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Abstract: Although many authors have observed a degradation in greening cover alongside an
increase in the built-up areas, resulting in a deterioration of the essential environmental services
for the well-being of ecosystems and society, few studies have measured how greening developed
in its full spatiotemporal configuration with urban development using innovative remote sensing
(RS) technologies. Focusing on this issue, the authors propose an innovative methodology for the
analysis of the urban and greening changes over time by integrating deep learning (DL) technologies
to classify and segment the built-up area and the vegetation cover from satellite and aerial images
and geographic information system (GIS) techniques. The core of the methodology is a trained and
validated U-Net model, which was tested on an urban area in the municipality of Matera (Italy),
analyzing the urban and greening changes from 2000 to 2020. The results demonstrate a very good
level of accuracy of the U-Net model, a remarkable increment in the built-up area density (8.28%)
and a decline in the vegetation cover density (5.13%). The obtained results demonstrate how the
proposed method can be used to rapidly and accurately identify useful information about urban
and greening spatiotemporal development using innovative RS technologies supporting sustainable
development processes.

Keywords: urban development; greening development; remote sensing; deep learning; U-Net;
geographic information system; spatial analysis

1. Introduction

Over the past few years, in the urban planning context, there have been increasing
considerations regarding how the combination between urban development and the
achievement of urban greening goals can contribute to “make cities and human set-
tlements inclusive, safe, resilient and sustainable” [1]. Many researchers have studied
the tension between these two development ambitions. Most have found that urban
development—both compact and dispersed [2–4]—determines a reduction in the vege-
tation cover [5–7]. It seems, therefore, difficult to increase urban development without
losing natural areas.

Urban development should go hand in hand with an increase in vegetation density
and distribution in order to prevent the degradation of viable ecosystem services that
are critically important for human well-being and livability, such as outdoor recreation,
air purification, biodiversity, cooling, carbon storage, water infiltration, noise reduction
and air temperature regulation [8–10]. Despite this, many authors have observed the
degradation of urban greening and an increase in population and built-up density in
urban areas, causing a drastic reduction in vegetation cover and, therefore, in ecosystem
services provisioning [5–7,11].

This complex relationship between urban and greening development goals is ad-
dressed across the literature [5–7]. However, few studies have measured how greening
has developed in terms of its full spatial-temporal configuration with urban development,
especially using innovative remote sensing (RS) technologies, which can be very useful
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for obtaining accurate information while drastically reducing times and costs for those
processes. Ref. [12] performed a GIS analysis using RS to investigate land-use changes in
Brussels and Amsterdam from 2003 to 2016, focusing on trends in quantity, distribution
and the forms of green spaces The RS analysis specifically involved a process of supervised
land-use classification. Ref. [13] performed a regression-based unmixing approach on
Landsat satellite imagery between 1988 and 2018 to generate fraction maps of vegetated
and non-vegetated surfaces.

Urban and greening survey data are not commonly updated or freely accessible to
local users. Generally, urban and greening development can be assessed by retrieving the
built-up and vegetation cover data from the land use and land cover (LULC) maps. At
the European level, one of the most used LULC maps is the Urban Atlas [14]. Additional
information can be retrieved, for example, from OpenStreetMap (OSM) or from maps
and geo-databases provided by local authorities and public administrations. However,
detailed information about the buildings and the vegetation is not always provided, since
detailed LULC maps often do not exist and, if available, they are not free of charge. Other
traditional methods to obtain urban shapes and vegetation polygons are based on the visual
interpretation of aerial imagery and manual digitalization [15]. These methods, requiring a
large number of manual operations, are time-consuming and costly.

RS technologies and their development are very useful for identifying these land
elements rapidly as well as analyzing the spatial-temporal trends and changes in urban and
greening development. Their application in this field can help urban planners, decision-
makers and scientists to assess the current status of urban and greening development
and its evolution in space and in time. Based on this information, urban planners and
decision-makers can assess the effects of urban planning policies as well as predict future
urban and greening development. However, contributions to the urban and greening
long time series analysis in urban areas using the new and innovative RS technologies are
still rare.

The knowledge and mapping of land elements using aerial imaging allow the manage-
ment of the landscape transformation [16] and represent an essential aspect of a wide range
of applications, such as urban and regional planning [17], environmental vulnerability [18],
natural disasters and hazards monitoring and the estimation of soil erosion [19]. Recently,
in the most novel approaches, the application of machine learning (ML) algorithms to RS
imagery for land mapping has attracted considerable attention [20,21].

ML algorithms can recognize, detect, plan, predict and classify land features us-
ing the RS imagery data. ML algorithms can be divided into two different categories:
classical/traditional and deep learning (DL) algorithms [22]. Approaches based on clas-
sical/traditional algorithms include support vector machine (SVM), random forest (RF),
spectral angle mapper (SAM), fuzzy adaptive resonance theory-supervised predictive map-
ping (Fuzzy ARTMAP), Mahalanobis distance (MD), radial basis function (RBF), decision
tree (DT), multilayer perception (MLP), naive Bayes (NB), maximum likelihood classifier
(MLC) and fuzzy logic [23,24]. Other techniques include the affinity propagation (AP) algo-
rithm, fuzzy c-means algorithms, K-means algorithm, and iterative self-organizing data
(ISODATA) [20,21]. According to the conducted literature review, SVM and RF generally
provide better accuracy compared to the other traditional classifier techniques [25,26].

The extraction process of land features from aerial images necessitates a finer-resolution
image pixel and a reduced per-pixel size. With the increase in aerial image spatial reso-
lution, the land features have become more clearly visible, and therefore, many studies
recently changed approaches, changing from pixel-based image analysis (PBIA) [27] and
object-based image analysis (OBIA) [28,29] to pixel-level semantic segmentation.

In PBIA methods, the pixel size characteristics are not compatible with the identifi-
cation of an object in an image. In fact, according to [30], for example, a four meter-wide
object needs a minimum of four pixels. Furthermore, PBIA methods often generate “salt
and pepper” noise after classification. To overcome these disadvantages, OBIA methods
were introduced. This different approach identifies a feature as a group of contiguous
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homogeneous pixels with similar texture, spatial and/or spectral attributes. In recent years,
thanks to the evolution of DL-based semantic segmentation, the LULC studies’ accuracy
increased. Semantic segmentation can represent the process of assigning a semantic label
to each coherent region of an image. This coherent region is represented by a pixel [31], a
subpixel [32], a super-pixel [33] or an image patch composed of several pixels [34].

The most recent DL approach represents an advancement of the classical neural
networks and includes classifiers such as convolutional neural networks (CNNs) [35–39],
recurrent neural networks (RNNs) [40] and deep neural networks (DNNs) [41]. These new
algorithms guarantee better results and better RS imagery classification and segmentation
in comparison with traditional ML methods.

The early fully convolutional network (FCN) algorithms were able to identify urban
features to a certain extent but had many difficulties because of the loss of high-frequency
details, blurred boundaries, and the limited ability to reconstruct spatial information while
obtaining rich contextual information [42]. To overcome this limitation, [43] designed
the U-Net architecture, adding the multi-layer feature maps from the encoder using the
decoder structure for step-by-step upsampling. The U-Net model can be classified as a
deep convolutional neural network (DCNN) and thanks to the fusion of high-and-low level
semantic information, represents an important improvement to the classification of object
boundaries. In fact, DNNs can automatically extract several specific features in RS images
to fully realize the classification of urban land use.

The semantic segmentation of RS images was used to classify and add color to different
ground objects in the image and the most applied DCNNs are FCNs, SegNet, U-Net and
DeepLab. The U-Net architecture can partially overcome the boundary pixel classification
problem in semantic segmentation thanks to its skip connections. A DeepResUnet model
was employed by [44] to better perform pixel clustering for building segmentation. The
authors used a high-resolution image dataset. Often, the identification of green and built-up
areas has to overcome the problem of an unbalanced dataset, which leads to the severe
problem of class imbalance in the semantic segmentation of RS images. To limit this
inconvenience, several authors used multiple FCNs to form new networks [45], combining
the SegNet [46] and U-Net.

In the last few years, different RS image datasets have been created. The labels of each
dataset present certain differences [47]. Among others, SEN12MS [48] and the “Semantic
Segmentation Dataset” provide pixel-level labels, while BigEarthNet [49] provides image-
level labels. In particular, the “Semantic Segmentation Dataset”, an open access dataset
developed for a joint project with the Mohammed Bin Rashid Space Center in Dubai,
contains 72 labeled satellite images with pixel labels assigned manually. For each pixel,
there is, at most, a one-pixel label. All these datasets have many semantic classes, such as
buildings, roads, water and land.

Moreover, in recent years, the combination of the great potential of DL algorithms,
capable of classifying and segmenting thousands of RS images, and geographic information
systems (GIS), has gained particular importance. Their integration aids in decision making
for a variety of applications, including urban and territorial planning and management,
sustainable natural resource management and detecting global change issues [50]. GIS
and DL can constitute a single source able to provide very important information and
enhance strategic decision making using historical data and maps. Ref. [51] calculated
the building energy-use intensity at the urban scale using a GIS-integrated data-mining
approach, including pre-processing, feature selection and algorithm optimization. Ref. [52]
developed a model which combines GIS and DL to estimate the urban land value while
considering the variables affecting urban land price and spatial features. All the variables
are processed with DL algorithms, creating a deep hybrid neural network with spatial
characteristics. Another scientific work presented a combined GIS and CNN model to
quantify the influence of location data on property value in Philadelphia [53]. The study
highlighted how significant geographical data and high-quality images can improve a
model’s accuracy. Ref. [54], using massive street-view datasets, employed DL algorithms
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for the identification of various urban scenarios in order to quantify the relationship
between public perception and urban scenes.

In this context, the authors of this paper proposed an integrated tool that was able to
assess the urban and greening development changes over time through the spatial analysis
of the built-up area and vegetation cover classified and segmented from aerial images
through the application of a DL model. The proposed method combines DL technologies
to classify and segment building heritage and vegetation cover from satellite and aerial
images with GIS techniques to import, use and process its output to analyze the urban
and greening changes over time. In this study, the authors applied a U-Net model with a
RELU activation function that was trained and validated using the “Semantic Segmentation
of Aerial Imagery” [55]. The U-Net model was, then, tested with the classification and
segmentation of buildings and vegetation cover in an urban area in the municipality of
Matera in the Basilicata region (Italy). The output of the model was imported into the
GIS environment to investigate the built-up area and the vegetation cover changes in the
2000–2020 period, focusing on their quantity, according to specific urban and greening
development indicators.

The proposed method can help decision makers to identify where and when greening
and urban development has grown, as well as the paths, opportunities and threats of these
forms of development. The proposed integrated spatial and temporal analysis of urban
and greening development can be useful to evaluate and design better urban planning
policies. It can be used in different contexts to identify useful information about the urban
development, protection and promotion of natural areas rapidly and accurately from
satellite and aerial images as well as from unmanned aerial vehicles (UAV) flights.

The rest of the paper is organized as follows. In the next section, the datasets and study
area are presented. Section 3 contains the methodological basis of the research, while the
results are demonstrated in Section 4. A discussion is presented in Section 5, and Section 6
contains the conclusions of the paper.

2. Study Area and Dataset
2.1. Study Area

The proposed method was tested on an urban area of the municipality of Matera in
the Basilicata region, Italy (Figure 1).

Sensors 2023, 23, x FOR PEER REVIEW 4 of 21 
 

 

model�s accuracy. Ref. [54], using massive street-view datasets, employed DL algorithms 
for the identification of various urban scenarios in order to quantify the relationship be-
tween public perception and urban scenes.  

In this context, the authors of this paper proposed an integrated tool that was able to 
assess the urban and greening development changes over time through the spatial analy-
sis of the built-up area and vegetation cover classified and segmented from aerial images 
through the application of a DL model. The proposed method combines DL technologies 
to classify and segment building heritage and vegetation cover from satellite and aerial 
images with GIS techniques to import, use and process its output to analyze the urban 
and greening changes over time. In this study, the authors applied a U-Net model with a 
RELU activation function that was trained and validated using the “Semantic Segmenta-
tion of Aerial Imagery” [55]. The U-Net model was, then, tested with the classification and 
segmentation of buildings and vegetation cover in an urban area in the municipality of 
Matera in the Basilicata region (Italy). The output of the model was imported into the GIS 
environment to investigate the built-up area and the vegetation cover changes in the 2000–
2020 period, focusing on their quantity, according to specific urban and greening devel-
opment indicators.  

The proposed method can help decision makers to identify where and when greening 
and urban development has grown, as well as the paths, opportunities and threats of these 
forms of development. The proposed integrated spatial and temporal analysis of urban 
and greening development can be useful to evaluate and design better urban planning 
policies. It can be used in different contexts to identify useful information about the urban 
development, protection and promotion of natural areas rapidly and accurately from sat-
ellite and aerial images as well as from unmanned aerial vehicles (UAV) flights. 

The rest of the paper is organized as follows. In the next section, the datasets and 
study area are presented. Section 3 contains the methodological basis of the research, 
while the results are demonstrated in Section 4. A discussion is presented in Section 5, and 
Section 6 contains the conclusions of the paper. 

2. Study Area and Dataset 
2.1. Study Area 

The proposed method was tested on an urban area of the municipality of Matera in 
the Basilicata region, Italy (Figure 1). 

 

Figure 1. Location of the study area. 
Figure 1. Location of the study area.



Sensors 2023, 23, 3805 5 of 21

The municipality of Matera covers a surface area of 392.08 square kilometers and
is characterized by a population of 59,748 inhabitants. Its population density is equal
to 152.39 inhabitants/square kilometers. The municipality of Matera is internationally
recognized as the “City of Sassi” since it is characterized by prehistoric caves carved into
the rock, which represent some of the first human settlements in Italy. In 1993, Matera’s
Sassi was the first site in Southern Italy recognized as a World Heritage Site by UNESCO,
called a “Cultural Landscape”. Matera was also recognized as the European Capital
of Culture in 2019. These events increased its popularity over time at the national and
international levels.

Over the years, except for the tourism sector, the city’s economy has deteriorated.
According to the national population census [56], the population of Matera decreased over
time, while soil consumption increased [57], resulting in a progressive depletion of natural
resources. In fact, even if Matera is characterized mostly by rural areas, its urban areas
have expanded. For this reason, the municipality of Matera is considered a useful case
study to analyze how the changes in urban development and vegetation cover happened
during the time. The aspects related to the transformations of the territory, together with
the historical interest and the size of the inhabited center, led the authors to consider Matera
as a significant case study that could lead to highly transferable results.

Specifically, the proposed method was tested on an urban area in the north-west part
of the municipality of Matera, which is represented in red (Figure 1). This is an expansion
area that covers a surface of 6.59 square kilometers, which represents 1.70% of the whole
municipality. Over the years, it has been characterized by an expansion of the built-up
area due to the construction of new residences, urban services and commercial/productive
blocks. These key factors contributed to the steady increase in land consumption and,
therefore, the proposed spatial-temporal analysis can provide a better understanding of
how urban planning strategies and policies affected the land cover changes.

2.2. Remote Sensing Imagery Dataset

The training and validation tasks of the U-Net model are developed using the “Seman-
tic Segmentation of Aerial Imagery” dataset. For the model training and validation, the
selected samples are 65 images and 7 images, respectively. To overcome the limitation of
the small image sample size, the authors adopted several data augmentation techniques
to improve the sufficiency and diversity of the training and validation data, generating a
synthetic dataset [58]. The data augmentation operations consist of an under-sampling tech-
nique in which an image is randomly cropped multiple times, at a crop size of 512 × 512.
The robustness of the model is enhanced by randomly flipping, rotating, translating, side
viewing and zooming input images with the respective masks. In addition, all inputs are
adjusted; setting their saturation, contrast and brightness; converting the color space and
band order; and adding Gaussian noise and filtering operations randomly [59]. Accord-
ing to the data augmentation strategy adopted, the images are not treated with the same
data augmentation operations. Given that the maximum number of images employed for
training and validation tasks are equal to 715 and 77, respectively.

To determine the built-up and the vegetation modifications for the 2000–2020 period,
the trained and validated U-Net model was applied to 2000, 2006, 2011, 2017 and 2020
satellite images of the study area [60]. In particular, the 0.423 m pixel (approximately 1-foot)
resolution orthoimages were considered (Figure 2).

To test the accuracy of the model, the authors compared the built-up and the vegetation
polygons predicted through the application of the trained and validated U-Net model to
the natural color orthoimages covering the case study area with those retrieved from the
National Synthesis Database (DBSN) [61]. DBSN has a geotopographical database structure
for medium-scale representations and represents the ground truth dataset.
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3. Methodology

The analysis of urban and greening development over time was developed by quanti-
fying the amount and by evaluating the distribution of the built-up and vegetation cover
at different periods, combining innovative RS technologies and GIS potentialities. The RS
analysis of time series aerial imagery was performed using the U-Net model.

The trained and validated U-Net model was tested through the classification and
segmentation of buildings and vegetation areas from the natural color orthoimage of
a specific urban context. For this study, only the buildings and the vegetation classes
were considered.

The authors imported and vectorized the output of the tested model on a GIS platform,
which, in this study, was the open source QGIS Desktop software [62].

To assess the accuracy of the classified and segmented results, the authors compared
the building and vegetation polygons with those derived from DBSN. The authors quantita-
tively assessed the accuracy of the model to predict the buildings and vegetation polygons
by determining the F1-Score.

Once the accuracy of the U-Net model was assessed, in order to determine changes in
the vegetation cover and built-up area, the authors evaluate specific built-up and vegetation
density indicators. In particular, the output of the built-up area and vegetation cover was
imported in QGIS and processed to quantitatively evaluate the changes in the vegetation
and urban features in space and time.

Figure 3 schematically shows the methodology workflow.
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3.1. Urban and Greening Classification and Segmentation
3.1.1. Training and Validation of the U-Net Model

In this research, a U-Net model with a RELU activation function was used. The loss
function considered was the IoU-based loss function, also known as the Jaccard index. IoU
is a standard region-based performance metric for image segmentation problems. Generally,
IoU is adopted to measure the similarity and calculates the ratio of the intersection and
the union between the prediction and the ground-truth object in an image (Equation (1)).
It is characterized by the properties of scale invariance, symmetricity, and nonnegativity.
Its value ranges from 0 to 1, where 0 represents no similarity and 1 is a perfect equiva-
lence between the predictions and the ground truth labels. The loss function considered
incorporates the IoU measure following Equation (2).

IoU =
TP

FP + FN + TP
(1)

IoU − based Loss = 1 − IoU (2)

In Equation (1) TP represents true positives, which is the number of correctly predicted
elements; FP is false positives, which is the number of entities incorrectly identified as
elements to be predicted; FN is false negatives, which represent the elements to be predicted
incorrectly classified as elements of another category.

Adam was used as the model optimizer [63] with an initial learning rate of 0.001 and
default hyper-parameters β1 = 0.9 and β2 = 0.999. The validation task was carried out
during training and its loss was calculated and monitored. If validation loss did not improve
within four epochs, the learning rate was reduced by a factor of 0.5. To prevent overfitting,
the training was stopped if the validation loss did not improve within 100 epochs. At the
end of the training process, the model associated with the lowest validation loss was saved.
The training and validation tasks are carried out on Google Colab Pro Plus Environment,
using 52 GB of RAM and the GPU NVIDIA Tesla P100.

All the projects were implemented in Python and the training was developed using
Pytorch with a TensorFlow backend as the deep learning framework. Supplementary
Materials (https://github.com/ingegnerevitale/U-Net-Semantic-Segmentation-Aerial-
Images accessed on 5 March 2023).

Precision, recall and F1-score [64] were selected to measure the performance of the
U-Net model (Equations (3)–(5)).

Precision =
TP

FP + TP
(3)

Recall =
TP

FP + FN
(4)

https://github.com/ingegnerevitale/U-Net-Semantic-Segmentation-Aerial-Images
https://github.com/ingegnerevitale/U-Net-Semantic-Segmentation-Aerial-Images
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F1-Score =
2·Precision·Recall
Precision + Recall

(5)

3.1.2. Testing the Accuracy Assessment of the Model

The U-Net model was applied to the case study, generating the predicted masks of the
built-up and the vegetation polygons. These masks were imported into the open source
QGIS Desktop software, converted into vectorial layers and compared with the label masks
belonging to the ground truth dataset.

A comparison between the real and predicted built-up and vegetation polygons was
needed to verify that the spatial autocorrelation between training and testing data was
removed. As the training and validation tasks were developed using an imagery dataset of
an urban environment considerably different from that of the case study in terms of spatial
and formal characteristics [65], the testing accuracy removed the spatial autocorrelation
between the real and predicted labels.

The authors considered the F1-score (Equation (5)) as a performance measure of
the model prediction accuracy, referring to a geographic area that the model had not
experienced before.

The accuracy of the results in terms of the built-up area and vegetation cover prediction
was assessed using the 2020 orthoimage prediction mask, as this was the most recently
analyzed official orthoimage of the study area. Once the accuracy of the model was defined,
the urban and greening development change analysis of the 2000–2020 period was performed.

3.2. Urban and Greening Changes Analysis

To analyze the urban and greening changes in space and time, the output of the U-Net
model for 2000, 2006, 2011, 2017 and 2020 years was processed according to defined urban
and greening development indicators.

The most used indicator to analyze urban development—both compact and dispersed—was
the population density, which was the number of inhabitants per spatial unit. However,
this indicator did not allow us to assess how much built-up area was extant. The most
relevant measure of density to assess the real development of urban areas is built-up area
density. This measure puts pressure on greenspace conservation [66]. The most accurate
measure to evaluate built-up density is the floor area ratio (FAR) [67]. This measure is
commonly used to express the urban development intensity, limit the intensity of land use,
lessen the environmental impacts of urban development and control the mass and the scale
of urban development. FAR is typically calculated by dividing the gross floor area of a
building by the total land area or the total buildable land area. Another measure of built-up
density is the building coverage ratio (BCR), expressed as a ratio between the footprint
area of a building and the total land area or the total buildable land area. The BCR measure
ensures open spaces in the land, prevents overcrowded housing and secures neighborhood
emergency evacuation measures. Since no information concerning the floor area value can
be retrieved from the U-Net model’s automatic classification and segmentation of buildings
and no data about the height of the buildings are available from 3D models, the authors
utilized the BCR as the built-up area density measure.

The vegetation cover delivers different ecosystem services, such as climate regulation,
air purification and runoff control, as well as contributing to enhancing human health and
well-being [68]. Existing research has shown that urban development—both compact and
dispersed—has a high influence on the quantity, connectivity, size, quality and accessibility
of urban spaces [69–71]. Based on these observations and the available data, the authors
evaluated the density of vegetation cover to measure its quantity and its distribution
changes across space and time. The density of vegetation cover is calculated as the ratio
between the vegetation cover predicted by the U-Net model and the reference area.

The indicators used for urban and greening development analysis in space and time
are listed in Table 1.
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Table 1. Urban and greening development indicators.

Indicator Variable

Built-Up Area Density Area of Built-Up to Reference Area

Vegetation Cover Density Area of Vegetation Cover to Reference Area

4. Results
4.1. Accuracy Assessment of the U-Net Model

As stated in the methodological section, the U-Net model was trained and validated
using the IoU-based loss function achieving precision, recall and F1-score values of 0.63,
0.84 and 0.72, respectively. The trained and validated U-Net model was then applied to the
natural color orthoimages covering the study area for a period of 20 years, employing five
different time points, namely 2000, 2006, 2011, 2017 and 2020.

To assess the accuracy of the trained and validated U-Net model prediction, the
real and predicted built-up area and vegetation cover were compared, using 2020 as the
reference period. The overall accuracy of the U-Net model application was quantitatively
assessed through the evaluation of the F1-score, considering the real and predicted built-up
and vegetation polygons.

According to the ground truth, in 2020, 40.37% of the overall study area was character-
ized by a built-up area, while 53.06% represented an area covered by vegetation.

The F1-score values show a great level of accuracy for both built-up areas and vegeta-
tion cover, reaching values of 0.95 and 0.97 (Table 2).

Table 2. Accuracy assessment of the U-Net model for the built-up area and vegetation cover prediction.

Labels F1-Score

Built-Up Area 0.95

Vegetation Cover 0.97

These results indicate a very good level of accuracy, considering that the U-Net model
was applied to geographic areas it had never experienced before. This implies that the real
and the predicted features are very close.

From the built-up area and vegetation cover prediction (Figure 4), it can be seen
that there are some built-up polygons (FP) in the peripheral areas and some voids (FN)
within the denser urban environment, the expansion area and the industrial/productive
zone that were not detected. Looking at the vegetation cover prediction, some predicted
vegetation polygons that are non-vegetation can be found (FP). However, there are many
real vegetation polygons that the model did not predict (FN).

Once the accuracy of the model to predict the built-up and vegetation cover was
assessed in reference to 2020, all the analyses concerning the built-up and vegetation
changes for the 2000–2020 period were carried out using the predicted masks.

4.2. Urban and Greening Changes Analysis Results

To determine the built-up and vegetation modifications over the years within the
study area, the U-Net model was applied to 2000, 2006, 2011, 2017 and 2020 orthoimages.

For every orthoimage, the built-up and vegetation polygons were classified and segmented
within short computational times to assess the changes in these urban elements over time.

In Figure 5, the predicted shapes of the built-up area and vegetation cover retrieved
from the U-Net model application are presented, for all the investigated time points, in
red and green, respectively. Since the U-Net model is trained and validated to predict only
the built-up and vegetation polygons, the unclassified features are defined as unlabeled
elements and are represented in gray.
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Figure 5 highlights a distinct change in the spatial patterns of the built-up area and
vegetation cover between 2000 and 2020.

After the application of the U-Net model to predict the built-up and vegetation cover
for every year under investigation and the assessment of their aerial coverage, the indicators
defined in the methodological section were assessed to analyze the urban and greening
changes over time.

The surface coverage in hectares and the density in percentages of built-up area, of
vegetation cover and unlabeled elements for the five time points are summarized in Table 3.

Table 3. Coverage and density of urban and greening in 2000, 2006, 2011, 2017 and 2020.

Labels
2000 2006 2011 2017 2020

Coverage
(ha)

Density
(%)

Coverage
(ha)

Density
(%)

Coverage
(ha)

Density
(%)

Coverage
(ha)

Density
(%)

Coverage
(ha)

Density
(%)

Built-up
Area 147.44 22.38 186.56 28.31 194.45 29.51 202.02 30.66 202.03 30.66

Vegetation
Cover 272.31 41.33 253.64 38.49 246.82 37.46 238.93 36.26 238.49 36.19

Unlabeled
Elements 239.16 36.30 218.71 33.19 217.64 33.03 217.96 33.08 218.40 33.15

Total 658.91 100 658.91 100 658.91 100 658.91 100 658.91 100

The classification and segmentation of the natural color orthoimages from 2000 show
that most of the study area is covered by vegetation and by unlabeled elements, representing
272.31 ha (41.33%) and 239.16 ha (36.30%), respectively, whereas the built-up area covered
147.4 ha with a density rate of 22.38%.

Similarly, in 2006, the greatest share of the total study area was the vegetation cover
at 253.64 ha (38.49%), followed by unlabeled element coverage at 218.71 ha (33.19%) and
built-up area coverage at 186.56 ha (28.31%).

The results of the classification for the 2011 orthoimage show that the highest density
rate was related to the vegetation cover, reaching 246.82 ha (37.46%), while the built-up
area and the unlabeled elements coverage were equal to 194.95 ha (29.51%) and 217.64 ha
(33.03%), respectively.

Processing the 2017 aerial image, the results demonstrate that the unlabeled elements
coverage was equal to 217.96 ha, with a density rate of 33.08%. The built-up area and
vegetation cover, respectively, were 202.02 ha and 238.93 ha, which, in terms of density rate,
is equal to 30.66% and 36.26%, respectively.

From the application of the DL model to the 2020 orthoimage, it can be seen that the
scenario is quite stable with respect to 2017. Indeed, built-up area coverage of 202.03 ha,
with a density rate of 30.66% was obtained. The vegetation cover for 2020 was 238.49 ha
(36.19%), while the unlabeled elements coverage was equal to 218.40 ha (33.15%).

The coverage and the density of built-up area, vegetation and unlabeled elements
changes for the five periods (2000, 2006, 2011, 2017 and 2020) are shown in Table 4.

Considering the 20-year observation period, the greatest pattern changes in the urban
and greening development for the case study occurred between 2000 and 2006. During this
period, the built-up area increased by 39.12 ha, with a density increase of 5.94%, compared
to the previous amount of cover. In contrast, vegetation cover and unlabeled elements
density rate were reduced by 2.83% and 3.10%, resulting in a surface loss of 18.67 ha and
20.45 ha, respectively.
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Table 4. Coverage and density of urban and greening development between 2000–2006, 2006–2011,
2011–2017 and 2017–2020.

Labels
2000–2006 2006–2011 2011–2017 2017–2020

Coverage
(ha)

Density
(%)

Coverage
(ha)

Density
(%)

Coverage
(ha)

Density
(%)

Coverage
(ha)

Density
(%)

Built-up
Area 39.12 5.94 7.89 1.20 7.56 1.15 0.01 0.00

Vegetation
Cover −18.67 −2.83 −6.82 −1.04 −7.89 −1.20 −0.44 −0.07

Unlabeled
Elements −20.45 −3.10 −1.07 −0.16 0.32 0.05 0.43 0.07

From 2006 to 2011, the built-up area continued to increase by 7.89 ha with a density
rate of 1.20%, while the vegetation cover surface decreased by a value of 6.82 ha (1.04%).
The area of unlabeled elements declined by 1.07 ha, with a density rate reduction of 0.16%.

During the 2011–2017 period, the built-up area density continued to increase with
a density rate of 1.15%, around 7.56 ha, while the vegetation cover density continued
to decrease with a density rate of 1.20%, around 7.89 ha. The density rate of unlabeled
elements slightly increased (0.05%), resulting in an increased area equal to 0.32 ha.

During 2017–2020, the surface area and, thus, the density rate of the built-up area did
not vary. The density rate of the vegetation cover and the other elements decreased and
increased, respectively, by 0.07%, causing a loss and an increase of 0.44 ha and 0.43 ha.

Generally, taking into consideration the overall study period (2000–2020), the built-up
area showed a remarkable area increase of 54.58 ha, which equaled a density increase
of 8.29%. In contrast, the vegetation cover diminished by 33.82 ha, with a rate density
reduction of 5.14% in the same period. From 2000 to 2020, the coverage area of predicted
unlabeled elements decreased by 20.77 ha, for a density rate equal to 3.15%.

Generally, the results demonstrate a series of urban and greening changes in the study
area for the analyzed period (2000–2020), according to which, the study area experienced
significant built-up area expansion, causing relevant vegetation cover decline. This urban
and greening trend is found to be consistent with the results of a different study [57].

5. Discussion

The obtained results indicate that significant urban and greening cover changes oc-
curred from 2000 to 2020. In fact, in the overall study area, during the 20-year analyzed
period, the built-up area density increased by 8.28%, while the vegetation cover density
decreased by 5.13%. This research finding indicates that the study area experienced a
growing urbanization phenomenon, which led to a decline in vegetation cover.

Specifically, the continuous urban development and the decrease in vegetation cover
shown by the urban and greening changes analysis of the period between 2000 and 2020
are related to the realization of new residential areas and urban services in the northern
part of the study area and to the completion of industrial/productive areas in the western
part. The construction of new residential buildings and the consequent realization of urban
services during this period followed an urban planning policy combining the core part of
the urban area and the peri-urban area. The completion of the industrial/productive area,
on the other hand, took place in the location of already-established enterprises. This land
cover development pattern may be determined by population growth, which has led to a
demand for new residential areas and new urban services as well as new job opportunities.

The significant development pattern in the north-west side of the study area occurred
between 2000 and 2006 when new residences were built in the north of the study area
and new industrial/productive buildings were built in the west. In particular, the new
residential zone was connected to the main urban zone, bringing together the core part of
the urban area and the peripheral area. The U-Net model, through the classification and
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segmentation of the 2000 and 2006 natural orthoimages, predicts this development well.
The built-up expansion trend and the reduction of the vegetation cover are also confirmed
by the numerical results obtained from the application of the urban and greening indicators
in the 2000 and 2006 prediction masks.

From 2006 to 2011, the expansion of the residences in the northern part of the study
area continued through the realization of a new transitional zone between the urban and
peripheral sides, resulting in a loss in vegetation cover. The cause of this residential
expansion was a new important street connection. Moreover, during this period, the
expansion activity also involved the growth of the industrial/productive zones in the west
of the study area. The trend of urban development and greening loss is confirmed by the
proposed and applied methodology.

In the 2011–2017 period, the residences connecting the core part of the study area
to the peripheral areas and the industrial/productive zone in the north and in the west,
respectively, were almost completed, causing the complete removal of the vegetation cover
in those areas. The applied DL method predicts these changes well.

Between 2017–2020, no significant change occurred. During this period, some build-
ings in the north part of the study were constructed in the already built-up area, resulting
in no further land consumption. This is confirmed by the model prediction.

Comparing the obtained results in terms of prediction with the changes shown by
the orthoimages, the trend identified by the application of the proposed methodology is
close to the trend shown by the analyzed orthoimages. Furthermore, the numerical results
obtained from the application of the proposed indicators confirm the development of the
built-up area and the decreasing vegetation areas, as assessed by [57].

Looking at the obtained geography of urban and greening changes for the study
area, a phenomenon of peripheral urban development can be observed. These results
suggest that decentralized planning policy affected this area, resulting in a sprawl of urban
development. This analysis also shows how the loss of vegetation cover outside the core
part of the urban area is not compensated for with the addition of new green spaces.

As demonstrated by the results, even if these kinds of planning policies promote
the efficient integration between core and peripheral areas thanks to the construction of
integrated urban and territorial services, such as transportation systems and high-level
services, it results in a depletion of vegetation cover, causing a loss of ecosystem services.
The higher the rate of urban development outside the inner city, the higher the natural
resources and vegetation consumption.

The results obtained from urban and greening development changes during the
20 years from 2000 to 2020 show that the DL model applied for the classification and
segmentation of the built-up and vegetation cover predicts, with short computational
times, these urban features with a very good level of accuracy. The described results
show, in fact, the adequate capacity of the proposed methodology to very quickly identify
urban and greening development changes over time from simple orthoimages related to
different years.

Reaching an F1-Score of 0.95 and 0.97 for the built-up area and vegetation cover, respec-
tively, the demonstrated accuracy of the proposed U-Net model prediction on a geographic
area that the model had not experienced before was very good. This means that the spatial
autocorrelation between the real and the predicted labels is almost completely removed.

The proposed methodology, based on the integration between the DL technology
and GIS techniques, can be employed as a rapid system to estimate the built-up area and
the vegetation cover with a good level of accuracy, providing a quantitative assessment
of the urban and greening development changes over time. As the proposed integrated
methodology represents an appreciable indicator of urban and greening growth and a
predictor of future urban and greening development directions, it can be used by planners,
decision makers and stakeholders to monitor and predict land cover changes in urban and
territorial areas.
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The proposed urban and greening change detection methodology, combining the
RS and GIS potentialities, delivers useful information about land use dynamics patterns,
helping planners and decision makers to realize sustainable land management. It can be
used as a rapid tool to quantify and visualize the real consumption of natural resources,
such as vegetation and soil, in a semi-automatic way. Furthermore, it can also be used as
an early warning system to identify land cover changes occurring without authorization
or permission.

In this study, the proposed tool was tested on a pilot area in the municipality of Matera.
The obtained results show that this tool can be applied to other areas, which can be bigger
than the one analyzed here, in order to assess the urban and greening changes occurring
over time as well as to predict the future urban and greening development trajectories in
larger urban and territorial contexts.

The main challenge of the proposed research is to compare the orthoimages related to
different periods. Indeed, the different exposures of the aerial images determined using
new and advanced cameras over time cannot have similar results in terms of built-up and
vegetation cover prediction. Additionally, weather conditions have a significant influence
on orthoimage processing. These different orthoimages conditions affect the obtained
results. For example, the classified and segmented built-up coverage from the aerial image
from 2000 is slightly underestimated in comparison to the real situation due to the clearness
of the orthoimage, which does not make it possible to distinguish the color differences
between the buildings and the unlabeled elements. On the contrary, the predicted built-up
areas for 2006 seem to be good, as it is characterized by an identifiable color. Looking at the
classified and segmented vegetation cover from the 2011 orthoimage, the vivid green color
of the vegetation facilitates the identification of this category by the DL model. The green
color of the vegetation areas within the 2017 orthoimage, on the other hand, is not so vivid
and, therefore, the vegetation cover is underestimated by the U-Net model.

Despite this, the trained and validated U-Net model predicted the built-up area and
vegetation polygons very well and the proposed methodology provides a good estimation
of the built-up area and vegetation development over the analyzed period. The limit of the
different orthoimages, therefore, became an opportunity to test the ability of the proposed
methodology to predict the built-up area and vegetation cover and assess the urban and
greening development changes with a good level of accuracy in a very rapid way. Having a
homogeneous, updated and open database of natural orthoimages would help to overcome
this limitation.

The proposed research work may be improved by testing other DL architectures
that are more accurate to achieve better performances in building and vegetation cover
prediction. Other labels, such as bare soil, roads and the differences between urban and rural
green areas, may be added to comprehensively assess LULC changes over time, focusing
on different urban features. Moreover, the proposed analysis based on the integration
between DL and GIS technologies may be deepened by introducing socioeconomic and
environmental indicators to analyze the drivers and the impacts of urban and greening
development over time and space.

6. Conclusions

In this paper, the authors proposed a combined method based on the application of a
DL model to aerial imagery in order to assess the urban and greening changes over time
through a spatial analysis of the built-up area and vegetation cover. Specifically, the authors
used a U-Net model with a RELU activation function that was trained and validated
using the “Semantic Segmentation of Aerial Imagery”. The U-Net model was tested by
classifying and segmenting the built-up area and the vegetation cover of an urban area of
the municipality of Matera in the Basilicata region (Italy). The predicted built-up area and
vegetation polygons were then uploaded to the GIS environment to assess, through specific
density indicators, the land cover changes over a period of 20 years from 2000 to 2020.
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The accuracy assessment of the built-up and vegetation polygons prediction for 2020
resulted in F1-score values of 0.95 and 0.97, respectively. This result quantitatively demon-
strated the goodness of the applied DL model to predict these two urban features. The
qualitative comparison between the orthoimages and the prediction of the built-up area
and vegetation cover for the orthoimages from 2000, 2006, 2011 and 2017 confirmed this
ability of the U-Net model.

The geospatial analysis aimed at identifying urban and greening development in the
study area showed that during the analyzed period (2000–2020) the study area experienced
a remarkable increase in built-up density (8.28%) and a significant reduction in vegetation
cover density (5.13%). Moreover, looking at the geography of these urban and greening
changes, a peripheral urban development can be observed. This identified trend in the loss
of vegetation cover shows, therefore, how the urban development outside the core area
of the denser urban environment puts pressure on vegetation cover, resulting in negative
impacts on the livability and sustainability of urban and territorial areas.

The proposed method demonstrates how the assessment of land use through the
application of innovative DL models and geospatial analysis techniques is very effective for
assessing and monitoring the net effect of urban planning policies in terms of land cover
changes. Thanks to the proposed methodology, in fact, a rapid estimation of urban and
greening changes over time, with a very good level of accuracy, can be obtained. It can
also be a useful support system for urban planning practitioners in order to find suitable
strategies to complement urban development with the delivery of the crucial ecosystem
services of the natural environment.

Supplementary Materials: Python code, input image data, and output predicted built-up area and
vegetation cover masks can be accessed at: https://github.com/ingegnerevitale/U-Net-Semantic-
Segmentation-Aerial-Images (accessed on 5 March 2023).
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