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Abstract: In self-driving cars, object detection algorithms are becoming increasingly important, and
the accurate and fast recognition of objects is critical to realize autonomous driving. The existing
detection algorithms are not ideal for the detection of small objects. This paper proposes a YOLOX-
based network model for multi-scale object detection tasks in complex scenes. This method adds a
CBAM-G module to the backbone of the original network, which performs grouping operations on
CBAM. It changes the height and width of the convolution kernel of the spatial attention module
to 7 × 1 to improve the ability of the model to extract prominent features. We proposed an object-
contextual feature fusion module, which can provide more semantic information and improve the
perception of multi-scale objects. Finally, we considered the problem of fewer samples and less loss of
small objects and introduced a scaling factor that could increase the loss of small objects to improve the
detection ability of small objects. We validated the effectiveness of the proposed method on the KITTI
dataset, and the mAP value was 2.46% higher than the original model. Experimental comparisons
showed that our model achieved superior detection performance compared to other models.

Keywords: object detection; YOLOX; attention module; object-contextual feature fusion

1. Introduction

With the development of convolutional neural networks [1], artificial intelligence
technology has achieved great results and is applied in various fields, such as medicine [2],
multimedia [3], and the field of autonomous driving.

Object detection is a critical part of achieving autonomous driving. The basic strategy
of the traditional visual object detection algorithm is to first select the interested image
region from the image, then extract the corresponding image features from the region,
and then finally the extracted features are fed into the classifier. Such algorithms involve
two aspects: feature extraction methods, such as the sliding window method [4], SIFT [5],
HOG [6], etc., where the features are designed manually; and classifiers, such as SVM
classifiers [7], Adaboost classifiers [8], etc. Because the traditional method needs to pre-
select the region, it will make the model time-consuming. These models have limitations
due to the limited functional capabilities of manual design and the diversity and complexity
of the environment.

The progress made in deep learning has been instrumental in driving the growth of
computer vision. It is crucial in the domains of object classification [9–11], detection [12,13],
segmentation [14], tracking [15], etc. The AlexNet model won the ImageNet dataset image
classification competition, giving the object detection field a new development direction
and benefiting research in autonomous driving. Deep learning network models are trained
using many labeled data to find the optimal values while saving the training parameters.
Object detection based on deep learning can be categorized into single-stage and two-stage
methods. When single-stage algorithms are not developed maturely, two-stage algorithms
such as R-CNN [16], Fast R-CNN [17], and Faster R-CNN [18] have higher detection
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performance. However, FPS is insufficient to qualify as realtime. The model represented by
SSD [19] and YOLO [20] first inputs the images directly into the model, then carries out a
series of convolution operations, and then conducts regression detection of the box position
and object category. These models have fast detection speed but insufficient recognition
accuracy. Today, single-stage algorithms have higher detection speed and accuracy and are
more suitable to be equipped in complex scenes.

However, the existing models are not optimal in specific scenarios and, thus, need to
be adjusted accordingly. Wang et al. [21] proposed a network that can mitigate the impact
of rainfall. They accomplished this by devising loss function components that cater to the
distinct characteristics of the various subnetworks. Tan et al. [22] proposed a composite
scaling method to adapt to different environments, which was trained on the COCO
dataset to obtain the optimal mAP at that time. Wong et al. [23] proposed a compact deep
convolutional neural network that can be deployed to embedded devices to accommodate
the detection speed requirements in different scenarios. Nayereh et al. [24] proposed an
efficient hybrid approach of fuzzy and NMS algorithms that can raise the average detection
accuracy of the model for vehicle objects. Stefano et al. [25] proposed a new sampling-free
uncertainty estimation method, which can effectively cope with unprecedented vehicle
driving scenarios and generalize better than the previous methods.

Choi et al. [26] proposed Gaussian YOLOv3 to reduce the localization error of the
vehicle objects in autonomous driving. Li et al. [27] developed a stepwise domain adaptive
YOLO (S-DAYOLO) framework to improve the object detection performance in various
domain shift scenarios for autonomous driving. Li et al. [28] proposed an improved
lightweight YOLOv5s network with a higher detection speed and enhanced object lo-
calization capabilities. Other new object detection algorithms consider both speed and
accuracy [29,30]. But these models are not necessarily suitable for detecting multi-scale
objects in complex scenes.

In this paper, we propose a network model based on YOLOX [31] named CF-YOLOX,
which has good detection performance for multi-scale objects in autonomous driving
scenarios. The main innovations and contributions of this paper are as follows: (1) To
further enhance the feature information extraction ability of the model and highlight salient
feature information, we propose a CBAM-G module, which can increase the attention
weight of salient features. (2) To improve the ability to detect multi-scale objects, we propose
an object-contextual feature fusion module to fuse multi-scale object feature information
and act on the prediction network to improve the detection effect. (3) To enhance the
detection ability of small objects, we propose an improved IOU-LOSS calculation method,
which can enhance the loss of small objects.

The rest of the paper is as follows: In Section 2, we introduce the theory and framework
of the YOLOX algorithm. In Section 3, we elaborate on the method proposed in this paper.
In Section 4, the proposed experimental method was used on the KITTI [32] dataset and
the BDD100K [33] dataset, and our method is compared with other algorithms. Section 5 is
the conclusion.

2. Structure and Features of YOLOX

YOLOX combines mature network models and effective training techniques without
preparing a priori box and modifies the structure of CSPNet [34] to balance speed and
accuracy. The backbone network CSPDarknet differs from YOLOv3 [35] in that it incorpo-
rates the Focus structure, compressing the image’s shape, increasing channels, reducing
parameters, and improving the inference speed. The SiLU activation function used in the
model is non-linear, which can solve the gradient divergence problem when the input is
negative and make the convergence speed faster. SPP [36] becomes part of the backbone
and pools the images with pooling kernels of different sizes, which can expand the receptive
fields. The neck uses the PANet [37] network, which fuses feature maps at different scales
and can contain information such as the location, texture, and edges at low levels, along
with reliable semantic information at high levels.
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In the output stage of traditional networks, the object classification and regression
tasks are performed directly on the same feature map, which can lead to conflicting tasks
because the classification task considers the feature differences between samples, while
the regression task focuses more on the profile features of the object. The decoupled head
of YOLOX uses a convolutional kernel of size 1 × 1 to adjust the number of channels of
the feature map and then connects two parallel branches. Each branch uses convolutional
kernels of size 3 × 3 for the classification and regression tasks, which are combined at the
prediction time.

YOLOX follows the Mosaic data enhancement technique and introduces the Mixup en-
hancement method. The Mixup method mixes two images with RGB values in a particular
ratio to construct new training samples and labels by linear interpolation. Constructing new
samples can enhance the model’s generalization ability, thus, improving the accuracy rate.

The YOLO series models use Anchor-based detection networks, which are trained
to solve for the optimal prior box size to optimize the model, but can only be applied to
specific datasets and have poor general performance. In YOLOX, an anchor-free detector is
used to predict the coordinates of objects. The regression network predicts the coordinates
of the upper left corner of the object bounding box (x, y) as well as its width and height. The
classification network predicts the object class, while the prediction network distinguishes
between the object and the background regions and uses the object’s centroid as a positive
training sample. Each point on the output feature map predicts only one pre-selected box.
The prediction result matches the original sample to determine whether it is positive, re-
quiring a suitable label assignment strategy. YOLOX adopts SimOTA as the label-matching
method. Firstly, the coordinates and category information of the preselection box and
the target box must be obtained. Next, ten candidate boxes corresponding to each object
frame are obtained by calculating the IOU value. The cost function can be computed by
incorporating both regression and classification losses.

cij = Lcls
ij + λLreg

ij (1)

In the formula, Lcls
ij represents the classification loss between the ith real object frame

and the jth preliminary screening positive sample prediction frame, Lreg
ij represents the

position regression between the ith real object frame and the jth primary screening positive
sample prediction frame loss, and λ represents the weight coefficient of the position
regression loss. Candidate boxes are selected for each object using cost values, and duplicate
detection boxes are filtered out using NMS. SimOTA can automatically analyze how many
positive samples each actual box should have and automatically decide which feature
map of each actual frame should be detected, which is beneficial for datasets with uneven
sample distribution.

The network’s general architecture is depicted in Figure 1.
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Figure 1. The network structure of YOLOX.

3. The Improved YOLOX Network Model

Firstly, this section gives a detailed introduction to the CBAM-G attention module.
Next, we detail how the object-contextual feature fusion module works. Then, the im-
proved IOU-LOSS calculation method is explained. Finally, the whole model structure
is summarized.

3.1. CBAM-G

CBAM [38] has been favored by many researchers for its plug-and-play and significant
enhancement since it was proposed in 2018. This module derives the relevance weight
matrix for the input feature map in both the channel and spatial dimensions. The matrix
is subsequently multiplied with the feature map to acquire the adaptive feature-adjusted
feature map. It has almost no effect on the inference operations. Figure 2 shows the
architecture of CBAM.
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Figure 2. The structure of CBAM.

CBAM contains attention modules in both the channel and spatial dimensions. For a
given feature map F ∈ RC×H×W that is input to the CBAM module, the channel attention
module focuses on the image that is “what” and compresses the spatial dimension of the
input feature map. In the channel dimension, the feature map is subjected to global max
pooling and mean pooling, resulting in two pooled 1D vectors. Then the 1D vectors are
summed after a fully connected layer to obtain the 1D channel attention MC ∈ RC×1×1,
multiplied by the input feature map F to construct a new feature map F′, represented
as follows:

MC(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) = σ(W1(WO(FC
avg)) + W1(WO(FC

max))) (2)

In the formula, σ is the sigmoid function, WO ∈ RC/r×C, W1 ∈ RC×C/r.
F′ passes through the spatial attention module, focusing on the “where” of the image

object. In the spatial dimension, it will go through global max pooling and mean pooling,
stack the pooled 2D vectors and then perform a convolution operation to get 2D spatial
attention, represented as follows:

MS(F) = σ( f 7×7([AvgPool(F); MaxPool(F)])) = σ( f 7×7([FS
avg; FS

max])) (3)

In the formula, f 7×7 is the convolution kernel of 7 × 7; Then the spatial attention is
multiplied by the feature map F′ by element to obtain the final attention output. The whole
attention process can be described as follows:

F′ = MC(F)⊗ F (4)

F′′ = MS(F′)⊗ F′ (5)

The feature map is directed to the spatial attention module of CBAM after passing
through its channel attention module. This module uses a convolution kernel of 7 × 7
to concentrate on the spatial features. The commonly used camera resolution is mostly
larger in width and smaller in height, and the image size is also large in width and small in
height. The image shape is similar to a horizontal rectangle. The image aspect resolution
of the KITTI dataset for autonomous driving is 375 × 1242, and the picture is a horizontal
rectangle. The picture input to the YOLO-S model will be fixed to 640 × 640, and the
picture’s aspect ratio will change. The object shape becomes a narrow and high vertical
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rectangle, deviating from the original object shape size. The shape change of the object after
reshaping is shown in Figure 3.
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Figure 3. Change of picture object shape.

Therefore, the square convolution kernel size of 7 × 7 is not optimal for the feature
map, and the extensive convolution range introduces non-object feature information. In this
regard, to make the feature extraction fit the original image object information more closely,
a convolution kernel with a size of 7 × 1 is used in the CBAM module. The convolution
kernel becomes a vertical rectangular shape instead of a square shape. The shapes of
convolution kernels of different sizes are shown in Figure 4.
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Figure 4. The shapes of convolution kernels of different sizes.

Using a convolution kernel with a size of 7 × 1 to fit the reshaped shape of the original
image object does not pay attention to all the information in a large range, which can
improve the detection accuracy and model generalization ability to a certain extent. It
should be noted that the convolution kernel of size 7 × 1 does not apply to all images. Only
images similar in size to 375 × 1242 will work well.

The attention module will effectively enhance the model’s feature extraction capability
after focusing on locally important information and suppressing the unimportant infor-
mation in the image. At the same time, the grouping operation is used to raise the spatial
perception of the model and minimize the parameters and computations.

Figure 5 shows CBAM-G. The feature maps are formed into groups after the grouping
operation. The size of each group of feature maps is H ×W × C/g. The feature maps are
passed through the CBAM module for channel and spatial perceptual attention, respectively,
to obtain newly grouped feature maps; a stacking process is carried out on every group to
generate a feature map that is identical to the initial sized one.
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Without considering the bias term, etc., the calculation quantity formula can be roughly
simplified as follows:

GFLOS = C1 × C2 × (
H − h

Sh
× W − w

Sw
)× (h× w) (6)

The equation involves several variables, C1 × C2 denotes the channels of the feature
map, and W and H represent the width and height of the feature map. Additionally, w
and h refer to the width and height of the convolution kernel, while Sw and Sh denote the
step size corresponding to the width and height of the convolution kernel. In CBAM, the
size of h × w is 7 × 7; after the CBAM-G attention module, the formula for the calculation
amount is:

GFLOS =
C1

g
× C2 × (

H − h
Sh

× W − w
Sw

)× (h× w) (7)

In the above equation, g is the number of groups, and the size of h × w is 7 × 1.
Therefore, after the CBAM-G module, the amount of computation will be reduced, and the
convolution operation of multiple groups can improve the spatial perception. As such, the
detection accuracy can be effectively improved.

3.2. Object-Contextual Feature Fusion Module

In semantic segmentation, the resolution used is full resolution, which is more suitable
for small-scale and multi-scale object perception than object detection. In the contextual
aggregation problem of semantic segmentation, the main idea of OCRNet [39] (Object-
Contextual Representation) is to use the contextual features of a pixel point corresponding
to an object to reinforce the features of that object. To address the unsatisfactory detection
of multi-scale objects, we added an object-contextual feature fusion module [40] to provide
more semantic information to the model and improve the perception of multi-scale objects.
This module is equivalent to an attention module, which is a lightweight segmentation
decoder that focuses on the connection between pixels and pixels in the corresponding
object area.

To improve the multi-scale object detection ability of the model, the results obtained
after passing through the module were converted, and the pooling operation was performed
first, and then the dot multiplication was performed with the category-aware channels
in the detection heads of the three scales. Figure 6 displays the structural diagram of the
object-contextual feature fusion module.
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The output layers that have gone through the backbone and neck networks are used
as inputs and aggregated by the MLP operations, with the following primary process.

Each set of input features enters the MLP layer and passes through a linear layer that
transforms the dimensionality of the input features to a fixed dimension.

F̂i = Linear(Ci, C)(Fi), ∀i (8)

In the formula, F̂i is the output feature map, Linear is the linear layer operation, Ci is
the dimension of the feature channel, C is the set fixed dimension, Fi is the input feature
map, and i represents the ith group of feature maps.

Then, an up-sampling operation is performed using bilinear interpolation to unify the
resolution of all input features to the resolution size of the first set.

F̂i = Upsample(
W
4
× W

4
)(F̂i), ∀i (9)

Subsequently, all of the feature maps output after passing through the MLP layer are
stitched together in the channel dimension to obtain the aggregated features.

F = Linear(4C, C)(Concat(F̂i)), ∀i (10)

Finally, the aggregated features are passed through the MLP layer again, and this
time the MLP operation is implemented by 1 × 1 convolution to obtain the segmentation
prediction. The number of feature dimensions is mapped to categories.

M = Linear(C, Ncls)(F) (11)

The module branch has only four parts and contains six linear layers, so the number
of parameters will increase slightly.

3.3. Improved IOU-LOSS

The loss calculation of YOLOX can be divided into localization loss, category loss, and
confidence loss. The calculation of localization loss is related to the actual and prediction
boxes. In the COCO [41] dataset, objects with a pixel area smaller than 32 × 32 are small
objects. Small objects occupy less pixel area and carry less feature information. Therefore,
fewer small object features are extracted when performing object detection, resulting in
weaker feature representations.
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The detection effect of YOLOX on a small object is not as good as that of a normal-sized
object. The general formula for calculating IOU is:

IOU =
A ∩ B
A ∪ B

(12)

A represents the size of the actual box, while B denotes the size of the predicted box.
The IOU loss is calculated as follows:

LOSS = 1− IOU2 (13)

To enhance the loss of the small object, a scale factor β is introduced in the LOSS
calculation, which is calculated as:

β =
1− ( gt

1002 )

mean(1− ( gts
1002 ))

(14)

In the above formula, gt is the actual box area of a single object of a single image, gts
is the actual box area sum of all objects of a single image, and mean represents the mean
value calculation.

The improved IOU-LOSS calculation equation is:

LOSS = LOSS× β (15)

Therefore, when the object is smaller, its true value gt will also be smaller, while the
ratio will be larger, and the percentage of the object loss becomes larger.

3.4. The Network Structure of CF-YOLOX

Figure 7 depicts the CF-YOLOX network model after including the CBAM-G and
object-contextual feature fusion modules.
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The CF-YOLOX model can more accurately distinguish objects and backgrounds by
introducing an attention mechanism, thereby improving the detection accuracy. By focusing
on the critical features of the object region, the interference with irrelevant information can
be reduced, thus, improving the robustness of the model. The backbone feature extraction
ability of the network significantly impacts the model’s recognition effect. Therefore, the
CBAM-G attention module was added to the backbone network to focus on the channels
and spatial regions of interest, and the feature layer information was effectively extracted.
Since the network shares the network weights, the effective feature layer of the next stage
was also affected by the CBAM-G attention module.

Multi-scale feature fusion can improve the robustness of the model, making it less
affected by factors such as illumination, rotation, and deformation. By fusing feature
information of different scales, the dependence on a single scale can be reduced, thereby,
improving the model’s generalization ability. The Neck network’s feature layer and the
backbone network’s feature layer were jointly input into the object-contextual feature
fusion module. The multi-scale feature was fed back to the prediction part to enhance the
detection ability.

4. Experiments
4.1. Experimental Data and Details

This experiment used a server for training, Linux system, 64 GB, CPU using AMD
EPYC 7601, GPU is NVIDIA GeForce RTX3090 with 24 GB of video memory. PyTorch
framework was used, along with CUDA 11.3 for the computing acceleration.

We used the autonomous driving scene dataset KITTI as the training and testing
dataset, which mainly labels objects such as vehicles and pedestrians. Some objects were
obscured and truncated. The scene complexity could meet the data diversity requirements
of autonomous driving detection models.

The KITTI dataset was labelled with eight categories, such as Car, Cyclist and Pedes-
trian, with 7481 images. The data samples were not evenly distributed, and the data
categories were reclassified for testing. Firstly, Truck, Van and Tram were merged into the
Car class; Person sitting was merged into the Pedestrian class; DontCare class and Misc
class were ignored; and, finally, we merged the Car, Pedestrian and Cyclist classes. In this
paper, the ratio of the training set to the test set was 9:1.

The training process and parameter settings were as follows: Mosaic and Mixup
methods were used for data enhancement, the initial learning rate was 0.01, the self-
adjustment method was set to cosine annealing, pre-trained backbone network weights
were loaded, and a total of 150 cycles were trained.

4.2. Performance Evaluation

In the computer vision task, since the object detection task contained both classification
and detection subtasks, its evaluation metrics needed to consider both the classification
performance and the regression performance. Recall, AP, and mAP were selected as the
evaluation metrics of the object detection algorithm. The calculation formulae of each
evaluation metric are shown below.

Recall =
TP

TP + FN
Re (16)

AP =
∫ n

1
P(R)dR× 100% (17)

mAP =
∫ n

1

AP1 + AP2 + · · ·+ APn

n
(18)

In the above formula, TP: True Positive; FN: False Negative; P: Precision; R: Recall;
n: categories.
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Firstly, the ablation experiments were conducted to confirm the efficacy of the pro-
posed CBAM-G module. The following five sets of experiments were designed to analyze
the different contents. The model effect is shown in Table 1, with a “

√
” representing the

method used for the model. The analysis of Table 1 shows that the mAP value of the
original YOLOX network model was 90.61%, and the mAP value of Method 1 increased by
0.7% after adding the CBAM attention module. Method 2 was to consider the case that the
aspect ratio of the image object changes after the image is compressed and stretched, and
the spatial module of CBAM uses a convolutional kernel with a size of 7 × 7 to extract the
features of the object, which improves the mAP value by 0.58% compared with Method 1.
Method 3 verified the validity of Method 2. The vertical strip-shaped convolution kernel
was for the case where the shape of the object becomes narrower and taller while using the
horizontal strip-shaped convolution kernel to extract the features of the object; the accuracy
is not improved but reduced, so it is effective to design a suitable convolution kernel for
the aspect ratio of the picture object. Method 4 proposed the module grouping based on
Method 2, which is the CBAM-G attention module proposed in this paper. Convolutional
extraction of multiple groups can improve the global perception of attention to a greater
extent, while grouping also reduces the computation and the number of parameters of
the module. Using Method 4, the mAP value was improved by 0.66% compared with
Method 2.

Table 1. Ablation experiment of CBAM-G.

Method CBAM 7 × 1 1 × 7 Group mAP@0.5/%

YOLOX 90.61
1

√
91.31

2
√ √

91.89
3

√ √
90.94

4
√ √ √

92.55

For a more visual comparison of the effect after the introduction of the CBAM-G
module, a visual comparison of the heat map is performed in Figure 8.
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As can be seen from the Figure 8, using Method 4 allowed the model to focus more on
the region of interest and, thus, represent the salient features more clearly. This characteristic
is advantageous for subsequently extracting the essential object features.

The CF-YOLOX model was enhanced by integrating the CBAM-G module, the object-
contextual feature fusion module, and an improved IOU-LOSS computation method,
which collectively improved the model’s detection accuracy from multiple perspectives.
The performance comparison is shown in Table 2. A represents the original method, B
represents the CBAM-G method, and C represents the object-contextual feature fusion
method. Method D used improved IOU-LOSS based on Method C, and E represents the
CF-YOLOX network model.

Table 2. The AP values of different models.

Method Parameter/M Car/% Cyclist/% Pedestrian/% mAP@0.5/%

A 8.938 95.61 93.25 83.13 90.61
B 8.939 96.27 95.53 85.85 92.55
C 9.448 96.37 95.77 85.70 92.61
D 9.449 96.54 94.77 87.45 92.92
E 9.449 96.76 95.85 86.61 93.07

Table 2 illustrates that incorporating the CBAM-G module into the model does not
significantly increase the parameters, yet it effectively improves the model’s mAP value
by 1.94%. Adding the object-contextual feature fusion module increased the parameters
by a small amount, but the mAP value could be improved by 2.0%; after introducing the
improved IOU-LOSS calculation method, the mAP value increased to 93.07%.

Table 3 shows the recall values for the different categories of Methods A–E.

Table 3. Recall value for different categories of methods A to E.

Method Car/% Cyclist/% Pedestrian/%

A 92.08 89.12 74.54
B 93.61 91.16 77.78
C 93.58 91.84 77.55
D 93.64 91.84 78.94
E 93.95 91.84 80.32

Based on the information presented in Table 3, it can be observed that the recall
values of Car, Cyclist, and Pedestrian were improved to some extent after adding different
modules or methods.

To further demonstrate the superiority of the proposed model, experimental compar-
isons were conducted with different models on the KITTI dataset, all of which were of
size “S” or lightweight networks, as shown in Table 4. The mAP value of YOLOv6 [29],
YOLOv7-tiny [30], and YOLOX were similar, but YOLOv6 had a larger number of parame-
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ters, reaching 18.50M; the CF-YOLOX model had the highest mAP value and a moderate
number of parameters, which had a more productive detection performance.

Table 4. Comparison of different models on the KITTI dataset.

Model
AP@0.5/%

mAP@.5/% Parameter/M
Car/% Cyclist/% Pedestrian/%

YOLOX 95.61 93.25 83.13 90.61 8.94
YOLOv5 97.80 95.00 84.90 92.50 7.01
YOLOv6 97.10 91.90 82.80 90.40 18.50

YOLOv7-tiny 96.40 94.00 81.40 90.60 6.01
CF-YOLOX 96.76 95.85 86.61 93.07 9.49

We also used some data from the BDD-100K dataset for experimental comparison, a
total of 10,000 pictures; the ratio of the training set to the test set was 8:2. The BDD100K data
set had a total of ten categories, namely: bus, traffic light, traffic sign, person, bike, truck,
motor, car, train, and rider. Considering that the sample distribution of the data set was not
uniform, it was necessary to reclassify the sample categories. The four categories of truck,
train, bus, and car were combined into the car category, and the three categories of motor,
bike, and rider were combined into the rider category. The final sample categories were:
car, traffic light, traffic sign, person, and rider. Based on this data set, different algorithms
were trained and tested, as shown in Table 5.

Table 5. Comparison of different models on the BDD100K dataset.

Model
AP@0.5 (%)

mAP@0.5/% Inference
Time/msCar/% Person/% Rider/% Traffic

Light/%
Traffic
Sign/%

YOLOX 73.58 57.47 39.33 57.17 57.96 57.10 12.9
YOLOv5 71.50 50.1 37.7 49.1 53.50 52.40 3.4
YOLOv6 71.2 47.00 25.90 40.80 49.50 46.90 3.15

YOLOv7-tiny 72.6 51.7 39.1 43.8 50.00 51.40 2.6
CF-YOLOX 74.72 57.60 40.89 57.69 59.82 58.15 13.3

The scene of the BDD100k dataset was complex, so the mAP value of the model may
be lower, but the model’s generalization ability will be increased. The calculation and
inference time of the CF-YOLOX model was the highest, but it was still realtime, reaching
13.4 ms, which was only 0.4ms lower than the original YOLOX model. It is advisable to
trade time for accuracy without affecting the realtime requirements of the model. More
elevated precision detection models can be more capable of perceiving the environment.
The mAP values of YOLOv5 [42], YOLOv6, and YOLOv7-tiny were lower, which was
determined by the model structure itself. The lower calculation and inference time can
make the model better suited for embedded devices. The “car” category had more samples
in the data set. The object shape and texture were relatively clear, so the AP values obtained
by each model for the car category detection were relatively similar, and the value obtained
by the CF-YOLOX model was the highest, reaching 74.72%. For other categories of the test
results, due to the difference of the model and the complexity of the sample environment,
the difference was relatively large.

Figure 9 shows the detection effect of the YOLOX model and the CF-YOLOX model in
different scenarios. In the first row of Figure 9, the YOLOX model missed the traffic light in
the distance, while the CF-YOLOX model could detect it, indicating that the CF-YOLOX
model had a more robust ability to detect small objects in the distance. In the second,
third, and fourth rows, the vehicle object located in the distance can be regarded as a small
object, and the original model missed the detection of these smaller objects. Since the
CF-YOLOX model had added an object-contextual feature fusion module with multi-scale
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feature fusion characteristics and an improved IOU-LOSS that can improve the loss of small
objects, the CF-YOLOX model had a preferable detection effect on these small objects.
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5. Conclusions

This paper proposed a multi-scale object detection model based on YOLOX to solve
the problems of missed detection and inaccurate recognition in multi-scale object detection
in complex scenes of autonomous driving. We added the proposed CBAM-G to the YOLOX
model, which can focus on the critical feature information of the object. We proposed an
object-contextual feature fusion module to obtain more semantic information and improve
the object perception at different scales. The output of this module was input to the
detection head together with the output feature map of the neck network to improve
the object detection effect at different scales. Finally, we proposed an improved IOU-
LOSS calculation method, which is beneficial to enhance the detection ability of small
objects. We conducted comparative experiments on the KITTI dataset and the BDD100K
dataset. The proposed model had the highest mAP value, indicating that the model
has wide applicability and can meet the detection requirements of recognizing objects in
autonomous driving scenarios. In future research, we will continue to study multi-scale
object detection, while considering the issue of lightweight to be preferable to apply in
practical application scenarios.
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