. In their research, cars
communicated via a vehicle simulation to acquire information such as speed and position.
The above classifiers are trained using the 10-fold cross-validation approach and verified
using accuracy, sensitivity, and specificity measures. Regarding accuracy and sensitivity,
the RF algorithm outperforms the other two classifiers.

This article [77] evaluated the proposed system’s performance to prior studies and
several machine learning approaches, such as LightGBM, K-Nearest Neighbors (KNN),
Support Vector Machine (SVM), and Random Forest. Extensive testing findings showed
that the suggested system correctly recognized distinct vehicle motions with an average
F1-score of 0.98, an accuracy of 0.97, and a recall of 0.98, outperforming the competitors.
Furthermore, the concept is simply transferable to various drivers and locales. Since it
involves the primary processing of smartphone sensor input, the system is resilient and
ideal for real-time applications.

Keller et al. [78] developed a model that uses a machine learning predictive scheme
in Advanced Driver Assistance Systems (ADAS) that assists drivers during emergency
movements. They provided a real-time capable approach for solving the planning and
control issue in a single step. Their solution works by combining a model predictive control
system with an environmental model to obviate the need for a precalculated reference
signal, i.e., a trajectory. The real-time capability is obtained by a crude discretization of
the inputs, which allows the plant’s state trajectory to be predicted for all conceivable
combinations of discretized input values.

Yu et al. [79] offered a variation-based online journey time prediction technique em-
ploying clustered Neural Networks(CNN) as input variables, using traffic vectors generated
from raw detector data. They divided the corridor travel time into (1) the base term and
(2) the variation term. This research conducted intense numerical tests using simulated data
from the microscopic simulator CORSIM to assess the efficiency of the suggested technique.

3.2.2. Challenges

The rate at which automobiles are increasing on the road is faster than the population
growth rate, causing clogged highways and making it risky to travel on certain roads. It
is impossible to handle this issue by expanding the number of roads since it is costly to
build roads [80]. The alternative is to regulate traffic by analyzing traffic data collected on
roadways; since the quantity of data created in the transportation sector is large, standard
data analytics techniques may not function.

The efficacy and efficiency of a machine learning-based solution are often contingent
on the data’s type and features and the learning algorithms’ performance. Collecting
data in the relevant domains, such as cybersecurity and smart transportation, takes work,
even though today’s internet permits the regular generation of massive amounts of data.
Thus, gathering usable data for the target machine learning-based applications, such as
smart city applications, and managing it is critical for future analysis. As a result, a more
in-depth analysis of data collection methods is required in working with real-world data.
Furthermore, historical data may contain many unclear values, missing values, outliers,
and nonsensical data [81].

Machine learning algorithms significantly influence data quality and availability for
training, and hence, on the final model. As a result, correctly cleaning and pre-processing
the various data obtained from multiple sources is a complex undertaking. To effectively
employ the learning algorithms in the related application area, it is necessary to alter
or improve current pre-processing procedures or to propose new data preparation ap-
proaches [80].

Different ML algorithms exist to analyze data and extract insights. As a result, finding
an appropriate learning algorithm for the intended application is complex. The complexity
is because the outcomes of various learning algorithms might differ depending on the
data characteristics [82]. Choosing the incorrect ML algorithm will result in unanticipated
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consequences, perhaps resulting in a loss of effort and the model’s efficacy and accuracy.
As a result, the eventual success of a machine learning-based solution and associated
applications relies heavily on the data and the learning algorithms. Suppose the data
could be more suitable for learning, such as non-representative, poor-quality, irrelevant
characteristics, or inadequate amount for training. In that case, the machine learning
models may become ineffective or yield reduced accuracy.

3.3. the Role of Big Data in Smart Transportation Systems

Today intelligent vehicles and transportation systems are key technologies that en-
hance the convenience and security of drivers. Smart transportation systems have tra-
ditionally relied on solitary systems. Currently, these intelligent transportation systems
are moving and evolving towards seamlessly integrating a wide variety of heterogeneous
technologies that can gather massive amounts of data, process it, and take appropriate
actions based on the data, all in real time. Due to this evolution, there is a considerable
impact on the influence that a vehicle’s or driver’s behavior can have to provide numerous
benefits such as preventing road accidents, reducing driver stress, reducing congestion,
and many others, all of which can help regulate traffic flow throughout the city and increase
information flow in case of emergencies.

Big Data has become an essential topic in academics as well as industry. It reflects
vast and complicated data collection from many sources. Many prominent data processing
techniques use Big Data methodologies, such as data mining, machine learning, artificial
intelligence, data fusion, and social networks. Big data is a critical facilitator of smart
city efforts. These two notions together may provide better services like healthcare, trans-
portation [83], effective government, and many more, all of which improve the quality of
life [84].

McKinsey Global Institute defines big data as having adequate data collecting and data
management capabilities that can be utilized for large-scale and massive data storage. Big
data technology has significant strategic importance, represented not only in the capacity
to master vast amounts of data but also in the ability to analyze these valuable data
professionally. It is an information resource that gathers, locates, and analyzes internet data
to gain more helpful information.

3.3.1. Existing Relevant Works

Researchers have created smart transportation applications and systems that use big
data technology like the prior technologies discussed.

Wang et al. [85] and developed a systematic method for smart transportation man-
agement on bus networks in this research. A three-tiered approach is proposed to assist
urban planners, managers, and technicians in their management tasks. In the system’s
implementation, they used the power of Big Data. They applied Big Data techniques to
compute bus travel time, and passenger demands efficiently and economically, and this
system is currently deployed in Brazil.

Accidents are a significant cause of traffic congestion, resulting in fatalities and losses
for those involved and lost time for those who are delayed behind the wheel. Ozbayo-
glu et al. [86] proposed a basic real-time autonomous accident-detection system based on
computational intelligence approaches to save lives and offer faster road openings. Big data
processing methods are used to populate Istanbul city traffic-flow data for 2015 from multi-
ple sensor locations. The system predicts the chances of an accident occurring. The results
show that, even while false alarms outnumber actual accident instances, the system may still
give important information for status verification and early response to potential accidents.

Furthermore, Khazaei et al. [87] proposed a big Data analytic framework for urban
transportation data to acquire insights into traffic patterns. The platform is cluster-based
and cloud-based, providing dependability, scalability, and adaptability to changing op-
erating conditions for online and offline analysis. It was verified using several use cases,
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including determining the average speed and congested stretches on major roads in the
Greater Toronto Area.

Rathore et al. [88] and Babar and Arif [89] developed a graph-oriented technique to
create the city’s smart transportation system. They recommended deploying road sensors
to gather comprehensive traffic information and the vehicular network to obtain individual
vehicle position and speed information. They presented an efficient architecture that
leverages the Giraph tool with parallel processing servers to achieve real-time efficiency
in processing incoming Huge Data from IoT devices, then producing big graphs from the
data and analyzing them.

3.3.2. Challenges

The problem in employing big data in smart transportation systems is assessing mas-
sive volumes of data and making the proper logical judgment. The difficulties of significant
data-driven decision-making are widely acknowledged. Different sensors distributed
across the city return massive volumes of data [84]. Precise data mining techniques are re-
quired to extract relevant information from this massive collection. When working with big
data, the primary issues are data quality, data availability and connection, and processing
speed [90].

• Security: One of the most challenging difficulties in any computer science applica-
tion is security. Security becomes considerably more complex and difficult with Big
Data. Individuals accessing data must pass through authentication mechanisms to
guarantee data integrity and confidentiality. Need-based limited access is essential.
Use appropriate encryption algorithms for data in transit and data at rest [91].

• Data Accuracy: Big data for smart city transportation collects real-time data from
multiple sensors around the city. This data may contain noise, leading to incorrect
forecasts and unneeded turmoil in intelligent city systems. Even if we analyze data
fast using various hardware mechanisms, if the information used for decision-making
needs to be more accurate, our efforts may be futile [92].

• Need for Speed: Companies in today’s hyper-computing world somehow need to
access critical data, but they also need it quickly. Data visualization allows firms to
understand and make choices more quickly, but the fundamental difficulty is the
volume of data. Employing a parallel processing mechanism or a grid computing
technique is possible, and it allows the organization to work in near real-time, but it is
an expensive option.

• Data Interpretation: Collecting data into the correct format requires much knowledge.
Data from social media is unstructured and must be preprocessed before customers
and big data analytics applications can use it.

• Data Availability and Connectivity: When data for smart city and urban planning
projects is collected from sensors and distributed at various sites, continuous commu-
nication with high bandwidth is required to ensure exact and timely forecast [90].

• Inadequate Skill sets: Data analyst skill is in short supply in many organizations.
A team of data scientists, developers, and analysts with domain expertise is required,
which is currently scarce and challenging to locate [90].

3.4. Autonomous Driving Systems in Smart Transportation

In smart transportation systems, autonomous driving utilizes advanced technologies,
including sensors, cameras, artificial intelligence, and data analytics, which enable vehicles
to operate with little or no human intervention [93]. This conveys that vehicles are only
called autonomous when the automated system can carry out all alternating tasks, such as
navigating through traffic in different driving environments.

To enable self-driving capabilities, these systems typically combine hardware and
software components. These autonomous vehicles are equipped with hardware/sensors
such as radar, lidar, and cameras to help them perceive their environment [94]. They also
have advanced processing systems to analyze the data and make decisions. The software
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components of autonomous driving systems in smart transportation systems include
algorithms and machine learning models that can interpret the data from the sensors. [95].

3.4.1. Existing Relevant Works

The emergence of these self-driving technologies offers various benefits to smart
transportation. Some of the benefits are improved safety, increased efficiency, greater
accessibility, enhanced productivity, improved mobility, and better traffic management.

A significant benefit of an autonomous vehicle is that it can improve traffic conditions
by increasing per-vehicle occupancy and decreasing the fleet of vehicles on the road [96].
Additionally, autonomous cars could perform intelligent fleet management by carefully
communicating with their counterparts, reducing traffic jams. Furthermore, current au-
tonomous vehicles have 360 degrees vision which helps reduce accidents significantly.

Anderson et al. [97] researched to prove that autonomous vehicles can reduce the
poisonous gas disseminated into the air by selecting the best trip routes, consequently
improving fuel efficiency. Additionally, Mobility-as-a-Service (MaaS) and car sharing are
promising applications enabled by autonomous vehicles that do not require redundant
human interactions. The MaaS paradigm [98] will help consumers save money, time, space,
and even human resources (such as drivers). The driver of an autonomous vehicle can sit
back, relax, and take pleasure in the ride. The autonomous car allows designers to create
immersive passenger experiences that would not otherwise be possible [99]. Tesla is one of
the current autonomous vehicles worth discussing, which utilizes a software application
called “summon”. Owners of Tesla vehicles can summon their vehicles via the mobile
application. Thus, the car can drive itself to a designated parking spot, such as a basement,
and the owner can request to have it parked anywhere. Cars with this feature can also be
parked in tight spaces where exiting is difficult [100,101].

3.4.2. Challenges

Autonomous driving systems play a critical role in smart transportation systems,
enhancing safety, reducing traffic congestion, and making transportation more sustainable.
However, it is important to acknowledge that these systems require extensive development
and ongoing innovation to address the technical, legal, and ethical issues associated with
their deployment. Here, we will discuss some challenges this system faces.

• Regulation: The complexity of autonomous vehicles poses major technical challenges
when it comes to their validation and testing. For traditional vehicles, current stan-
dards exist, such as that from the International Standardization Organization (ISO),
which defines the functional features that their vendors must adhere to during man-
ufacturing. However, these standards can not be applied to an autonomous vehicle
because of its ability to make sole decisions, unlike traditional cars that require humans
to make these decisions. Therefore, due to the high uncertainty of the predictions that
these vehicles may make in different driving scenarios, it is impossible and impractical
to meet all the requirements to validate and test autonomous cars [102].

• Safety and Reliability: A significant challenge for autonomous vehicles is ensuring
their safety for both passengers and other road users. The implementation of au-
tonomous vehicles can reduce accidents due to human error. However, they must be
capable of detecting and reacting to unexpected situations, such as sudden changes in
road conditions or pedestrian movements.

• Security and Privacy: Although promising study findings, security, and privacy remain
fundamental barriers to the widespread use of connected automotive technologies.
During all communications, user and location information, must be kept safe, which
might be a challenge for autonomous vehicles because all of the inherent security risks
connected with sensors, communication networks, and short-range communications
can easily be transferred to them. As a result, security will be important in the future
development of self-driving automobiles [96]. Selfish individuals, hackers, angry
employees, or terrorist groups would all be interested in a completely automated
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system like an autonomous automobile. In the worst-case scenario, such cars may be
utilized for terrorist acts without the need for a driver.

• Cost: Although tremendous progress has been made in bringing the cost of produc-
ing autonomous vehicles down, these savings are still insufficient to make them a
financially viable choice for the average household. It will take some time before
autonomous vehicles become a norm in middle-class families.

3.5. Comparative Analysis of IoT, Machine Learning, Big Data, and Autonomous Driving Services
in Smart Transportation Systems

Here, we will compare the different technologies and existing literature discussed to
determine which ones have been the most effective in achieving certain services. By analyz-
ing and comparing the performance of different technologies, transportation authorities,
and manufacturers can make informed decisions about which technologies and strategies
to implement in their own smart transportation systems. This sub-section will explore
comparative analysis in the context of smart transportation systems, highlighting some of
the technologies used in the development of the smart system by various researchers and
discussing some of the potential benefits/services the system targets.

In Table 1, we present a comparative analysis of the smart transportation technologies
discussed previously with respect to the services they render.

Table 1. Comparative Analysis of Smart Transportation Technologies and their Services.

Services Benefits Papers Technology Used

Mobility as a Service(MaaS)

• Real-time data analytics
for car informatics

• Transportation services
via cloud computing

[63,64,77,85,87–89,98] IoT, Machine learning, Big
data, Autonomous systems.

Shared Autonomous Vehicles
(SAVs)

• It combines the benefits
of shared mobility and
autonomous vehicles to
provide a safe, conve-
nient, and cost-effective
transportation solution.

[96–99] Autonomous driving systems,
Machine learning

Incident management systems
(IMS)

• Manages events that oc-
cur on transportation sys-
tems, such as accidents,
breakdowns, or other dis-
ruption.

• Proactively manages traf-
fic flow

[65,72,75,76,78,86] IoT, Machine learning, Big
data

Shared mobility

• Ride-sharing services
• Reduced traffic conges-

tion
• Improved air quality
• Increased accessibility to

transportation options

[85,88,97] Big data , Autonomous
driving system

Location Tracking Systems

• Employs GPS technology
to track the position of
vehicles

• Enables manufacturers,
or car owners to track the
performance of their ve-
hicles in real-time

[71,79,88] Machine learning
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4. Applications of Smart Transportation Systems

In this section, we examine the main current smart transportation systems. These
systems are divided into seven classes based and their functionality as depicted in Figure 5.
We divided these systems to provide a structured understanding of the different types of
systems and compared their functionalities pertaining to smart transportation systems.

4.1. Route Optimization

Urban regions frequently have traffic congestion, which is only worsening as more
vehicles are added to the road. In order to reduce traffic congestion, route optimization
proposes the optimum path for a given destination. Both the amount of time it takes to
travel and vehicle emissions are decreased by reducing traffic congestion [103]. The route
optimization problem has been widely challenged and researched in the literature by
applying various technical approaches to the IoT infrastructure.

Google was one of the first companies to harness the potential of crowdsourcing for
developing new services. All modern mobile devices are compatible with the free Google
Maps app. Integrated GPS, accelerometer, and gyroscope sensors are found in mobile
devices. In 2009, Google unveiled a brand-new service that would provide users access to
traffic data within Google Maps [104]. Fixed location sensors or other monitoring systems
did not gather the traffic data. Using the maps application, the end user’s mobile device
can submit anonymous information about their location and speed. To reduce congestion,
Google Maps can now recommend other routes based on traffic data.

The authors of [105] investigate whether there is any connection between traffic jams,
greenhouse gas emissions, and the user-generated data from Google’s “popular times”
feature. In the study, cameras on particular roadways and cars with a GNSS data logger
are used to collect traffic data. Emissions are estimated based on the Vehicle Specific Power
(VSP) model and Google Maps’ popular time data. The findings revealed a correlation
between the crowdsourced data of “popular times” and emissions, while further data
calibration and an adaptive learning algorithm to examine related cases would be required
to create precise correlations.

Figure 5. Applications of Smart Transportation Systems.
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Embracing the idea of crowdsourcing, [106] used a swarm intelligence algorithm for
route optimization to investigate the potential of mobile crowd-sensing for intelligent
transportation systems. The authors implement a Modified Crowd-Sensing version of the
Ant Colony Optimization algorithm (MoCSACO). Similar to how ants follow pheromone
lines to find food, users will communicate with one another and navigate to less crowded
areas by following the messages they receive from other users.

Additionally, crowdsourcing route planning for the final mile to a destination was
done in [107]. According to the authors, using straightforward methods like the shortest
path or shortest time rarely results in an accurate plan for the final mile. Users, on the
other hand, could share their driving patterns around various destinations, providing
more accurate directions at the last navigation segment. In this study, a mobile application
called CrowdNavi is used to gather data and offer recommendations for a journey’s final
mile. Finding the final segment is a requirement of the application. The first segment is
determined using crowd data and a process known as landmark scoring, while the last
portion is suggested using data from sites like Google Maps.

4.2. Parking

By eliminating the need to hunt parking lots in search of an open spot, making it
easier to find available places in advance helps lessen traffic and pollution [29]. Many
parking applications are created to monitor parking lot availability efficiently, provide users
with reservation options, and even incorporate parking detection and alerting systems.
Many IoT devices have been employed to detect the presence of a car in a parking spot
and convey the information to a centralized system. Additionally, other studies apply ML
algorithms that use image data to detect free parking slots massively. Saarika et al. [57]
proposes a smart parking strategy with the concept of an IoT-supported parking lot and
a smart signboard to display pertinent information. Ultrasonic sensors in the parking lot
will determine whether parking spaces are available, and a WiFi module will gather and
transfer the data to a cloud server. A user can now utilize a smartphone application or a
smart signboard to check parking availability. The signboard is an LCD or LED display
powered by a Raspberry Pi that will gather and show data on parking accessibility, weather
conditions, travel times to specific locations, etc.

To determine availability, the authors in [108] also place ultrasonic sensors at each
parking space. The sensor is linked to an Arduino Uno, which uses an ESP8266-01 WiFi
module to transmit data to a cloud server. The MQTT protocol is used for communication.
The cloud server runs ThingSpeak, an IoT platform that provides customers with various
management and monitoring options. Last but not least, customers can download an
Android app that enables them to reserve parking spaces and automate parking payments.

The authors suggest a smart parking system using a hardware and a software com-
ponent in [109]. Magnetic sensors are employed in the hardware to detect cars in parking
spaces, and a gateway device is positioned on the side of the road to collect data and trans-
mit it to a distant server. The software component’s objective is to suggest to the user the
closest available free parking space. This is accomplished using a genetic algorithm to find
the shortest path between the user’s position and the closest available slot. Rizvi et al. [56]
introduces an additional smart parking strategy with the development of an agent-oriented
smart parking recommendation system (ASPIRE). Through a “Local Agent”, users of the
ASPIRE system can configure their parking preferences, such as their favorite location and
maximum walking time, and the system will take all of this information into account when
a request is made for a parking space. A cloud-based software agent will thereafter select
the best parking locations for the customer. The Local Agent notifies the user, who then
selects their chosen parking space. The Analytic Hierarchy Process (AHP), a systematic
mathematical method for analyzing complicated problems, is the foundation of the parking
recommendation algorithm. RFID scanners that track and identify vehicles entering and
exiting parking lots are also installed at the entrance. The cars must also be equipped
with an RFID tag to make identification possible. Shi et al. [110] presents an end-to-end
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parking system. A smartphone application, a modular cloud server, physical sensors and
microcontrollers installed at parking spaces, and a third-party payment provider make up
the system. Geomagnetic vehicle detectors at the parking spaces scan for the presence of
vehicles and relay the information to the cloud server using a BC95-B5 NB-IoT module.
There are various modules on the cloud server. A basic information module that oversees
the sensor nodes and other administrative duties a module with manageable information
for the system’s maintainers, a charging module that computes charges and sends reports
to the third-party charging service, and a sensor node surveillance system that allows
monitoring of the availability of parking spaces and the sensor’s operational status, a busi-
ness intelligence module that facilitates querying and visualizing parking data, and a task
management module. Through a web-based mobile application, the system is accessible
to the end user. Finally, the cloud server and the mobile web app enable payments via
third-party payment services like Alipay and WeChat pay.

4.3. Lights

Smart Street Lights (SSL) are a crucial component of a smart city and are included
in the category of smart transportation services. Smart lighting can save energy while
providing dynamic functionality and manageability. Jia et al. [111] implements an SSL
implementation based on IoT technology. By including a light sensor, an IR sensor, GPS,
and a wireless connection module, streetlights acquire smart features. By being aware
of congested locations and dynamically adjusting their light intensity, lamps can make
densely populated areas safer while simultaneously using less energy. When the street
light breaks, the GPS can let a centralized system tracks its location and condition and
expedite maintenance procedures. The NB-IoT network serves as the foundation for the
communication between the management system and SSL. The management system is
built on fog nodes, which gather information from a number of bulbs and periodically
assess their condition. In addition to the automatic processes that SSLs offer, they can
also be remotely administered via the established management platform. Kokilavani and
Malathi [112] presents a similar and simpler method for smart lights. This design connects
the lamp with a light sensor, an IR sensor, and an IR led using a raspberry pi as the
microcontroller. The sun’s rise and set will be detected by the light sensors, which will then
turn on and off the bulb. In order to save energy, the lighting can also recognize passing
vehicles or pedestrians and switch the lamps on and off dynamically.

Additionally, the authors in [113] suggest a smart lighting system in which each lamp
post will function as a WiFi hotspot, allowing various types of collected data to be sent to a
central web server. To achieve a considerable cost reduction, the lights will dynamically
turn on/off or dim depending on the surrounding environment. Lamp posts will be
embedded with cameras and sensors to monitor the area, ensuring that people are safe
during crises and enhancing the capabilities of a standard lamp post.

4.4. Controlled Junction and Traffic Lights

A controlled junction uses traffic lights to control when vehicles may enter the junction.
This is done in an effort to smooth access to a traffic jam on the route. Sensors are frequently
used to control traffic signal junctions. These sensors identify areas where traffic accumu-
lates as it approaches the junction and then extend the green light to allow for more vehicles
to pass through. Transponders installed in junctions can also be used to prioritize entry to
the junction so that emergency vehicles and public transportation can move through the
junction more quickly. By carefully regulating the timing of traffic signals and the speed of
approaching cars, intersection control tries to maximize junction throughput and reduce
stopping time.

The authors in the research [114] suggest a revolutionary decentralized traffic light
control system that utilizes wireless sensor networks. The wireless sensor network, the lo-
calized traffic flow model policy, and the higher-level coordination of the traffic light agents
are the three levels of the system architecture. The nearest Intersection Control Agent (ICA)
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receives data from the wireless sensors, which track the number, speed, and other charac-
teristics of passing cars, and uses it to estimate the intersection’s flow model. The real-time
adaptive control of the traffic signals is the key contribution. This will also enhance the
movement of cars. By regulating the traffic lights, an intersection control agent controls
the intersection. To control a larger area, several intersection agents can communicate with
one another.

4.5. Accident Detection

Accident detection and prevention, a domain of smart transportation, is critical for
every city because an effective preventative strategy can help save lives. If drivers maintain
greater concentration while on the road, accidents can be avoided. An accident prevention
system allows drivers to be notified about critical situations and allow them to act promptly.
By identifying accident-prone locations or accidents that have already occurred in the live
traffic network, accident detection can also help to reduce the number of accidents and
traffic congestion. Machine learning has shown to be particularly helpful in identifying
traffic incidents, as well as in identifying patterns that may result in new accidents and
alerting drivers to help them avoid them.

The research’s authors [37] suggest an IoT cloud platform to enable traffic visualization
and early alerts about unexpected slowdowns that could cause accidents. The established
configuration would include Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
Software as a Service(SaaS), and a novel approach called IoT as a Service (IoTaaS). Devices
installed in volunteer vehicles will be used to collect GPS data, which is then transmitted
over a 4G network to a cloud server. With the help of the OpenGTS platform and Open-
StreetMaps, the cloud server manages GPS data. To facilitate further analysis, the data is
stored in a SQL format and a Distributed MongoDB database. The use of Docker containers
supports the scalability of the back end. The system response time is a crucial factor in the
implementation’s success, and the suggested solution can transmit an alert over a distance
of 1 km in a little under 120 ms.

4.6. Road Anomalies

Since the state of the road immediately impacts many aspects of transportation, road
anomaly detection is essential in smart transportation. A road anomaly detection system’s
primary function is to find potholes and bumps in the road and alert drivers. Traffic
congestion, car damage, and road accidents can all result from poor road conditions.

A CNN-based method for identifying concrete fractures in photos taken with a hand-
held camera in erratic lighting circumstances was proposed by [115]. The designed CNN
is trained on 40 K images of 256 × 256 pixel resolutions and records with about 98%
accuracy. It was reported that their suggested method was particularly effective at finding
thin fractures in low-light situations that are challenging to find using more conventional
techniques like Canny and Sobel edge detection.

Additionally, the use of transfer learning and pre-trained deep learning models for
crack damage identification in UAV photos of civil infrastructure was proposed by [116].
(which also included a small proportion of road surface images). The results demonstrate
that, without any data augmentation or preprocessing, their suggested strategy can quickly
and simply achieve up to 90% accuracy in crack discovery in real-world scenarios.

4.7. Infrastructure

Modern transportation has profited in numerous ways from the development of IoT
technology. It has developed new ways of thinking as well as new applications that have
improved transportation. The capabilities of Intelligent Transportation Systems can be
significantly increased by changing their infrastructure. [117] makes a novel communica-
tion method suggestion. Based on the IoT principle of M2M communication, the authors
propose and simulate a vehicle-to-vehicle (V2V) communication framework. In the sug-
gested architecture, the cars will use GPS to determine their location and communicate
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with nearby automobiles to exchange information about their speed, motions, and locations
while simultaneously uploading the data to a server. Thus, sudden speed changes can be
warned to oncoming traffic in advance to prevent accidents, and information regarding
traffic congestion can be shared with oncoming vehicles to improve guidance services.

The research [118] suggests a hardware and software system to facilitate bus fleet
monitoring and enhance user interaction. The suggested technology includes IR sensors
to count passengers boarding and leaving the bus, RFID tags to uniquely identify buses,
and GPS to track the vehicle’s whereabouts in real-time. A TI CC3200 microcontroller
with an inbuilt WiFi module is used to collect and upload the acquired data to a cloud
server. Additionally, each bus stop has a TI CC3200 module attached to an LCD so that
the passengers can view the provided information. The users are also given access to the
information via a mobile application.

The term “Social Internet of Vehicles” (SIoV) is created by fusing the concepts of social
networks with the internet of things for applications in smart transportation. To reduce
SIOV communication congestion, the authors of [119] suggest a cross-layered Vehicular
Social Network Protocol (VSNP). To speed up communication, the protocol extends to the
MAC, Physical, and network levels. Circular time slots are divided into rings by the MAC
layer. Wireless Sensor Network nodes comprise the physical layer, and the network layer
facilitates routing from outer rings to a fixed access point. In simulations run in Matlab,
the proposed protocol outperforms an existing protocol (MERLIN).

In Table 2, we summarize some of the existing applications in smart transporta-
tion, their technologies, architectures, and communication mechanisms, along with who
uses them.

Table 2. Summary of Existing Applications.

Application Technology Architecture Communication Mechanism Used by:
End User/Management

[41] IoT (V2V) - - End User

[42] IoT Cloud 4G End User

[58] IoT, RFID Cloud 3G/4G End user

[109] Crowd Sourcing Cloud 4G/5G End User

[110] Crowd Sourcing - - End User

[111] Crowd Sourcing Client - Server - End User

[112] Crowd Sourcing Cloud 3G/4G, End User

[113] IoT Cloud Wireless Sensor Network End User

[114] IoT Cloud Wireless sensor network End User

[115] IoT Cloud 4G Management

[116] IoT Fog Computing Wifi, 4G Management

[117] IoT - - Management

[118] IoT (RFID,GPS) Cloud Wifi End User

[119] IoT Wireless sensor
neworks Vehicular Social Network Protocol Management

[120] Machine learning
(CNN) - - Both

[121] Deep Neural Network - - Both

5. Challenges and Future Direction of Smart Transportation

In this section, we highlight the present challenges with smart transportation systems
as well as potential future directions for research in smart transportation systems.
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5.1. Challenges

Although smart transportation systems have gained popularity over the years due to
their ability to provide fast, convenient, and effective services, they are not without flaws.

One is the overload of wireless networks attributable to the rising number of devices
used for traffic monitoring and management, which is likely the most significant recognized
communication difficulty. As the number of devices increases, so will the requirement for
an adaptive routing protocol for resource allocation and prioritization, as well as a system
for storing and managing large volumes of road traffic data [84].

Other problems revolve around vehicle-to-vehicle (V2V) communication. New certifi-
cate management systems must be created to protect the privacy, safety, and security of
infrastructure communication networks [120]. V2V communications can be the subject of
transmission interference or other intrusion attempts, such as seizing control of the vehicle
or manipulating data transmitted to other mobile hosts, which can lead to accidents.

With the incorporation of numerous sensors and actuators into vehicles, data collecting
via a consistent process has become a new difficulty. Data collecting is also linked to data
transmission to network access points (Road Side Units in most cases). To investigate,
descriptions of the sensors as well as their setups are required [121].

Aside from the issue of data collection, data privacy, and security also pose significant
threats to smart transportation, as discussed earlier in Section ??. Smart transportation
systems create and gather massive quantities of data, including personally identifiable in-
formation. It is critical to ensure the privacy and security of sensitive data, as these systems
are subject to hacking by malicious individuals for selfish reasons. These vulnerabilities
could cause dire effects on passengers and drivers on the road in terms of fatalities and
maybe even loss of life.

Integrating mobile (smart) devices in vehicle and transportation systems can open the
way for data collection about the vehicular environment. Combining vehicle sensor data
with environmental data on a computing platform is difficult since the data formats and
contents differ, and there is no common technique for data fusion [90]. Interoperability
can be difficult to achieve since various technologies may use distinct data formats and
protocols. This can be difficult for towns and communities that do not have the appropriate
technological knowledge or skill sets to maintain and equip them.

Another issue is that of costly implementation and high level of complexity within
these systems. Smart transportation solutions need substantial expenditures in hardware,
software, and infrastructure. This can be a significant challenge to adoption, particularly in
smaller cities and villages [122]. Additionally, smart transportation systems are complicated
and need specific knowledge and skills in data analytics, artificial intelligence, and IoT
technology. For smart transportation systems to function efficiently, numerous technologies
and platforms must be compatible.

Additionally, connectivity is paramount in a smart transportation system. To function
properly, smart transportation systems rely significantly on data and communication
networks. Any disruption or breakdown in these networks can result in significant issues
such as traffic congestion, delays, and safety dangers.

5.2. Future Directions

As stated in Section 3, smart transportation is a field that focuses on improving
transportation systems using advanced technologies such as machine learning, IoT, and big
data analytics. Here, some fundamental open problems in smart transportation systems
that require additional investigation are discussed.

• Access to the data processed and stored by these systems is crucial for government
agencies, commercial businesses, and academics researching and developing new ITS
technologies and services. This is because access to standardized data is critical for
integrating connected and autonomous cars, as well as other sectors of this field that
rely heavily on data [83,84]. Communication is a critical component of data access
when cars and travelers traverse jurisdictional boundaries and they are critical for
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the next generation of smart transportation systems. Research could be conducted
into ways to increase the resilience of smart transportation systems through backup
systems, redundancy, and disaster recovery planning.

• Another significant challenge is security and privacy; these are critical and continuous
issues in the transportation industry [91]. Cyber attacks on transportation infrastructure
can impact national security, public safety, and the economy. Future research can explore
ways to improve the security of data transmission, storage, and processing, including en-
crypting, controlling access, and detecting intrusions. Additionally, the use of advanced
authentication and authorization systems, intrusion prevention systems, and threat
intelligence can be explored in future research on smart transportation systems.

• Exploring the potential of autonomous cars to decrease traffic congestion and increase
road safety: As stated earlier, autonomous cars can alleviate traffic congestion while
also improving road safety [96]. Researchers may look into how effective these cars
are in reducing traffic congestion and improving road safety, as well as their effects on
transportation demand and the environment.

• Investigating the use of blockchain technology to improve transportation security,
efficiency, and reliability: By providing a secure and transparent record of transactions,
blockchain technology can improve transportation security, efficiency, and depend-
ability [123]. Researchers may examine blockchain technology’s potential in smart
transportation and create new applications and use cases.

• Examining the role of smart transportation in enhancing accessibility and mobility
for disadvantaged groups (e.g., the aged, the disabled, and the low-income): Smart
transportation may increase accessibility and mobility for underserved populations,
including the elderly, disabled, and low-income people, [96]. Researchers may explore
the efficacy of smart transportation solutions in enhancing accessibility and mobility
for these populations, as well as create methods to overcome any adoption hurdles.

• Green transportation: Smart transportation systems can be structured to prioritize and
encourage environmentally friendly modes of transportation [97] such as public trans-
portation, cycling, and electric automobiles. This would assist in cutting greenhouse
gas emissions while also improving air quality in cities.

6. Conclusions

In this paper, we gave an in-depth survey of smart transportation systems and applica-
tions by reviewing the major technologies currently used to develop smart transportation
systems. We highlighted the challenges, history as well as smart transportation applica-
tions using these technologies. Additionally, we discussed the common architectures that
provide the development schemes of smart transportation systems. We assembled several
current research relating to these technologies as well as theoretical evaluations of these
systems. We then aggravated the uses of these applications into the segments that are
applied in the smart transportation sector.

Furthermore, the communication protocols used by these smart transportation sys-
tems to ensure functionality were analyzed. Common communication protocols were
explained, as well as systems that currently use these protocols to improve the issues of the
transportation systems. The challenges currently facing these systems have been addressed
in this paper as well as future research that could have benevolent impacts in improving the
issues of these systems in our society. In this paper, we gave an in-depth survey of smart
transportation systems and applications by reviewing the major technologies currently used
to develop smart transportation systems. We highlighted the challenges, history as well
as smart transportation applications using these technologies. Additionally, we discussed
the common architectures that provide the development schemes of smart transportation
systems. We assembled several current research relating to these technologies as well as
theoretical evaluations of these systems. We then aggravated the uses of these applications
into the segments that are applied in the smart transportation sector.
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Furthermore, the communication protocols these smart transportation systems used
to ensure functionality were analyzed. Common communication protocols were explained,
as well as systems that currently use these protocols to improve the issues of the transporta-
tion systems. The challenges currently facing these systems have been addressed in this
paper and future research that could have benevolent impacts in improving the issues of
these systems in our society.
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