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Abstract: There is an ongoing forensic and security need for rapid, on-scene, easy-to-use, non-
invasive chemical identification of intact energetic materials at pre-explosion crime scenes. Recent
technological advances in instrument miniaturization, wireless transfer and cloud storage of digital
data, and multivariate data analysis have created new and very promising options for the use of
near-infrared (NIR) spectroscopy in forensic science. This study shows that in addition to drugs of
abuse, portable NIR spectroscopy with multivariate data analysis also offers excellent opportunities to
identify intact energetic materials and mixtures. NIR is able to characterize a broad range of chemicals
of interest in forensic explosive investigations, covering both organic and inorganic compounds.
NIR characterization of actual forensic casework samples convincingly shows that this technique
can handle the chemical diversity encountered in forensic explosive investigations. The detailed
chemical information contained in the 1350–2550 nm NIR reflectance spectrum allows for correct
compound identification within a given class of energetic materials, including nitro-aromatics,
nitro-amines, nitrate esters, and peroxides. In addition, the detailed characterization of mixtures
of energetic materials, such as plastic formulations containing PETN (pentaerythritol tetranitrate)
and RDX (trinitro triazinane), is feasible. The results presented illustrate that the NIR spectra of
energetic compounds and mixtures are sufficiently selective to prevent false-positive results for a
broad range of food-related products, household chemicals, raw materials used for the production
of home-made explosives, drugs of abuse, and products that are sometimes used to create hoax
improvised explosive devices. However, for frequently encountered pyrotechnic mixtures, such as
black powder, flash powder, and smokeless powder, and some basic inorganic raw materials, the
application of NIR spectroscopy remains challenging. Another challenge is presented by casework
samples of contaminated, aged, and degraded energetic materials or poor-quality HMEs (home-
made explosives), for which the spectral signature deviates significantly from the reference spectra,
potentially leading to false-negative outcomes.

Keywords: explosives; NIR; chemical identification; chemometrics; on-scene analysis; portable
analysis; forensic science
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1. Introduction

On-scene identification of intact explosives must be fast and accurate to ensure the
safety of people on the scene and those handling the evidence. Underestimating the threat
of a material leads to uninformed decisions that could cause death or severe injuries,
whereas overestimating the threat could enable criminal exploitation of hoax materials
and generally results in a waste of resources. In terms of safety, efficiency, and cost, not
having to send samples to the laboratory for analysis is generally beneficial. However,
such a development requires a safe and reliable technique that ideally yields admissible
evidence on site. The broad chemical range of explosive compounds poses a challenge in
this regard. Investigators cannot visually determine whether an energetic material is of
an organic or inorganic nature, and whether it is a mixture rather than a pure compound.
Therefore, suitable portable technology must be able to confidently identify each explosive
substance that could potentially be present.

Traditionally, colorimetric tests have been used for on-scene explosives detection.
These tests detect classes of compounds and can indicate the possible presence of an explo-
sive, but lack selectivity and are typically unable to identify an explosive within a class [1].
They also require manual sampling and sample handling, which introduces additional
risk. Moreover, a single colorimetric test covers only a sub-range of explosives and the
interpretation of the color formation is, to some degree, subjective. Although some of
these drawbacks can be mitigated by using microfluidic paper-based analytical devices
(µPADs) [2,3], alternative approaches have been proposed for on-scene identification of
intact energetic materials. A widely used method for rapid explosives detection is ion
mobility spectrometry (IMS) [4]. Given its high sensitivity, aviation security mostly applies
this technique to detect trace amounts on luggage. IMS is less favorable for the identifi-
cation of bulk amounts, considering the potential overloading of the instrument leading
to false-positive results in subsequent analyses [5]. Recent advances in portable mass
spectrometry (MS) provide high selectivity and sensitivity on site, but this approach is
relatively expensive and technologically challenging [6]. The required vacuum for MS
provides challenges and hampers miniaturization. Advances in fluorescence quenching
sensor arrays enable sensitive on-site detection of explosive vapors and liquids [7–14].
These arrays proved successful in the detection of nitro-based explosives, owing to flu-
orescence quenching by electron-withdrawing nitro groups [10]. Differential binding to
fluorophores or to quantum dots in proximity of fluorescent nanoparticles allows selective
differentiation between nitro-based explosives [11–14]. While these sensor arrays do not
cover the entire range of explosives and do not provide compound-specific identification,
their reported sensitivity, low cost, and simplicity are promising for practical field applica-
tions. Interesting developments are also being reported in the electrochemical detection of
explosives [15–17]. Molecularly imprinted polymers are utilized to achieve high selectivity
in targeted electrochemical analysis [18]. However, for bulk analysis of unknown energetic
materials, a single, non-invasive analysis covering the entire chemical range of explosives
is preferred.

Spectroscopic techniques are suitable for bulk samples, provide highly characteristic
chemical information, and have the advantage of requiring minimal to no sample prepa-
ration. Raman spectroscopy is non-invasive, but its signal is obscured by fluorescent
samples [19]. Moreover, Raman laser sources have sufficient power to potentially burn
samples, compromising safety on the scene and risking evidence loss [20]. Interestingly,
using portable Fourier-transform infrared spectroscopy (FT-IR) does not entail such risks
but requires sampling and more extensive sample preparation [19]. Near-infrared (NIR)
spectroscopy is non-invasive and not affected by matrix fluorescence, and strongly reduces
the risk of ignition [19–21]. Additionally, NIR analyzers are relatively cheap and can be
miniaturized, and, therefore, have the potential to be routinely employed in the field [21].
NIR spectra alone are not informative enough for structural elucidation, since the bands
in the NIR region (780–2500 nm) are weak and result from complex combined vibrations
and overtone absorptions [22,23]. This lack of signal interpretability can be overcome
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by pre-processing the raw data and applying chemometric methods (multivariate data
analysis) to extract informative features from the data [21,23].

NIR combined with multivariate data analysis has been applied in the last decade
for the analysis of intact explosives [24–33]. Interestingly, the approach proved successful
for explosive trace detection on various substrates [24–27]. Other studies demonstrated
accurate composition analysis of explosives using NIR [28–30]. The miniaturization of NIR
analyzers has rapidly progressed over the years and facilitates new practical applications,
such as the detection of bottled explosive liquids in airports [31,34,35]. The recent liter-
ature demonstrates that handheld NIR analyzers can identify subsets of explosives and
precursors at high correct classification rates [32,33]. However, the use of portable NIR for
real-time decision-making at the incident scene requires the technique to be highly selective
across the full range of energetic materials potentially present.

The aim of this research is to develop a portable analysis platform capable of identi-
fying a broad range of intact compounds and materials that are of relevance in forensic
explosives investigation with high confidence (i.e., with a very low risk of false-positive
or false-negative outcomes). Our approach is based on portable NIR and tailor-made
multivariate data analysis strategies, requires minimal sample handing, and provides a
sample assessment in seconds with a measurement that can be conducted with minimal
instructions and requires no chemical expertise. A powerful, portable FT-NIR analyzer
from Si-Ware was employed to cover a broad wavelength range of 1350–2550 nm. This
analyzer is equipped with a proprietary MEMS (microelectromechanical systems) sensor.
Previously, this setup was successfully applied to identify and characterize an extensive set
of frequently encountered drugs of abuse. High accuracy was achieved using a multi-stage
chemometric model, which included a linear discrimination analysis (LDA) component
and a net analyte signal (NAS) model [36–40]. To address the chemical diversity in the
field of forensic explosive investigations, the data analysis strategy was further refined
through a three-stage approach. A special explosives matrix was constructed, consisting
of pure compound spectra of organic and inorganic energetic compounds encountered
in forensic explosives casework. Chemical selectivity was tested by comparing the NIR
spectra of organic explosives with very similar molecular structures, e.g., ETN (erythritol
tetranitrate) vs. PETN and RDX vs. HMX (tetranitro tetrazocane). Furthermore, the capa-
bility of multivariate data analysis methods to correctly characterize the composite NIR
spectra of mixture formulations was investigated. To this end, binary RDX/PETN mixtures
were prepared and analyzed along with a set of plastic explosives of the C4 and Semtex
type. The risk of false-positive outcomes was mapped by analyzing a large set of chemicals
and products (food stuffs, household chemicals, hoax materials, drugs of abuse, and raw
materials) that could be mistakenly considered as explosives during an investigation. In
addition, a set of forensic casework samples from the Netherlands Forensic Institute (NFI)
was analyzed and the NIR model output was compared to results of the more elaborate
analyses conducted by forensic experts to assess the false-negative rate. Overall, the results
presented in this work illustrate the substantial added value that portable NIR could bring
for the rapid and robust chemical identification of intact explosives.

2. Materials and Methods
2.1. Chemical Standards

Sodium chlorate (NaClO3, ACS Reagent, ≥99.0%), sodium perchlorate (NaClO4, 99%),
and potassium perchlorate (KClO4, ACS Reagent, ≥99.0%) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). In addition, KClO4 (anhydrous, ACS, 99.0–100.5%), KClO4
(99%), and KClO3 (ACS, 99.0%) standards were obtained from abcr GmbH (Karlsruhe,
Germany) and KClO4 (anhydrous, ACS, 99.0–100.5%) and KClO4 (99%) were acquired from
ThermoFisher GmbH (Kandel, Germany). Additional batches of KClO3 (≥99.7%) were ob-
tained from Carl Roth GmbH (Karlsruhe, Germany) and Boom B.V. (AnalaR NORMAPUR,
Meppel, The Netherlands). Finally, potassium nitrate (KNO3) was acquired from Janssen
Chimica (Beerse, Belgium).
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2.2. Test Samples

Because of the risks associated with energetic materials, standards of explosive com-
pounds are only commercially available as low concentration solutions in organic solvents.
Such solutions cannot be used to establish reflectance NIR spectra of the compounds of interest.
Hence, most reference spectra, with the exception of some raw material salts, were obtained
from samples made available by the scientists of the Department of Energetic Materials of
TNO Defence, Safety and Security and the forensic explosives experts of the NFI. These
samples were synthesized in-house, were part of a collection of professional and military
grade explosive materials, or originated from forensic casework. Although these materials are
less controlled than standards and chemicals ordered from commercial suppliers, relatively
pure reference samples were selected on the basis of in-house chemical analysis.

A total of 48 pure explosive samples and mixtures were analyzed with portable NIR
at TNO: 1 AN (ammonium nitrate) sample, 2 ETN samples, 1 HMTD (hexamethylene
triperoxide diamine) sample, 6 HMX (tetranitro tetrazocane) samples, 4 NC (nitrocellulose)
samples, 1 PA (picric acid) sample, 2 PETN (pentaerythritol tetranitrate) samples, 13 RDX
(trinitro triazinane) samples, 2 TATP (triacetone triperoxide) samples, 1 tetryl (trinitrophenyl
methylnitramine) sample, 3 TNT (trinitro toluene) samples, 5 Semtex (RDX, PETN, and
additives) samples, 2 C4 (RDX with additives) samples, 3 double base powder (DBP,
containing nitrocellulose and nitroglycerine) samples, and 2 gunpowder (black powder)
samples. In addition, TNO scientists prepared binary mixtures of RDX and PETN in various
ratios (in total 11 samples, from 100 wt% RDX (TL 144/96) in steps of 10 wt% to 100 wt%
PETN (TL 977/18)). Information on the explosive material samples from TNO is provided
in Table S1 of the Supplemental Information.

In total, 74 samples were provided by the NFI. This set consisted of 1 UN (urea
nitrate) sample prepared at the NFI, 1 HMTD sample prepared at the NFI, 2 ETN samples
prepared at TNO, 1 AN (≥99.0%) sample from Sigma-Aldrich (St. Louis, MO, USA),
and 69 samples originating from casework between 2005 and 2022 (3 TATP samples,
8 HMTD samples, 6 TATP/HMTD mixtures (2 with aluminum), 8 PETN samples, 4 RDX
samples, 5 TNT samples, 10 tetryl samples, 16 AN samples (6 with aluminum), 2 AN-based
plastic emulsions, 6 NC samples and 2 flash powder (mixture of potassium perchlorate and
aluminum) samples, and 1 sample also contained sulfur). Information on the case samples
from the NFI is criminal case sensitive and cannot be shared without prior approval of the
Dutch Public Prosecution Office.

Smokeless powder (SP) reference materials were obtained from the National Center
for Forensic Science (NCFS, Orlando, FL, USA). Several SP samples were screened with
NIR in this study (SRN 300, 305, 306, 308, 314, 315, 321, 326, 329, 330, 331, 332, 334,
355–363, 367, 368, 370, 377, 379, 388, 392, 394, 395, and 396). More information on these
samples can be found using the SRN code in the on-line NCFS smokeless powders database
(https://www.ilrc.ucf.edu/powders/, (accessed on 6 March 2023)).

2.3. Negative Samples

To test the selectivity of the NIR spectrometer and investigate potential false-positive
outcomes, a diverse ‘negative’ sample set was created consisting of various common
substances. Such substances could be mistaken for an explosive formulation or could
intentionally be used to mimic an improvised explosive device (a so-called hoax). This
set included household chemicals (agar-agar, baking powder, baking soda, coffee creamer,
pain killer powders, fondant, powdered sugar, table sugar, vetsin (monosodium gluta-
mate), washing detergent, wheat flower, table salt, Play-Doh clay, and corn starch), raw
materials used for explosive synthesis (erythritol, xylitol), and illicit drugs and associ-
ated adulterants (3-methylmethcathinone (3-MMC), amphetamine, aspirin, benzocaine,
boric acid, caffeine, cocaine HCl and base, diltiazem, phenacetine, flunitrazepam, gamma-
hydroxybutyric acid (GHB), brown and white heroin, ketamine, levamisole, lidocaine, man-
nitol, 3,4-methylenedioxy-methamphetamine (MDMA), mephedrone, methamphetamine,
oxazepam, paracetamol, phenacetine, procaine, promethazine, sildenafil (Viagra), tetrahy-

https://www.ilrc.ucf.edu/powders/
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drocannabinol (THC), vitamin C, and starch). All household and foodstuff substances were
obtained from local Dutch grocery stores, drug-related substances were provided by the
Amsterdam Police Laboratory.

2.4. NIR Measurements

NIR characterization of the samples made available by TNO and NFI was performed
on-site to prevent the transportation of energetic material and minimize the risks of sample
loss and accidental activation. NIR measurements were conducted in diffuse reflectance
mode by placing a regular, NIR transparent borosilicate glass vial (4 mL volume, 15 mm
diameter) on the NIR analyzer, as is illustrated in Figure 1. The use of smaller vials is not
recommended because of incomplete coverage of the NIR sensor surface. Roughly 0.5 g
of sample material was added to the glass vials to minimize the effects of an unexpected
explosion/deflagration while ensuring a sufficient layer thickness (>0.5 cm) for a high-
quality reflectance NIR measurement. NIR spectra were recorded in the wavelength range
of 1350–2550 nm using a portable spectrometer (10 × 8 × 4.5 cm, 550 g) equipped with an
FT-NIR MEMS sensor from Si-Ware (Cairo, Egypt). According to specifications, this sensor
has a resolution of 16 nm at 1550 nm. For each sample, 5 NIR spectra were recorded, where
the vial was shaken and repositioned on the scanner in between measurements to capture
spectral variation as function of sample position and powder arrangement. For a selection
of the samples, 3 spectra were also recorded for a fixed vial and sample position to capture
the intrinsic measurement variation of the NIR sensor. A single NIR scan was typically
completed within a few seconds, after which the spectrum was recorded and displayed
using the NeoSpectra SpectroMOST2 software (version 2.0.10, Si-Ware Systems, 3, Khaled
Ibn Al-Waleed St. Sheraton, Heliopolis, Cairo 11361, Egypt) running on a laptop connected
to the NIR analyzer through a USB-A to USB-C cable. The SpectroMOST software was
also used to control the scanner settings, perform blank measurements using the Fluorilon
(PTFE) total reflector, and save the scan data. A single scan consists of absorbance values
at 257 discrete wavelengths in the 1350–2550 nm range. The absorbance value at a given
wavelength is calculated as the negative logarithm of the ratio of the detected ‘light’
intensity reflected from the sample and the overall intensity of the source radiation at that
wavelength (as measured with the Fluorilon reflector). The NeoSpectra data files (15 kB in
size per scan) were converted to csv files using a home-made MATLAB (2020b update 5,
MathWorks, Natick, MA, USA) script.
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2.5. Data Pre-Processing and (Multivariate) Analysis

Excel (version 2301, Microsoft, Redmond, WA, USA) and Unscrambler X (version
10.5.1, Camo Analytics, Oslo, Norway) were used for data inspection, pre-processing, and
visualization to produce the raw and processed NIR spectra shown in this paper. Data
pre-processing to remove baseline shifts and minimize non-specific measurement variation
included sum normalization, standard normal variate (SNV, subtraction of the average
signal over the entire wavelength range and division by the associated standard deviation),
and taking the first derivative of the measured spectrum.

Multivariate data analysis (Principal Component Analysis—PCA, Partial Least
Squares—PLS, and Linear Discriminant Analysis—LDA) was conducted using Unscram-
bler X. Standard Unscrambler settings were used when applying these data analysis meth-
ods. SNV (Standard Normal Variate) data pre-processing was consistently applied and for
the LDA model for perchlorate discrimination (Figure 10), this was followed by a Savitzky–
Golay first derivative algorithm (3rd order polynomial, symmetric kernel of 5 data points).
All data were mean-centered but not auto-scaled nor selectively weighted prior to modeling.
PCA analysis was conducted using the Singular Value Decomposition (SVD) algorithm
and PLS was performed with the Kernel PLS algorithm both for a maximum of 7 compo-
nents. For PCA and PLS, cross-validation was conducted with 20 segments containing 2 or
3 randomly selected spectra from the standard data set. LDA was performed with the PCA
scores for the first 7 principal components using the linear model option and applying
equal prior probabilities.

In addition, a more advanced, tailor-made, 3-stage chemometric model was devel-
oped by TIPb for the NIR characterization of forensic explosives casework samples. This
multi-stage model is illustrated in Figure 2. During the first stage of the model, the
near-infrared sensor is calibrated by using a so-called explosives matrix. This matrix is
defined by all possible chemical components that explosive materials can be made of
and its contents are based on casework experience and knowledge from forensic experts.
An overview of the explosives matrix and its components is provided in Table S2 of the
Supplemental Information.
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The next phase of the TIPb chemometric model consists of the construction of an LDA
classification model. This model makes use of the spectral library that is represented by
the explosives reference matrix and acts as a filter to pre-select candidates (or chemical
components) and forward these to the identification phase. By pre-selecting chemical
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components, the search-space of possible combinations of matrix components is further
reduced while minimizing the false-positive rate.

In phase 3 of the TIPb chemometric model, the identification of unknown samples is
performed. Based on the Net Analyte Signal (NAS) approach, an unknown spectrum is
reconstructed from the pre-selection of matrix components. The predicted spectrum by the
identification model is compared to the unknown measurement by means of a similarity
measurement. The identification is significant if the similarity between the prediction and
true measurement exceeds 0.8 at a maximum score of 1.0. The identification phase also
allows for the inclusion of decision rules, for instance to rule out unlikely combinations
of matrix components. The NAS model is not only capable of leveraging the information
represented by the explosive matrix, but is, to a certain, extent also robust to unknown
interferents that have not been included in the explosives reference matrix.

3. Results
3.1. Data Preprocessing of NIR Spectra of Energetic Materials

When employing diffuse reflection NIR spectroscopy for the characterization of solid
materials, data pre-processing is an essential first step for maximizing chemometric model
performance. Figure 3 illustrates the spectral variation encountered for two TNT (trinitro-
toluene, a high explosive from the nitro-aromatic class) samples and the spectral similarity
after applying various data-preprocessing strategies. Consistently, SNV and first derivative
processing were found to be very effective in reducing spectral variations for a given
compound and thus maximizing the chemical structural information in the NIR spec-
tra. These pre-processing methods have subsequently been applied prior to multivariate
data analysis.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 3. NIR spectra (n = 10, 2 samples) of TNT as measured with the NIR analyzer (a) and after 
sum normalization (b), SNV (c), and taking the first derivative (d) of the absorbance. 

3.2. NIR Analysis of Organic Explosives 
By employing the data preprocessing strategies described above, the NIR analysis of 

a wide range of organic explosives was undertaken. The NFI- and TNO-based sample set 
covered nitroaromatics (TNT, PA, and Tetryl), nitro-amines (RDX and HMX), nitrate esters 
(ETN, PETN, and NC) and peroxides (TATP and HMTD). Figure 4 depicts the SNV-cor-
rected, average spectra of ETN and PETN of the nitrate ester class and RDX and HMX of 
the nitro-amine class. Although these compound pairs are chemically very similar, the 
NIR spectra in the 1350–2550 nm range show many spectral features that could be used 
for differentiation and to identify the correct explosive. Such features are also abundant 
when zooming in on the 1350–1625 nm part of the spectrum where NIR absorption is less 
pronounced (Figure S1 of the Supplemental Information). The complex patterns are not 
instrumental artefacts but were found to be highly reproducible and compound specific. 

  

Figure 3. NIR spectra (n = 10, 2 samples) of TNT as measured with the NIR analyzer (a) and after
sum normalization (b), SNV (c), and taking the first derivative (d) of the absorbance.

3.2. NIR Analysis of Organic Explosives

By employing the data preprocessing strategies described above, the NIR analysis
of a wide range of organic explosives was undertaken. The NFI- and TNO-based sample
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set covered nitroaromatics (TNT, PA, and Tetryl), nitro-amines (RDX and HMX), nitrate
esters (ETN, PETN, and NC) and peroxides (TATP and HMTD). Figure 4 depicts the SNV-
corrected, average spectra of ETN and PETN of the nitrate ester class and RDX and HMX
of the nitro-amine class. Although these compound pairs are chemically very similar, the
NIR spectra in the 1350–2550 nm range show many spectral features that could be used
for differentiation and to identify the correct explosive. Such features are also abundant
when zooming in on the 1350–1625 nm part of the spectrum where NIR absorption is less
pronounced (Figure S1 of the Supplemental Information). The complex patterns are not
instrumental artefacts but were found to be highly reproducible and compound specific.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20 
 

 

 

 
Figure 4. SNV-corrected, average NIR spectra (n = 5) of (a) PETN and ETN (orange and blue trace, 
respectively) and (b) RDX and HMX (orange and blue trace, respectively). The offset has been ad-
justed to facilitate spectrum comparison. 

The observed spectra for the most relevant compounds of the nitro-aromatic and per-
oxide class are shown in Figure 5. Consistently, detailed and reproducible NIR spectra are 
obtained that are highly characteristic and are sufficiently selective to identify the correct 
compound from the set of organic explosives. An interesting difference can be noted for 
the two TATP spectra displayed in Figure 5b. The two additional, pronounced and broad 
absorption bands at 1450 and 2000 nm relate to the presence of residual water in a TATP 
sample that was freshly prepared at TNO. This is not unexpected as TATP crystallizes 
from an aqueous solution and the product is typically washed with water. Additionally, 
for other explosive compounds, such as nitrocellulose and home-made ETN, water can be 
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Figure 4. SNV-corrected, average NIR spectra (n = 5) of (a) PETN and ETN (orange and blue trace,
respectively) and (b) RDX and HMX (orange and blue trace, respectively). The offset has been
adjusted to facilitate spectrum comparison.

The observed spectra for the most relevant compounds of the nitro-aromatic and
peroxide class are shown in Figure 5. Consistently, detailed and reproducible NIR spectra
are obtained that are highly characteristic and are sufficiently selective to identify the
correct compound from the set of organic explosives. An interesting difference can be noted
for the two TATP spectra displayed in Figure 5b. The two additional, pronounced and
broad absorption bands at 1450 and 2000 nm relate to the presence of residual water in a
TATP sample that was freshly prepared at TNO. This is not unexpected as TATP crystallizes
from an aqueous solution and the product is typically washed with water. Additionally,
for other explosive compounds, such as nitrocellulose and home-made ETN, water can be
present in samples encountered in casework. For chemometric modeling, it is important
to include reference spectra that reflect known states (e.g., water of crystallization) and
compositions (wet versus dry, see also Table S2 of the Supplemental Information).

Sensors 2023, 23, x FOR PEER REVIEW 10 of 20 
 

 

 

 
Figure 5. SNV-corrected, average NIR spectra (n = 5) of (a) tetryl, TNT, and picric acid (grey, orange, 
and blue trace, respectively) and (b) TATP (wet), TATP (dry), and HMTD (grey, orange, and blue 
trace, respectively). The offset has been adjusted to facilitate spectrum comparison. 

To assess selectivity, the NIR spectra of a broad range of other chemicals that might 
be mistaken as or intentionally used to mimic an explosive were acquired, including com-
mon household chemicals, food products, raw materials used for the production of explo-
sives, and drugs of abuse and associated adulterants (in forensic casework it can some-
times be unclear whether materials are related to drug or explosives production). A first 
indication of NIR selectivity was obtained by creating a PCA model for the most fre-
quently occurring organic explosives and projecting the extensive negative set in the 
model. Figure 6 illustrates that even with an unsupervised multivariate data analysis 
method like PCA, no overlap occurred for all 51 products in the negative set with any of 
the organic explosives clusters (the plot of PC1, accounting for 39% of the data variance, 
vs. PC2 was less compound specific; PC1 possibly represents a source of more generic 
variation). These results are very promising and further demonstrate the detailed molec-
ular structural information that is contained in the 1350–2550 nm NIR data. As discussed 
in Section 3.5, such information can be exploited in a more advanced manner using tailor-
made supervised data analysis methods. This is demonstrated with the chemometric 
framework that was specifically developed for NIR-based forensic explosive analysis by 
TIPb. 

  

Figure 5. SNV-corrected, average NIR spectra (n = 5) of (a) tetryl, TNT, and picric acid (grey, orange,
and blue trace, respectively) and (b) TATP (wet), TATP (dry), and HMTD (grey, orange, and blue
trace, respectively). The offset has been adjusted to facilitate spectrum comparison.



Sensors 2023, 23, 3804 9 of 17

To assess selectivity, the NIR spectra of a broad range of other chemicals that might be
mistaken as or intentionally used to mimic an explosive were acquired, including common
household chemicals, food products, raw materials used for the production of explosives,
and drugs of abuse and associated adulterants (in forensic casework it can sometimes be
unclear whether materials are related to drug or explosives production). A first indication
of NIR selectivity was obtained by creating a PCA model for the most frequently occurring
organic explosives and projecting the extensive negative set in the model. Figure 6 illustrates
that even with an unsupervised multivariate data analysis method like PCA, no overlap
occurred for all 51 products in the negative set with any of the organic explosives clusters
(the plot of PC1, accounting for 39% of the data variance, vs. PC2 was less compound
specific; PC1 possibly represents a source of more generic variation). These results are very
promising and further demonstrate the detailed molecular structural information that is
contained in the 1350–2550 nm NIR data. As discussed in Section 3.5, such information
can be exploited in a more advanced manner using tailor-made supervised data analysis
methods. This is demonstrated with the chemometric framework that was specifically
developed for NIR-based forensic explosive analysis by TIPb.
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Figure 6. PCA score plot (PC2—explaining 24% of the data variance vs. PC3—explaining 13% of the
data variance) of several organic explosives with the negative samples projected in the PCA space
(open markers). The PCA model is constructed from a total of 50 NIR reference spectra of 10 organic
explosives (excluding the wetted materials), after which a total of 266 spectra of the 51 samples from
the ‘negative’ sample set (Section 2.3) were projected in the model.

3.3. NIR Characterization of Mixtures of Organic Explosives

In forensic explosives casework, intact energetic materials can show a high degree of
purity (e.g., washed TATP crystals) but can also occur as mixtures. Both HME (home-made
explosive), professional engineering, and military explosive formulations can consist of
multiple energetic materials and additives to improve stability or achieve certain product
properties (e.g., plasticity). Examples include well-known explosive products, such as
C4 (RDX combined with plasticizers, binders, and mineral oil) and Semtex (a mixture of
RDX and PETN with several additives including plasticizers, binders, antioxidants, and
sometimes a coloring agent).

To investigate whether explosive mixtures can be correctly characterized using portable
NIR, binary mixtures of RDX and PETN at different ratios were prepared and analyzed
at TNO. The observed spectra, as shown in Figure 7, illustrate the composite nature with
spectral features of both energetic compounds. Due to the high spectral reproducibility for
a given composition, a gradual transition from the pure compound spectrum of RDX to the
PETN reference spectrum (and vice versa) is observed.
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Figure 7. SNV-corrected, average NIR spectra (n = 5) of binary mixtures of RDX and PETN in different
weight ratios (from 100% RDX to 100% PETN in steps of 10 wt%).

Such transitions provide opportunities for quantitative analysis through multivariate
regression methods, such as principal component regression (PCR) or partial least squares
(PLS). With the use of spectral data from calibration samples of known composition (such
as those depicted in Figure 7), the level of RDX and PETN in case samples can be estimated
using a PLS model. Figure 8 shows the random cross-validation results of the PLS model for
binary RDX/PETN mixtures, the associated RMSEP (root mean square error of prediction)
is below 4 wt%.
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Figure 8. PLS model (seven principal components) performance for binary mixtures of PETN (a)
and RDX (b). The regression line is created from the full mixture data set (n = 55, 5 spectra per
composition, 11 compositions), whereas the individual markers show the random cross-validation
(20 segments of 2–3 random samples) results for samples not included in the calibration.

However, the cross-validation process only involves binary mixtures and thus excludes
potential systematic errors due to the presence of additional minor components in forensic
case samples. To investigate the sensitivity of the model to small spectral contributions not
related to the explosive compounds, the PETN and RDX level was estimated for several
Semtex and C4 samples in the collection of TNO. The NIR spectra of these so-called ‘plastic
explosives’ (hand-moldable, solid product formulations used for mining and military
purposes), as shown in Figure S3 of the Supplemental Information, clearly show a PETN- or
RDX-like signature indicative of a high level of PETN, RDX, or mixtures thereof. The results
obtained with the PLS and LDA-NAS (discussed in more detail in Section 3.5) models, as
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provided in Table S3 (Supplemental Information), were unfortunately not consistent enough
for a trustworthy semi-quantitative analysis. Depending on the model applied, the spectral
contribution from the additives (plasticizers, binders, preservatives, and colorants) and
the product properties (a dense moldable solid as compared to the powder standards and
mixtures) led to significant systematic errors. For more accurate quantitation, tailor-made
reference samples need to be prepared that better represent these products. However, the
results clearly show that rapid NIR screening provides a robust and trustworthy qualitative
analysis to distinguish real plastic explosives from hoax materials such as clay.

Smokeless powders (SPs) represent another interesting product class consisting of a
rather complex mixture of organic energetic compounds and additives with nitrocellulose as
the main propellant. Additional energetic ingredients include nitroglycerine (double-base
formulations) and nitroguanidine (triple-base products). In addition, SPs contain several
non-energetic substances such as ethyl or methyl centralite, dimethyl- of dibutyl-phthalate,
dinitro-toluene (burn rate regulators), di-phenylamine, and 2- or 4-nitro-diphenylamine
(stabilizers). SP NIR spectra as depicted in Figure S4 of the Supplemental Information
clearly bear resemblance to the spectral features of nitrocellulose. However, it should be
noted that not all SPs in the sample set could be characterized with NIR, most darkly
colored products exhibit excessive absorption of the incident radiation from the NIR ‘light’
source. This extensive absorption leads to loss of compound specific details in the spectrum
as is also illustrated in Figure S4. For the SPs only 11 of the 32 products analyzed yielded
a NIR spectrum that was sufficiently characteristic for the LDA-NAS model (described
in more detail in Section 3.5) to consistently report the presence of nitrocellulose. This,
unfortunately, indicates limited applicability of NIR spectroscopy for the characterization
of smokeless powder products.

3.4. NIR Analysis of Inorganic Oxidizers and Pyrotechnic Mixtures

In forensic explosive analysis, a very diverse set of substances, both of organic and
inorganic nature, are of interest and need to be identified. Like Raman spectroscopy, NIR
can also provide useful spectral data for the identification and differentiation of salts.
However, absolute absorption values are typically limited leading to a reduced signal-to-
noise ratio. Furthermore, as is illustrated in Figure 9, the spectra are less detailed compared
to those obtained for organic explosives, which can make it more difficult to identify the
correct raw material. This especially seems to be the case for NaClO3, KClO3, and KClO4,
for which the non-informative spectra seem visually very similar. Interestingly, the NIR
signal for the NaClO4 standard used in this study stood out as being significantly more
detailed and different from the other chlorate and perchlorate salts. The reason for this is
that this standard contains water of crystallization (sodium perchlorate monohydrate); this
phenomenon has also been reported for salts of MDMA and heroin [40]. Although water of
crystallization is not known for potassium nitrate, the NIR spectra of the nitrate salts in
Figure 9 show sufficient detail and difference for unambiguous identification of the nitrate
salt type.

Although from visual inspection the differentiation of perchlorate salts seems to be
difficult, supervised multivariate data analysis methods, such as Linear Discriminant Anal-
ysis or PLS-DA (Partial Least Squares-Discriminant Analysis), might be able to successfully
exploit minimal spectral differences to facilitate a correct chemical identification. Figure 10
depicts the LDA discrimination plot for the differentiation of KClO4 and KClO3 (NIR spec-
tra given in Figure 9b, orange and blue trace, respectively). Data pre-processing involved a
Savitzky–Golay first derivative after SNV. PCA was employed to reduce the dimension
of the dataset and in total, seven principal components (accounting for 97% of the data
variation) were used to build the LDA model. For the current data set (25 spectra in total,
5 samples and 5 spectra per sample for both KClO3 and KClO4), a 100% correct classifica-
tion rate was achieved (it should be noted that no external test samples have been included
in the validation, hence the performance could be lower under casework conditions). This
shows that by using a sub-selection of reference data in combination with a dedicated
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chemometric model, additional information can be extracted to assist chemical identifica-
tion. In this case, a two-stage approach could be used, first discovering the presence of a
salt of the chlorate/perchlorate class on the basis of general spectral features, followed by
the application of a powerful supervised multivariate data analysis method to establish the
exact species (chlorate or perchlorate, potassium or sodium).
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Figure 10. LDA discrimination plot (KClO4 assignment vs. KClO3 assignment) for the potassium
chlorate and perchlorate NIR calibration data (5 samples, 5 spectra per sample, 25 spectra in total
each). The full separation of the KClO4 and KClO3 clusters (orange and blue dots, respectively)
indicate 100% model accuracy.

Inorganic substances are typically not used as energetic material as such, but act as
oxidizers and need to be mixed with fuels. Frequently encountered pyrotechnic mixtures
include flash powder (a mixture of typically 70 wt% KClO4 and 30 wt% aluminum powder)
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and black powder (containing KNO3, sulfur, and charcoal). Unfortunately, for these
two important types of pyrotechnic mixtures, the recording of informative NIR spectra
was hampered by material properties. For black powder, the issue is related to the full
absorption of the incident NIR electromagnetic radiation across the entire wavelength
range. As a result, insufficient refracted photons reach the detector to record a detailed
spectrum. In terms of absorbance, the signal is very high and lacks spectral detail to detect
the presence of KNO3. For flash powder, the reverse situation seems to exist as the presence
of very fine aluminum powder causes extensive elastic reflection. This results in a very high
fraction of the incident NIR ‘light’ being directed back to the detector, translating in a very
low absorbance value that hampers the identification of KClO4. Typical, uninformative
black powder and flash powder NIR spectra are shown in Figure S5 of the Supplemental
Information. These adverse phenomena could potentially be circumvented by modifying
the measurement configuration and this is a topic for further study.

3.5. NIR-Based Identification of Energetic Materials in Forensic Casework

As a final demonstration of the potential of portable NIR for the rapid, robust, and
on-scene identification of intact explosives, a set of anonymized forensic case samples from
the Netherlands Forensic Institute (NFI) was analyzed. These samples were acquired as
part of criminal investigations and are thus fully realistic and representative of the chemical
complexity and diversity encountered in forensic practice. The advanced data analysis
framework recently developed by TIPb data scientists to identify drugs of abuse in street
samples [38] was used as a starting point to develop a tailor-made data analysis interface
for NIR-based forensic explosive analysis. This involved the creation of a matrix library
(Table S2, Supplemental Information), the construction of an LDA model for compound
selection, and the creation of a NAS model to match a composite spectrum to the actual
NIR data for an unknown sample.

The results of the NIR analysis of a total of 58 NFI case samples (290 scans) and
60 samples (300 scans) from the negative sample set (Section 2.3) are summarized in Table 1.
All individual results at sample and scan levels can be found in Tables S4 and S5 of the
Supplemental Information. The NIR analysis of the negative samples with the advanced
data model confirms the findings reported in the previous sections; the NIR spectra of
the energetic materials, specifically the organic explosives, are highly characteristic and
consequently other materials will not easily yield a spectrum that is very similar. In this
study, this resulted in a 100% TNR (true-negative rate), or in other words, a 0% FPR (false-
positive rate). This means that if the NIR analyzer reports the presence of an energetic
material, this information is highly robust and trustworthy and possibly even admissible in
court. In a crime scene setting, it means that security measures are not taken in vain after a
positive test result. However, when looking closer at the results of the NFI case samples, it
becomes clear that the same does not hold for the true-positive/false-negative (TPR/FNR)
rates. For ETN, HMTD, PETN, TNT, and Tetryl, a 100% correct identification score was
obtained. However, for TATP, RDX, AN, and NC, in total 11 false-negative results were
recorded, leading to an overall TPR of 81% (FNR = 19%). Although this sample set is too
small to draw definite conclusions, the relatively low TPR does flag a challenge in forensic
explosive investigation in comparison to the chemical identification of drugs of abuse. As
the chemical state of the casework samples is more diverse, this can lead to false-negative
results for samples that are strongly contaminated, wet, show extensive degradation, or are
part of unknown formulations (e.g., Vitezit product formulations containing AN). This, of
course, hampers the practical implementation of the technique, since false-negative results
can affect the outcome of a court case, but more importantly can lead to serious safety
incidents on scene when bomb disposal experts wrongly assume that an explosive device
does not pose a threat on the basis of a negative NIR test result. It should be noted that
this issue is not specific to NIR; any portable analysis technique will be challenged when
faced with strongly contaminated or degraded energetic materials. However, this challenge
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is specific to forensic explosive analysis and needs to be adequately addressed as will be
discussed in more detail in the Discussion and Conclusions section.

Table 1. Confusion matrix showing portable NIR analyzer performance for forensic explosives
casework samples from the NFI (excluding the TATP/HMTD mixtures and AN emulsions be-
cause of deviating sample and product properties) and a collected set of ‘true-negative’ samples;
green = correct result (NIR analysis matches material composition), yellow = false negative (NIR
analysis does not show the presence of an energetic material in the sample).

Confusion Matrix
Powder Puck NIR Result

ETN TATP HMTD PETN RDX TNT Tetryl AN NC Neg

Sample Identity

ETN 2/2
TATP 1/3 2/3

HMTD 9/9
PETN 8/8
RDX 3/4 1/4
TNT 5/5

Tetryl 10/10
AN 7/13 6/13
NC 2/4 2/4
Neg 60/60

4. Discussion and Conclusions

The results presented in this work convincingly demonstrate the added value of
portable NIR for the rapid, robust chemical identification of explosives and energetic
raw materials, either at the incident scene, in a police station, or in a forensic laboratory
setting. NIR spectra of organic explosives of the nitro-aromatic, nitro-amine, nitro-ester,
and peroxide class, are highly selective and rich in compound specific details. Therefore,
chemically very similar compounds of interest, such as ETN/PETN and RDX/HMX, can
easily be differentiated on the basis of a NIR spectrum that can be acquired in a few
seconds. This detailed chemical information in the spectra can also be exploited to detect
energetic materials in more complex product formulations, such as plastic explosives.
However, spectral contributions from unknown additives can hamper quantitative analysis
with multi-variate regression techniques like PLS. In addition, NIR is also applicable
to most inorganic energetic materials (mostly oxidizers such as ammonium nitrate and
potassium perchlorate). However, for inorganic compounds, the spectra tend to be less
characteristic and hence powerful supervised chemometric methods such as LDA are
required to distinguish, for instance, chlorate and perchlorate salts. The excellent chemical
selectivity provided by NIR in the 1350–2550 nm wavelength range was demonstrated with
a 0% false-positive rate when analyzing a substantial set of known negatives, including food
products, household chemicals, known hoax materials, drugs of abuse, and raw materials
used to produce explosives. However, for a representative set of forensic casework samples
that reflect the actual state and quality of the evidence materials, a substantial false-negative
rate was obtained. Excessive degradation of aged material, poor quality of home-made
explosives, residual water in insufficiently dried products, and contamination due to poor
synthesis conditions are known to experts and the resulting variation in the NIR spectra is
typically not accounted for in a pure compound reference library. Model performance in
terms of false-negative rate could possibly be improved by including a range of spectra for
each compound in the reference matrix on the basis of forensic casework.

Given these promising findings, a relevant question is what additional steps are
needed to successfully introduce portable NIR in forensic, law enforcement, bomb disposal,
and security practice. Additionally, could the methodology be so robust that additional
confirmatory analyses are not required and that NIR analysis could, in principle, provide
admissible forensic evidence? Essentially, two important developments are required to
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achieve large-scale implementation. Firstly, the overall data analysis framework has to be
expanded, refined, optimized, and maintained. This includes spectral libraries covering
the casework formulation space, application of tailor-made data analysis modules, and
the optimization of decision thresholds for reporting positive or negative outcomes. To be
flawless, a certain degree of inconclusive outcomes needs to be accepted; for these samples,
additional chemical analysis will be necessary.

Secondly, a professional data infrastructure is needed, in which multiple portable
NIR units are operated within a given organization. In such a framework, NIR data as
measured on-scene is securely transferred to a cloud environment. Data preprocessing,
chemometric modeling, quality control, interpretation, reporting, and archiving are all
performed automatically and centrally in an analyzer network. An important prerequisite
is that individual NIR analyzers are interchangeable, i.e., the analysis of a sample on
different units should yield almost identical spectra. This is necessary for maintaining a
common matrix and enabling centralized data analysis. In this respect, it should be noted
that the current study was performed with a single portable NIR instrument. Although
NIR spectrometry is known for excellent reproducibility and repeatability, it cannot be
automatically assumed that the current findings translate to a NIR analyzer network.
Forensic scientists of the University of Lausanne recently introduced a NIR analyzer
network for illicit drug identification and quantification [41]. Convincing results were
presented with the use of the handheld MicroNIR instrument that operates in the 950–1650
nm range in combination with an app on a smartphone to receive and transfer measurement
data and receive the results from the cloud environment. These developments show that
‘on-scene NIR analysis as a service’ is not an abstract concept but is rapidly becoming a
reality [42].
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