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Abstract: Tool wear is an important concern in the manufacturing sector that leads to quality
loss, lower productivity, and increased downtime. In recent years, there has been a rise in the
popularity of implementing TCM systems using various signal processing methods and machine
learning algorithms. In the present paper, the authors propose a TCM system that incorporates the
Walsh–Hadamard transform for signal processing, DCGAN aims to circumvent the issue of the
availability of limited experimental dataset, and the exploration of three machine learning models:
support vector regression, gradient boosting regression, and recurrent neural network for tool
wear prediction. The mean absolute error, mean square error and root mean square error are used
to assess the prediction errors from three machine learning models. To identify these relevant
features, three metaheuristic optimization feature selection algorithms, Dragonfly, Harris hawk,
and Genetic algorithms, were explored, and prediction results were compared. The results show
that the feature selected through Dragonfly algorithms exhibited the least MSE (0.03), RMSE (0.17),
and MAE (0.14) with a recurrent neural network model. By identifying the tool wear patterns and
predicting when maintenance is required, the proposed methodology could help manufacturing
companies save money on repairs and replacements, as well as reduce overall production costs by
minimizing downtime.

Keywords: tool wear; generative adversarial network; Walsh–Hadamard transform; Dragonfly;
Harris hawk; feature selection

1. Introduction

The development of Industry 4.0, also known as the fourth industrial revolution, has
significantly impacted the manufacturing sector in recent times. In the context of tool
condition monitoring, Industry 4.0 has a significant role in improving monitoring systems’
accuracy and efficiency. One key aspect of Industry 4.0 in tool condition monitoring (TCM)
is the use of advanced sensors and monitoring systems that are capable of collecting large
amounts of data in real-time. These systems can be integrated with artificial intelligence
(AI) and machine learning (ML) algorithms to analyze the data and provide insights into
the condition of the tool [1]. For example, machine learning algorithms can be used to
analyze the vibration patterns generated by the tool to identify any abnormal patterns
that may indicate tool wear or breakage. Similarly, AI can be used to analyze temperature
and pressure data to detect anomalies related to the tool’s condition [2]. This can result
in significant improvements in efficiency and productivity, as well as reduce the risk of
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downtime due to unexpected tool failures or other issues. There are two main categories of
tool condition monitoring techniques: direct and indirect. The measurement of physical
characteristics that are directly connected to the tool or machine that is being monitored
is involved in direct procedures. Indirect techniques of condition monitoring involve
monitoring parameters that are indirectly related to the health of the machine or the
component being monitored. These parameters can include temperature, pressure, voltage,
current, and other physical or operational data that can provide insights into the machine’s
condition. The indirect techniques of condition monitoring can also be combined with
direct techniques to provide a more complete picture of the machine’s condition. For
example, vibration analysis can be used in conjunction with temperature monitoring
to detect abnormal vibration patterns that are related to temperature changes. Direct
techniques are generally more accurate and reliable than indirect techniques, but they can
be more complex and require specialized equipment to implement. On the other hand,
indirect techniques are often more straightforward and easier to implement but may not
provide as much detail about the tool or machine’s performance.

Vibration analysis is a powerful technique used in tool condition monitoring to de-
tect any abnormalities or faults in a machine tool. By analyzing the vibration patterns
generated by the tool, it is possible to identify various conditions such as tool wear, tool
breakage, or poor tool performance [3,4]. Machine vision can monitor tool wear in real
time using cameras and image processing algorithms. The authors [5,6] devised a method
for detecting tool wear by analyzing the images of specimens manufactured through the
machining process. Their approach identified surface roughness changes which could be
further explored to estimate the remaining usable life of a tool. Moldovan et al. [7] provided
an alternative technique. In the end milling process, they proposed a tool-flank-wear
monitoring system that used the Euler number to distinguish between worn and unworn
tool flanks under variable cutting periods. For a ball end milling operation, Zhang and
Zhang [8] used an enhanced wear edge detecting method that achieved subpixel precision.
Overall, the research indicates that machine vision is a viable technique for monitoring tool
wear, with the potential to enhance the productivity and quality of industrial operations.
However, there are obstacles to overcome, such as the inaccessibility of the cutting region
during the machining process. In addition, certain direct TCM techniques need the cutting
tool to be removed from the tool post, which may result in the misalignment of the tool
during the subsequent operation [9]. There has been a plethora of attempts to establish a
causal link between machining parameters and tool wear, and hence, support the use of
indirect methods for monitoring tool condition [10]. In recent years, ML algorithms have
grown in favor of a robust tool for predicting and monitoring the status of cutting tools.
These algorithms have demonstrated significant results in a variety of aspects of tool condi-
tion monitoring (TCM), such as tool wear [11], surface quality [12], and material removal
rate [13]. Real-time tool wears prediction using machine learning techniques enables the
early identification and replacement of worn-out tools. These algorithms examine sensor
inputs such as acoustic emission, vibration, and temperature to anticipate tool wear. The
most often used methods for tool wear prediction are artificial neural networks (ANNs),
support vector machines (SVMs), and random forest (RF) algorithms. ML algorithms may
be used to evaluate the surface finish, which is a crucial quality parameter in machining
operations. These algorithms then determine the surface finish based on process character-
istics such as cutting speed, feed rate, and tool shape. The material removal rate is another
parameter that determines the productivity of the machining process. ML algorithms can
be used to enhance MRR by highlighting the required process parameters that yield the
maximum MRR.

Studies have shown that machine learning algorithms can effectively predict tool wear
rates in various machining operations, such as milling [14], turning [15], and grinding [16].
Hybrid models combining ML algorithms with optimization techniques have also been
proposed and shown to have high accuracy in predictions [17]. SVM has also been used for
TCM and has been shown to have good performance in detecting tool wear and predicting
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tool life [18]. Deep learning (DL) models have become a popular tool for TCM in recent
years due to their ability to handle large amounts of data and to detect patterns and
anomalies in data that are difficult to detect using traditional methods [19]. DL models
such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
deep belief networks (DBNs) have been applied to TCM and trained on large datasets of
machining processes to learn the patterns and relationships between tool conditions and
tool wear. In addition, transfer learning techniques have been proposed for TCM, allowing
for the transfer of knowledge from one machining process to another and improving
the efficiency of the prediction process [20]. Despite these advantages, there are also
limitations to the use of ML models for TCM. ML and DL models require large amounts of
experimental data to be trained effectively. In the case of TCM, these data need to include
detailed information about the machining process, tool conditions, and wear patterns.
Recently generative adversarial networks (GAN) were developed by Goodfellow [21]
and are capable of generating synthetic data that can supplement the real data used in
training machine learning models. Compared to traditional techniques, GAN can be useful
for tool condition monitoring in various ways. To begin, GANs can be used to generate
synthetic data that can be used to supplement the real tool wear data used in training
machine learning models. This is especially useful when there is a scarcity of real-world
data for training. Secondly, GANs can be used to reduce the time and effort required for
feature extraction while also improving prediction accuracy. Finally, with the availability of
additional spectrograms (generated by GAN), deep learning models such as RNN can be
developed, which was previously very tedious due to a lack of experimental data.

As per the available literature, the utility of GAN in the area of TCM has not been
explored effectively. Therefore, to circumvent the issue of a limited dataset, the authors
developed deep convolutional generative adversarial networks (DCGAN) to generate
additional data on publicly accessible milling datasets from NASA’s Prognostics Centre of
Excellence-Data Repository [22], which helped to train the ML models to predict the tool
wear rate effectively. DCGAN is a type of GAN that uses convolutional neural networks
(CNNs) to generate high-quality images. While GANs are a class of neural networks
used for generating new data that resemble a given dataset, DCGAN specifically uses
convolutional layers to improve the quality of generated images. The following is the
author’s specific contributions:

1. To investigate the use of the Walsh–Hadamard transform and DCGAN for signal
processing and spectrogram generation, respectively, and to assess their effectiveness
in predicting tool wear.

2. To investigate and compare the performance of three different metaheuristic optimiza-
tion feature selection algorithms through the selection of relevant features for tool
wear prediction and evaluate their impact on prediction accuracy.

3. To compare the performance of three different machine learning models for tool wear
prediction in conjunction with the Walsh–Hadamard transform, DCGAN, and the use
of the selected features.

4. To develop a more accurate and efficient TCM system for tool wear prediction by
integrating novel approaches using the Walsh–Hadamard transform and DCGAN,
exploring metaheuristic optimization feature selection algorithms, and evaluating the
performance of different machine learning models.

The remaining sections of the article are structured as follows: Section 2 describes
the methods and experiments, Section 3 analyzes the results, and Section 4 provides the
conclusion. Figure 1 shows a flowchart of the proposed methodology.
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Figure 1. Proposed methodology.

2. Materials and Methods
2.1. Experimental Setup

The milling dataset for this study was obtained from the NASA Prognostics Center of
Excellence-Data Repository [22]. This data set contains experiments conducted on a milling
machine (Matsuura Machining Centre MC-510V) under different operating circumstances.
Three distinct kinds of sensors were used to gather data: the AE sensor, the vibration
sensor, and the current sensor. The dataset contains cutting parameters and tool wear
measurements. The dataset is often used in metal cutting, tool wear prediction, and
surface quality analysis-related research. Researchers utilize the data to construct and
test machine learning models that can predict tool wear based on cutting parameters,
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optimizing machining processes and enhancing the efficiency of metal cutting operations.
Typically, the NASA Milling dataset comprises measurements of cutting speed, feed rate,
the depth of cut, tool geometry, and tool wear. Frequently, these data are preprocessed and
divided into training and test sets, which are used to train and assess machine learning
models. The table and spindle are equipped with AE and vibration sensors. All sensor
signals are amplified and filtered prior to their transmission to the computer for data
collection. The computer obtains the current sensor output from the spindle motor without
additional processing.

The matrix of test parameters was determined by industry applicability and
manufacturer-recommended values. Consequently, the cutting speed was set at 200 m/min,
or 826 rpm per minute. Either 1.5 mm or 0.75 mm was chosen as the depth of the cut.
In addition, two feeds of 0.5 mm/rev and 0.25 mm/rev were used, corresponding to
413 mm/min and 206.5 mm/min, respectively. Experiments on milling were performed
using a 70 mm face mill and six KC710 inserts coated with TiC, TiC-N, and TiN for dura-
bility. The piece measuring 483 mm × 178 mm × 51 mm was composed of either cast
iron or stainless steel. Except for a fresh set of inserts, all tests were performed under
the same conditions but with a new set of inserts. This investigation focuses on the spin-
dle’s AE signals when milling on cast iron. The experiment’s cutting parameters are
shown in Table 1.

Table 1. Face milling cutting parameters.

Parameters Values

Depth of Cut 1.5 mm & 0.75 mm
Feed Rate 0.5 mm/rev & 0.25 mm/rev

Material Workpiece Cast Iron & Stainless Steel J45

2.2. Acoustic Emission (AE) Signals

Acoustic emissions refer to the spontaneous release of temporary elastic stress energy
during the deformation of a material. This experiment collected AE data using an AE
sensor with a frequency range of up to 2 MHz (model WD 925, Physical Acoustic Group).
This sensor was clamped in place for support. A 50 kHz high-pass filter preamplifier
(model 1801, Dunegan/Endevaco) was used to amplify the signal, which was subsequently
amplified by a twin amplifier (model DE 302A). A custom-designed RMS meter sent the
signal via cable to a high-speed data collection board (MIO-16). Figure 2 illustrates the
recorded acoustic signals from the sensor.
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2.3. Walsh–Hadamard Transform

Walsh–Hadamard transform (WHT) is a type of Fourier transform which decom-
poses any input vector into a superposition of Walsh functions [23]. In WHT, a linear
transformation that transforms a sequence of numbers into a new sequence of numbers
is mathematically performed to input signals. It is an orthogonal transformation, mean-
ing that it preserves the inner product between the original and transformed sequences.
Mathematically, the WHT can be represented by the following matrix equation:

X = Hx (1)

where X is the transformed sequence, x is the original sequence, and H is the Walsh–
Hadamard transform matrix. The elements of the WHT matrix are given by:

h(i, j) =
(

1√
n

)
× (−1)i&j, (2)

where i and j are indices of the matrix, n is the length of the sequence, and & is the binary
AND operation. The binary AND operation computes the bitwise AND of the binary
representations of i and j.

The WHT is fast and efficient, as it can be computed in O (n log n) time using the Fast
Walsh–Hadamard Transform (FWHT) algorithm. The WHT is used in various applications
such as signal processing, fault diagnosis, cryptography, etc.

By analyzing the frequency and amplitude of the vibrations generated during the
machining process, spectrograms can provide valuable insights into the condition of a
tool. The color pattern in a spectrogram represents the intensity or amplitude of sound
or vibration over time. On a spectrogram, darker or cooler colors represent lower am-
plitudes or quieter sounds or vibrations, whereas warmer or brighter colors represent
higher amplitudes and louder sounds or vibrations. As a result, the color pattern in a
spectrogram can show how the intensity of frequencies in sounds or vibrations changes
over time. Darker colors near the bottom typically represent low-frequency components in
the spectrogram. This is because low-frequency components have longer wavelengths and,
thus, lower frequencies, which are lower on the spectrogram’s vertical axis. In contrast,
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high-frequency components are typically represented by brighter colors near the top of the
spectrogram. This is because high-frequency components have shorter wavelengths and,
thus, higher frequencies, which are higher on the spectrogram’s vertical axis. As a result,
the position of the color intensity within the spectrogram can be used to identify a signal’s
frequency content, with lower frequency components at the bottom and higher frequency
components at the top. Figure 3 displays the spectrograms generated from measured AE
signals with variations in their operating parameters.
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2.4. Deep Convolutional Generative Adversarial Network (DCGAN)

When constructing an ML model for classification or regression, the availability of ex-
perimental data is a major concern. To circumvent this problem, the generative adversarial
network (GAN) emerges as a potential tool. GAN is a deep learning technique developed
for unsupervised learning in which the model learns to create new, previously unseen data
samples that are comparable to the training data. It has a generator and discriminator
network. The generator network generates data samples, while the discriminator network
verifies them. The use of adversarial training between the generator and discriminator
networks allows GANs to generate samples that are not only realistic but also diverse,
capturing the variations of the target distribution [24,25]. There are several types of genera-
tive adversarial networks (GANs) that have been developed, each with a slightly different
architecture or training procedure. The DCGAN is a specific type of GAN architecture that
is designed for the generation of high-quality images. DCGANs use convolutional layers
instead of fully connected layers, which allows them to learn spatial features in images.
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Instead of pooling layers and up-sampling layers, strided convolutions and transposed
convolutions are used, which allows them to learn spatial features at multiple scales while
avoiding a loss of information. DCGANs do not use fully connected layers in either the
generator or discriminator networks, which reduces the number of parameters and helps
to avoid overfitting [26]. The network comprises a generator and discriminator network.
The DCGAN generator network converts a random noise vector, z, into an image, G(z).
The noise vector is sampled from a Gaussian distribution and supplied to the generator
to produce a new image. D(x) is a discriminator network that receives an input image,
x, and produces a scalar value representing the likelihood that the input image is real.
The generator aims to produce indistinguishable images from actual images, while the
discriminator aims to differentiate between real and generated images reliably. The network
uses convolutional and pooling layers, batch normalization layers, and activation functions
to process the input data. The generator network uses a ReLU activation function in all
layers except the output layer, which uses a tanh activation function to ensure that the
output image pixels are in the range [−1, 1]. The discriminator network uses a Leaky ReLU
activation function in all layers except the output layer, which uses a sigmoid activation
function to produce a scalar output between 0 and 1. It uses a binary cross-entropy loss
function to train the discriminator network, and the generator network is trained to maxi-
mize the loss function of the discriminator network to produce more realistic images [27].
The two networks are trained in an adversarial way, with the generator attempting to
produce pictures that will deceive the discriminator and the discriminator attempting to
distinguish the real and generated images properly.

The mathematical formulation of the GAN can be expressed as:

min G(z) max D(x) V(D, G) = E[logD(x)] + E[log(1− D(G(z)))] (3)

where G(z) is the generator network, D(x) is the discriminator network, V(D, G) is the
GAN objective, x is a real image from the training data, and z is a random noise vector.
The first term, E[logD(x)], measures how well the discriminator can classify real images as
real, while the second term, E[log (1− D(G(z)))], measures how well the generator can
fool the discriminator. The generator and discriminator are trained alternately, with the
generator trying to minimize the GAN objective and the discriminator trying to maximize
it [28]. Figure 4a,b shows the architecture of the DCGAN model.
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2.5. Machine Learning Models

Algorithms that are built to learn from data and make predictions or judgments
based on that learning are known as machine learning (ML) models. Machine learning
models can be broadly classified into supervised and unsupervised learning models. In
supervised learning, models are trained on data with labels and known input and output
attributes [30,31]. Decision trees, logistic regression, and Naïve Bayes are a few examples
of supervised learning models. In unsupervised learning, models are trained on data that
have no labels and just known input attributes. Unsupervised learning aims to find patterns
or links in the data, for example, by grouping related data points. K-means and hierarchical
clustering are two examples of unsupervised learning methods. In the present study,
the authors explored the utility of the recurrent neural network (RNN), gradient-boosted
regression (GBR), and support vector regression (SVR) for tool wear rate prediction.

2.5.1. Recurrent Neural Networks (RNN)

A recurrent neural network (RNN) is a neural network that intends to handle the
sequential input by retaining an internal state, or “memory,” to record relationships between
sequence parts. In a conventional neural network, the input is systematically processed
layer by layer to create an output. RNN, on the other hand, receives a succession of inputs
and generates a sequence of outputs, with the network’s internal state changing at each
step depending on the current input and the prior state. A typical RNN consists of an input
layer, a hidden layer with a recurrent link, and an output layer. The recurrent connection
allows information to flow from one time step to the next and is theoretically expressed as
a function of the input, the prior state, and a set of learnable parameters. The structure of
an RNN can be represented mathematically as follows [32]:

At time step t, the network takes as its input a vector Ixt and an internal state vector
Iht, and produces as its output a vector Iyt:

Iyt = Ø
(

Wyh Iht + Wyx Ixt + by

)
Here, Ø is the activation function, while Wyh, Wyh, and by are learnt weight matrices

and a bias vector, respectively, that translate the input and state to the output.
The internal state vector Iht is updated at each time step based on the input and the

previous state, and can be represented as:

Iht =
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Whh and Whx are learnt weight matrices, bh is a bias vector learned, and
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is an
activation function.

Each time step’s RNN output can be utilized as an input to the following time step,
enabling the network to capture long-term dependencies in the sequence. Typically, the
RNN’s final output was achieved by adding a fully connected layer or other post-processing
to the output at the last time step.

2.5.2. Gradient Boosted Regression (GBR)

Gradient-boosted regression is a machine learning algorithm that is used for predicting
a continuous numerical value. It is a variant of the popular gradient boosting algorithm,
which combines multiple weak models (also known as base learners or weak learners) to
form a robust model that can make accurate predictions [33].

The algorithm works by fitting a weak model to the training data and then using the
residual errors (difference between the predicted and actual values) to update the model.
This process is repeated multiple times, with each subsequent weak model focusing on the
residual errors of the previous model.

The final model is a combination of all the weak models, and is expressed as:

F(x) = f1(x) + f2(x) + . . . + fT(x) (4)

where F(x) is the final model, fi(x) is the i-th weak model, and T is the total number of
weak models.

The objective function for the gradient boosted regression model is:

L(y, F(x)) = ∑(y− F(x))2 (5)

where y is the actual value and F(x) is the predicted value.
The algorithm minimizes this objective function by using gradient descent, which

involves taking the derivative of the objective function with respect to the model parameters
( f1, f2, . . . , fT) and updating the parameters to reduce the objective function.

Gradient-boosted regression has been shown to be effective in various applications,
including predictive modeling, natural language processing, and image classification. It is
a popular choice among machine learning practitioners due to its ability to handle large
amounts of data and its ability to handle complex relationships between features.

2.5.3. Support Vector Regression (SVR)

Support vector machines (SVMs) are supervised learning algorithms that are used
for classification and regression tasks. They work by finding the hyperplane in a high-
dimensional space that maximally separates the different classes [34]. The optimization
problem for finding this hyperplane can be written as:

maximize w, b, ξ (6)

subject to yi(w·xi + b) ≥ 1− ξi (7)

ξi ≥ 0 (8)

where w and b are the parameters of the hyperplane, xi is a data point, yi is the label for
that data point (either 1 or −1), and ξi is the margin violation for that data point. The
optimization problem seeks to find the hyperplane that maximally separates the classes
while also allowing for some margin violations (ξi > 0) to account for noise in the data.

The solution to this optimization problem can be found using the Lagrangian:

L(w, b, α) = ∑ αi −
1
2∑ ∑ αiαjyi(xi)·yj

(
xj
)

(9)



Sensors 2023, 23, 3833 11 of 23

where αi is the Lagrange multiplier for the ith constraint. The solution to the optimization
problem can then be found by taking the derivative of the Lagrangian with respect to
w and b and setting it equal to 0.

SVMs have several benefits, including the ability to handle high-dimensional data and
robustness to noise.

2.6. Metaheuristic Optimization Algorithms for Feature Selection

Feature selection is an important stage in many machine learning problems since it may
enhance model performance by lowering the dimensionality of input data and removing
noisy or unnecessary features. The objective of feature selection in machine learning is
to discover a subset of features associated with a vast range of input data that could
enhance the model’s performance. There are two main approaches to feature selection:
feature ranking and feature selection using meta-heuristic optimization algorithms. The
features are ranked according to their value or relevance to the target variable using feature
ranking algorithms. Fisher score, information gain, and recursive feature elimination are
well-known methods for ranking features. These approaches are straightforward and
computationally efficient but do not always discover the optimal subset of characteristics
for a specific situation. By contrast, feature selection using meta-heuristic optimization
algorithms is a more advanced method that seeks the optimal subset of features by exploring
a vast combinatorial space of feature subsets [35]. These algorithms include the genetic
algorithm, the particle swarm optimization method, and the Dragonfly algorithm. The
primary benefits of utilizing meta-heuristic optimization techniques for feature selection are
that the algorithms are meant to examine the whole search space and identify the optimal
subset of characteristics that maximize the objective function. In contrast, feature ranking
algorithms may only find the most significant characteristics while ignoring the interactions
between features, which might result in inferior solutions. Furthermore, meta-heuristic
optimization techniques are resistant to noise and capable of handling high-dimensional
feature spaces with many features. In contrast, ranking algorithms may not perform
effectively in high-dimensional feature spaces or when a large number of irrelevant or
duplicate characteristics are present [36]. The authors have conducted an exhaustive
comparative study related to feature selection considering a description of algorithms;
Dragonfly, Harris-hawk, and Genetic algorithms were used in this study as follows:

2.6.1. Harris Hawk Optimization

Harris Hawk Optimization (HHO) is a metaheuristic optimization algorithm inspired
by the behavior of Harris Hawks, a type of bird of prey known for their cooperative
hunting techniques and this trait served as inspiration for the Harris Hawk Optimization
(HHO) metaheuristic algorithm [37]. In order to solve a variety of optimization issues,
including feature selection, the HHO method was developed. Feature selection is an
approach used in machine learning and data mining to choose a subset of the most relevant
features from a dataset to lower the dataset’s dimensionality. The objective is to identify
the subset of features that results in the best performance of a classifier with respect to a
selected performance measure, such as accuracy, precision, or recall. The HHO method
searches for a high-dimensional binary space to discover the best feature subset. Each
feature is represented as a binary value, 0 or 1, indicating whether it belongs to a feature
in the feature subset. When searching across this space, the HHO algorithm employs a
flock of birds, where each bird is meant to represent a possible feature subset. At each
iteration, the birds are given an updated position that considers their present location,
the locations of the other birds in the flock, and their optimum individual position. The
Harris Hawk Optimization (HHO) method for feature selection has been mathematically
formulated as follows:
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Consider X as a data matrix that has m columns representing the features, n rows
representing the samples, and y as the target vector that corresponds to X. One possible
formulation of the optimization problem is as follows:

minimize f (X) = g(X) + h(X) (10)

where X is a binary vector representing the feature subset, g(X) is a function that assesses
the performance of a classifier trained on the feature subset X, and h(X) is a function that
penalizes the feature subsets with a high number of features. The function g(X) can be
expressed as:

g(X) = 1− accuracy(X) (11)

The function h(X) can be expressed as:

h(X) = α ∗ ||X||0 (12)

where|| || is the L0-norm, which is the number of non-zero elements in X, and α is a
positive constant that controls the trade-off between the accuracy and feature subset size.
Each Xi of the flock’s birds represents a possible feature subset. The following stages were
carried out at each iteration of the algorithm:

Acceleration: Each bird Zi moves towards the best bird in the flock, Zb, and also
toward its own best position, Zpi, in the following way:

Zi(new) = Zi(old) + γ ∗ (Zb − Zi(old)) + λ ∗
(
Zpi − Zi(old)

)
(13)

where γ and λ are acceleration coefficients, and Zb and Zpi are the current best and personal
best positions, respectively.

Velocity Update: The velocity of each bird is updated as follows:

vi(new) = ∗ vi(old) + Zi(new)− Zi(old) (14)

where Ø is the damping factor used to control the magnitude of the velocity update.
Position Update: The position of each bird is updated based on its velocity as follows:

Zi(new) = Zi(old) + vi(new) (15)

Best Update: If the new position of a bird results in an improvement in the objective
function, its personal best position is updated:

i f f (Zi(new)) < f
(
Zpi
)
, thenZpi = Zi(new) (16)

Steps (a–d) are repeated for a specified number of iterations or until a stopping criterion
is met. The final result of the HHO algorithm is the best personal best position Zpi (new),
which represents the best feature subset found during the optimization process.

2.6.2. Dragonfly Optimization

The Dragonfly method (DA) is a metaheuristic optimization algorithm inspired by
dragonfly flying patterns. The DA, developed in 2015 by Seyedali Mirjalili [38], is a novel
optimization approach that considers ecological considerations. It can be used to find the
best subset of features when building a model in machine learning problems where feature
selection is needed.

S.D.: -

D = ∑x∈X ∑y∈Y P(x, y)
P(x, y)

P(x)P(y)
(17)

Separation
Si = −∑N

j=1 P− Pj (18)
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where
P = Current Position
Pi = Neighbouring jth position of P
N = Size of the Neighborhood
Alignment

AVi = ∑N
j=1

Vd j

N
(19)

Vdj
= Velocity of individual Neighborhood

N = Size of the Neighborhood
Cohesion

Cohi =
∑N

j=1 Pj

N
− P (20)

Food attraction
FAi = P+ − P (21)

P+ = Position of food source
P = Current Position
Food Distraction

FAi = P− − P (22)

P− = Position of enemy
The step Vector is modelled as:

∆Pt+1
i =

(
SwSt

i + Avw At
vi + CohwCoht

i + Ft
Ai + ePt

i
)
+ IwPt

i (23)

t = Iteration counter
Sw = Separation Weight
St

i = Separation of ith individual
Avw = Alignment Weight
At

vi = Alignment of ith individual
Cohw = Cohesion Weight
Coht

i = Cohesion of ith individual
F = Food Factor
Ft

Ai = Food Source of ith individual
E = Enemy Factor
Pt

i = Position of enemy of ith individual
Iw = Inertia Weight
Position of Dragonfly is updated as

Pt−1 =

{
−Pt, r < T(∆Pt+1)
Pt, r ≥ T(∆Pt+1)

}
(24)

r = Random Number ∈ [0, 1]

T(∆Pt+1) =

∣∣∣∣∣ ∆P√
(∆P2 + 1)

∣∣∣∣∣ (25)

Fitness Function

F = w1 × Acc + (1− w1)×
(

Fs

F− Fs

)
(26)

w1 = Random parameter corresponding to accuracy weight
Acc = Accuracy
Fs = Selected Feature
F = Feature Set
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2.6.3. Genetic Algorithm

The genetic algorithm (GA) is a search-based optimization technique inspired by
genetics and natural selection [39]. In feature selection, a genetic algorithm (GA) may
choose the subset of traits most relevant to a particular machine-learning task. Utilizing
a GA for feature selection is useful because it can identify the optimal subset of features,
resulting in improved performance and reduced computational cost. A GA-based feature
selection procedure may be used to eliminate redundant or noisy features that could have a
detrimental influence on the performance of a machine learning model. A further GA-based
feature selection strategy may enhance the performance of a machine learning model by
picking the most relevant features, leading to more accurate predictions. Depending on the
specific implementation, the mathematical equations involved in a GA for feature selection
may vary; however, the essential steps are outlined as follows:

a. Initialization: Let N be the number of features and X denote the set of all features.
Let P denote the population size and p denote the set of all feature subsets in the
population. Each feature subset pi is represented as a binary vector, with the ith
element presented as 1 if the feature is in the subset and 0 otherwise.

b. Evaluation: F(pi) is the fitness function that estimates the performance of a machine
learning model trained on the ith feature subset’s features. Accuracy measures, such
as accuracy, F1-score, or AUC, can be utilized in the fitness function.

c. Selection: Here, p′ denotes the set of chosen feature subsets, and p_selected denotes
the collection of selected feature subset indices. The expression for the selecting stage
can be written as:

pselected = select(p, F) (27)

where the select function implements a selection operator, such as a roulette wheel selection
or tournament selection.

d. Crossover: In this stage, pcrossover represents the collection of feature subsets obtained
by the crossover operation. The expression for the crossing step is:

pcrossover = crossover
(

p′, F
)

(28)

where the crossover function implements a crossover operator such as a uniform crossover
or one-point crossover.

e. Mutation: Here, the expression for the mutation is written as:

pmutation = mutation(pcrossover) (29)

where the mutation function implements a mutation operator, such as flipping a random
bit in the binary vector.

The evaluation, selection, crossover, and mutation processes are repeated until a stop-
ping criterion is fulfilled. After a certain number of generations or when the population’s
best-performing feature subset performs well, the procedure can be ended. The GA’s final
result is the population’s best-performing feature subset.

3. Results

In order to predict the tool wear of a specimen produced via the face milling process,
109 spectrograms were generated by employing the Walsh–Hadamard transforms on the AE
signals. The spectrograms corresponding to distinct operating conditions are illustrated in
Figure 3. Spectrograms are useful in predicting tool wear as they extract the meaningful and
relevant properties of the signal generated during the machining process. The spectrogram
displays the signal’s frequency content as a function of time, which allows the identification
of specific patterns that correspond to tool wear. By analyzing the features extracted from
the spectrograms, a machine-learning model can be trained to predict the level of tool wear
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for a given set of operating conditions. The features extracted through spectrograms are
listed in Table 2 and were derived from the additional generated images obtained after
applying DCGAN. From each original spectrogram, 100 images were generated, and the
relevant features were extracted. A feature vector of size 10,900 × 7 was constructed, which
can be used to train RNN, GBR, and SVR models to predict tool wear. The spectrogram
generated after applying DCGAN is shown in Figure 5.

Table 2. Features extracted from the images.

Sr. No. Feature

1 Mean Squared Error (MSE)
2 Root Mean Square Error (RMSE)
3 Pear signal to noise ratio (PSNR)
4 Visual Information Fidelity (VIF)
5 Mean Absolute Error (MAE)
6 Entropy (Ent)
7 Structural Similarity Index Measure (SSIM)

Tables 3 and 4 exhibit sample feature vectors extracted from the generated spectro-
grams. As seen from both tables, the extracted features exhibit considerable variation
with respect to various operating conditions performed on a milling machine. A standard-
ized transformation of the feature vector was required to decrease bias and successfully
train the models. During the standardized feature vector transformation process, the
features were rescaled to ensure that the mean and the standard deviation would be
equal to 0 and 1, respectively. Table 4 shows the sample feature vectors that were stan-
dardized. The Dragonfly, Harris hawk, and genetic optimization algorithms were used to
identify the relevant features. These updated feature vectors were fed into SVR, GBR, and
RNN models for flank wear prediction. To evaluate the tool wear prediction capabilities,
three performance parameters, namely, the mean squared error (MSE), root mean squared
error (RMSE), and mean absolute error (MAE), were computed.

MSE =
∑(A− P)2

L
(30)

RMSE =
√

MSE (31)

MAE =
∑|A− P|

L
(32)

where P is the predicted value, A is the actual value and L is the number of observations.
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Table 3. Sample feature vector without standardization.

MSE RMSE PSNR VIFP MAE Entropy SSIM Tool Wear

743.83 27.27 19.41 0.16 103.32 6.82 0.53 0.11
701.69 26.48 19.66 0.15 109.02 6.86 0.52 0.20
691.72 26.30 19.73 0.14 92.20 6.73 0.53 0.24
688.94 26.24 19.74 0.15 89.13 6.66 0.55 0.28
730.89 27.03 19.49 0.16 107.77 6.94 0.53 0.29
842.07 29.01 18.87 0.15 123.60 7.08 0.52 0.38
706.29 26.57 19.64 0.16 112.88 6.91 0.52 0.40
656.47 25.62 19.95 0.16 106.49 6.82 0.54 0.43
657.89 25.64 19.94 0.15 103.48 6.86 0.52 0.45
250.13 15.81 24.14 0.02 78.59 5.19 0.51 0.08

Table 4. Sample feature vector after standardization.

MSE RMSE PSNR VIFP MAE Entropy SSIM Tool Wear

−0.10 −0.05 0.01 0.38 −0.31 −0.22 0.33 0.11
−0.39 −0.34 0.28 −0.35 0.06 −0.07 −0.26 0.20
−0.13 −0.08 0.03 −0.72 −1.22 −0.59 −0.13 0.24
−0.29 −0.24 0.18 −0.08 −1.35 −0.81 1.17 0.28
0.01 0.05 −0.09 0.39 −0.05 0.28 0.32 0.29
1.00 0.97 −0.91 −0.26 0.89 0.82 −0.99 0.38
−0.25 −0.20 0.15 0.21 0.34 0.18 −0.44 0.40
−0.58 −0.52 0.46 0.61 −0.04 −0.19 0.59 0.43
−0.55 −0.50 0.43 0.01 −0.34 −0.02 −0.28 0.45
−4.03 −4.84 5.77 −6.27 −1.98 −6.76 −1.41 0.08

Ten-fold cross-validation is a common technique that is used in machine learning to
assess the performance of predictive models, such as those used for tool wear prediction.
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The utility of ten-fold cross-validation in tool wear prediction lies in its ability to provide
a more accurate assessment of the model’s performance than simple holdout validation.
Holdout validation involves splitting the data into a training set and a test set, with the
model being trained on the former and tested on the latter. However, holdout validation
can be sensitive to how the data are split, leading to variability in the performance estimates.
Ten-fold cross-validation helps address this issue by repeatedly evaluating the model on
different subsets of the data, thereby reducing the impact of the particular data split on the
performance estimates. Table 5 displays the hyperparameter settings of the DCGAN and
ML models used in the present study.

Table 5. Hyperparameter settings of DCGAN and ML models.

Model Hyperparameter Value

DCGAN

Epochs 3000
Batch Size 32

Generator Dense Layer Activation Function Rectified Linear Unit (ReLU)
Generator Final Convolutional Layer Activation

Function Hyperbolic Tangent Function (Tanh)

Discriminator Dense Layer Activation Function Sigmoid Function
Loss Function Binary Cross Entropy

Optimizer Adaptive Moment Estimation (Adam)

RNN

Epochs 100
Batch Size 32
Optimizer Adaptive Moment Estimation (Adam)

Loss Mean Squared Error (MSE)
Learning Rate 0.0001

SVR
Kernal Radial Bias Function
Degree 3

Regularization parameter 1

GBR
Loss Squared Error

Learning Rate 0.1
No. of Estimators 100

The aim of this study was to investigate the efficacy of the proposed methodology
for tool wear prediction. As discussed earlier, the features selected through metaheuristic
optimization models were fed into three ML models. The MSE, RMSE, and MAE values are
displayed in Figure 6a,b when training and ten-fold cross-validation was performed on all
three ML models and considering the features selected through the Dragonfly algorithm.
The least MSE (0.01), RMSE (0.10), and MAE (0.06) were observed from the RNN model,
followed by GBR and SVR, respectively, when training was performed. A similar trend was
observed when all three models were cross-validated. The least MSE (0.01), RMSE (0.10),
and MAE (0.13) were observed from the RNN model. The results indicate that the RNN
model was better for predicting tool wear since it provided significantly fewer prediction
errors. Figure 7a,b displays the tool wear prediction errors when the features selected
through Harris Hawk were fed into ML models. From the RNN model, the least MSE
(0.01), RMSE (0.10), and MAE (0.05) were observed when training was performed, whereas
when ten-fold cross-validation was considered, the least MSE (0.03), RMSE (0.17) and MAE
(0.14) was observed from the RNN model. This finding suggests that the RNN model
was better for predicting tool wear compared to SVR and GBR models when Harris Hawk
features were considered. Finally, Figure 8a,b shows the tool wear prediction errors when
features selected through the genetic algorithm were fed into ML models. The prediction
results indicate that RNN was better compared to SVR and GBR as it provided the least
MSE, RMSE, and MAE values after performing training and ten-fold cross-validation. By
comparing the prediction errors of various machine learning models, the authors found that
our proposed methodology integrating DCGAN, the Walsh–Hadamard Transform, and
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Dragonfly algorithm demonstrated reliable and promising results for tool wear prediction.
Notably, RNN exhibited the lowest prediction errors when trained on the selected features
from Dragonfly, Harris Hawk, and genetic algorithms, while the other two ML models
also performed acceptably, whether trained on the selected features or using the ten-fold
procedure. Overall, these findings suggest that our methodology can improve the accuracy
of tool wear prediction and provides a valuable tool for industry practitioners.
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The authors demonstrated that the performance of SVR, GBR, and RNN could identify
prediction capabilities based on a proposed methodology. By evaluating the performance
of multiple algorithms based on a proposed methodology, the authors were able to observe
that deep learning, specifically RNN, was a viable approach for tool wear prediction as it
produces the least prediction errors with all metaheuristic feature selection algorithms. To
effectively demonstrate the utility of their proposed methodology, the authors prepared
a comparison table (Table 5) that highlighted the significant differences and similarities
among various research studies related to the same TCM dataset. This comparison table
allowed readers to easily assess the performance of different machine learning algorithms
for tool wear prediction and provided insights into the effectiveness of the proposed
methodology. Overall, the authors’ approach thoroughly evaluated various machine
learning algorithms and highlighted the potential of deep learning for tool wear prediction.
There are certain reasons to choose SVR, GBR, and RNN as ML algorithms for tool wear
prediction. The authors wanted to compare the performance of different machine learning
algorithms for tool wear prediction. By applying multiple algorithms, the strengths and
weaknesses of each algorithm were evaluated based on the proposed methodology. By
comparing the performance of RNN with traditional machine learning algorithms, such
as SVR and GBR, it was observed that deep learning could be a viable approach for
tool wear prediction as it gives the least prediction errors with all metaheuristic feature
selection algorithms. Further, a comparison table has been prepared (Table 6), which
effectively demonstrates the utility of the methodology proposed by highlighting the
significant differences and similarities among various research studies related to the same
TCM dataset.
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Table 6. Comparative study with the published literature.

Reference Sensors Used Material of Workpiece Algorithm RMSE

Traini et al. [40] All Sensors Cast Iron

Logistic Regression 0.11
Decision Forest 0.123
Decision Jungle 0.116

Boosted Decision Tree 0.122
Neural Network 0.11

Yu et al. [41] All Sensors Cast Iron
Bidirectional LSTM 7.14

BiLSTM-ED2 11.27

Hanachi et al. [42] Current Sensor Cast Iron
Sipos 0.42

ANFIS 0.56
RPF 0.22

Zhou and Sun [43] Current Sensor Cast Iron
LS-SVM 0.27
KELM 0.14

TAKELM 0.03

Proposed Work Acoustic Emission Cast Iron
RNN 0.1
SVR 0.17
GBR 0.14

4. Conclusions

This investigation aimed to establish a precise method for predicting tool wear by
analyzing the signals from AE sensors. To do so, the authors used Walsh–Hadamard Trans-
form to remove noise from the measured signals before generating spectrograms from the
filtered signals. However, obtaining sufficient training data was challenging due to limited
experimental data availability. To address this issue, the DCGAN technique was used to
generate additional spectrograms from the dataset. Following that, standard statistical
features were extracted, and a feature vector was created. The authors utilized metaheuris-
tic feature selection algorithms such as Dragonfly, Harris Hawk, and genetic algorithms
to identify relevant statistical features. Finally, researchers assessed the effectiveness of
our models with support vector regression (SVR), gradient-boosting regression (GBR),
and recurrent neural network (RNN) models using training and ten-fold cross-validation
techniques. The outcomes of this study are as follows:

(a) The RNN model with a Dragonfly algorithm feature has the lowest MSE (0.01), RMSE
(0.10), and MAE (0.06) to predict tool wear when the training of ML models is carried out.

(b) When ten-fold cross-validation is performed, the tool wear rate prediction from the
RNN model with features selected from the Dragonfly algorithm has the lowest MSE
(0.01), RMSE (0.10), and MAE (0.13).

(c) Compared to the GBR and SVR models, the RNN model was found to have signifi-
cantly fewer incorrect predictions regarding tool wear.

(d) The features chosen by the Dragonfly algorithm were superior to those selected by
the Harris hawk algorithm and the genetic algorithm. This conclusion was reached
after comparing the three algorithms.

The authors investigated three machine learning models, but other models may better
predict tool wear. In the future, we need to explore different models, such as convolutional
neural networks or transformer-based models, to improve the system’s accuracy. To
enhance the performance of machine learning models, the authors could further optimize
their hyperparameters. This could be accomplished through the use of techniques such
as grid search or Bayesian optimization. The proposed TCM system could be improved
by creating a real-time monitoring system capable of detecting tool wear in real-time
and alerting operators to perform maintenance before significant damage occurs. In the
manufacturing industry, this could lead to increased productivity and decreased downtime.
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Nomenclature

AE Acoustic Emission
AI Artificial Intelligence
ANN Artificial Neural Network
CNN Convolutional Neural Network
CV Cross Validation
DA Dragonfly Algorithm
DBN Deep Belief Networks
DCGAN Deep Convolutional Generative Adversarial Network
DL Deep Learning
Ent Entropy
GA Genetic Algorithm
GAN Generative Adversarial Network
GBR Gradient Boosting Regressor
HHO Harris Hawk Optimization
IoT Internet of Things
MAE Mean Absolute Error
ML Machine Learning
MSE Mean Square Error
NASA National Aeronautics and Space Administration
PSNR Pear signal to noise ratio
RF Random Forest
RMSE Root Mean Square Error
RNN Recurrent Neural Network
SD Standard Deviation
SSIM Structural Similarity Index Measure
SVM Support Vector Machines
SVR Support Vector Regressor
TCM Tool Condition Monitoring
VIF Visual Information Fidelity
WHT Walsh–Hadamard Transform
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28. Majtner, T.; Bajić, B.; Lindblad, J.; Sladoje, N.; Blanes-Vidal, V.; Nadimi, E.S. On the Effectiveness of Generative Adversarial
Networks as HEp-2 Image Augmentation Tool. In Image Analysis; Springer: Cham, Switzerland, 2019; pp. 439–451. [CrossRef]

29. Chen, L.; Zhang, J.; Liang, X.; Li, J.; Zhuo, L. Deep Spectral-Spatial Feature Extraction Based on DCGAN for Hyperspectral
Image Retrieval. In Proceedings of the 2017 IEEE 15th Intl. Conf. on Dependable, Autonomic and Secure Computing, 15th Intl.
Conf. on Pervasive Intelligence and Computing, 3rd Intl. Conf. on Big Data Intelligence and Computing and Cyber Science and
Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Orlando, FL, USA, 6–10 November 2017. [CrossRef]

http://doi.org/10.3390/s21248431
http://doi.org/10.1109/icmae.2017.8038631
http://doi.org/10.1002/eng2.12119
http://doi.org/10.3390/sym9120296
http://doi.org/10.1016/j.compind.2013.03.010
http://doi.org/10.1016/j.precisioneng.2012.02.004
http://doi.org/10.1007/s00170-018-2402-2
http://doi.org/10.3390/ma15124059
http://doi.org/10.1080/08839514.2013.835233
http://doi.org/10.1007/s12633-020-00729-2
http://doi.org/10.3390/s16060795
http://doi.org/10.1115/1.4031770
http://doi.org/10.3390/s22186911
http://www.ncbi.nlm.nih.gov/pubmed/36146262
http://doi.org/10.1007/s10845-013-0867-2
http://doi.org/10.1016/j.jmsy.2020.11.019
http://doi.org/10.1007/s00170-022-09356-0
http://doi.org/10.3390/app10207298
http://doi.org/10.48550/arXiv.1406.2661
http://doi.org/10.1119/1.12714
http://doi.org/10.1016/j.jmrt.2022.02.093
http://doi.org/10.1109/MSP.2017.2765202
http://doi.org/10.48550/arXiv.1511.06434
http://doi.org/10.1109/ic3.2019.8844913
http://doi.org/10.1007/978-3-030-20205-7_36
http://doi.org/10.1109/dasc-picom-datacom-cyberscitec.2017.130


Sensors 2023, 23, 3833 23 of 23

30. Vakharia, V.; Castelli, I.E.; Bhavsar, K.; Solanki, A. Bandgap Prediction of Metal Halide Perovskites Using Regression Machine
Learning Models. Phys. Lett. A 2022, 422, 127800. [CrossRef]

31. Feijóo, M.D.C.; Zambrano, Y.; Vidal, Y.; Tutivén, C. Unsupervised Damage Detection for Offshore Jacket Wind Turbine Foundations
Based on an Autoencoder Neural Network. Sensors 2021, 21, 3333. [CrossRef]

32. Sudharsan, R.; Ganesh, E.N. A Swish RNN Based Customer Churn Prediction for the Telecom Industry with a Novel Feature
Selection Strategy. Connect. Sci. 2022, 34, 1855–1876. [CrossRef]

33. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
34. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
35. Piri, J.; Mohapatra, P.; Dey, R.; Acharya, B.; Gerogiannis, V.C.; Kanavos, A. Literature Review on Hybrid Evolutionary Approaches

for Feature Selection. Algorithms 2023, 16, 167. [CrossRef]
36. Kristiyanti, D.A.; Sitanggang, I.S.; Annisa, A.; Nurdiati, S. Feature Selection Using New Version of V-Shaped Transfer Function

for Salp Swarm Algorithm in Sentiment Analysis. Computation 2023, 11, 56. [CrossRef]
37. Harris Hawks Optimization: Algorithm and Applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
38. Mirjalili, S. Dragonfly Algorithm: A New Meta-Heuristic Optimization Technique for Solving Single-Objective, Discrete, and

Multi-Objective Problems. Neural Comput. Appl. 2015, 27, 1053–1073. [CrossRef]
39. Mirjalili, S. Genetic Algorithm. In Studies in Computational Intelligence; Springer: Cham, Switzerland, 2018; pp. 43–55. [CrossRef]
40. Traini, E.; Bruno, G.; D’Antonio, G.; Lombardi, F. Machine Learning Framework for Predictive Maintenance in Milling. IFAC-Pap.

2019, 52, 177–182. [CrossRef]
41. Yu, W.; Kim, I.Y.; Mechefske, C. Remaining Useful Life Estimation Using a Bidirectional Recurrent Neural Network Based

Autoencoder Scheme. Mech. Syst. Signal Process. 2019, 129, 764–780. [CrossRef]
42. Hanachi, H.; Yu, W.; Kim, I.Y.; Liu, J.; Mechefske, C.K. Hybrid Data-Driven Physics-Based Model Fusion Framework for Tool

Wear Prediction. Int. J. Adv. Manuf. Technol. 2018, 101, 2861–2872. [CrossRef]
43. Zhou, Y.; Sun, W. Tool Wear Condition Monitoring in Milling Process Based on Current Sensors. IEEE Access 2020, 8, 95491–95502.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.physleta.2021.127800
http://doi.org/10.3390/s21103333
http://doi.org/10.1080/09540091.2022.2083584
http://doi.org/10.1214/aos/1013203451
http://doi.org/10.1007/BF00994018
http://doi.org/10.3390/a16030167
http://doi.org/10.3390/computation11030056
http://doi.org/10.1016/j.future.2019.02.028
http://doi.org/10.1007/s00521-015-1920-1
http://doi.org/10.1007/978-3-319-93025-1_4
http://doi.org/10.1016/j.ifacol.2019.11.172
http://doi.org/10.1016/j.ymssp.2019.05.005
http://doi.org/10.1007/s00170-018-3157-5
http://doi.org/10.1109/ACCESS.2020.2995586

	Introduction 
	Materials and Methods 
	Experimental Setup 
	Acoustic Emission (AE) Signals 
	Walsh–Hadamard Transform 
	Deep Convolutional Generative Adversarial Network (DCGAN) 
	Machine Learning Models 
	Recurrent Neural Networks (RNN) 
	Gradient Boosted Regression (GBR) 
	Support Vector Regression (SVR) 

	Metaheuristic Optimization Algorithms for Feature Selection 
	Harris Hawk Optimization 
	Dragonfly Optimization 
	Genetic Algorithm 


	Results 
	Conclusions 
	References

